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Microcosm experiment
combined with process-based
modeling reveals differential
response and adaptation of
aquatic primary producers to
warming and agricultural run-off
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Elisabeth M. Gross3,4, Mechthild Schmitt-Jansen2,
Franz Hölker1 and Sabine Hilt1

1Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and
Inland Fisheries (IGB), Berlin, Germany, 2Department of Bioanalytical Ecotoxicology, Helmholtz
Centre for Environmental Research-UFZ, Leipzig, Germany, 3Laboratoire Interdisciplinaire des
Environnements Continentaux (LIEC) UMR 7360 CNRS, Université de Lorraine, Metz, France,
4LTSER Zone Atelier Bassin de la Moselle, Metz, France
Fertilizers, pesticides and global warming are threatening freshwater aquatic

ecosystems. Most of these are shallow ponds or slow-flowing streams or ditches

dominated by submerged macrophytes, periphyton or phytoplankton. Regime

shifts between the dominance of these primary producers can occur along a

gradient of nutrient loading, possibly triggered by specific disturbances

influencing their competitive interactions. However, phytoplankton dominance

is less desirable due to lower biodiversity and poorer ecosystem function and

services. In this study, we combined a microcosm experiment with a process-

based model to test three hypotheses: 1) agricultural run-off (ARO), consisting of

nitrate and a mixture of organic pesticides and copper, differentially affects

primary producers and enhances the risk of regime shifts, 2) warming

increases the risk of an ARO-induced regime shift to phytoplankton

dominance and 3) custom-tailored process-based models support

mechanistic understanding of experimental results through scenario

comparison. Experimentally exposing primary producers to a gradient of

nitrate and pesticides at 22°C and 26°C supported the first two hypotheses.

ARO had direct negative effects on macrophytes, while phytoplankton gained

from warming and indirect effects of ARO like a reduction in the competitive

pressure exerted by other groups. We used the process-based model to test

eight different scenarios. The best qualitative fit between modeled and observed

responses was reached only when taking community adaptation and organism

acclimation into account. Our results highlight the importance of considering

such processes when attempting to predict the effects of multiple stressors on

natural ecosystems.

KEYWORDS

climate change, regime shifts, alternative stable states, stress-induced tolerance,
mathematical modeling, multiple stressors, shallow lakes, phytoplankton succession
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1 Introduction

The overall share of land used for crops and pastures is increasing

worldwide (Winkler et al., 2021). However, global cropland per capita

is steadily decreasing as the world's population continues to grow

(FAO, 2021), leading to a rapid increase in the global use of pesticides

and fertilizers (Sharma et al., 2019). In addition, climate change is

increasing the average temperature of most inland water bodies

(O’Reilly et al., 2015). Together, these multiple stressors may severely

affect aquatic ecosystems in agricultural areas. Many of these

agroecosystems are shallow ponds or slow-flowing streams and are

characterized by the alternative dominance of submergedmacrophytes,

periphyton or phytoplankton, competing for light and nutrients as

major resources (Vasconcelos et al., 2016). Shifts from submerged

macrophyte dominance to the less desirable phytoplankton dominance

have been reported with increased nutrient loading (Sayer et al., 2010).

Warming is expected to lead to more severe phytoplankton dominance

(modeling study by Mooij et al., 2007) and to increase periphyton

growth (Mahdy et al., 2015; Kazanjian et al., 2018), resulting in an

overall weakening of the resilience of macrophyte-dominated systems

to nutrient loading impacts (Meerhoff et al., 2022). Additional stressors

such as pesticides, however, may antagonistically interact with

temperature and nutrient loading, modulating the competition for

resources between aquatic primary producers (Polst et al., 2022).

Understanding the overall response of these ecosystems to multiple

stressors is therefore challenging (Jackson et al., 2016) but crucial to

predict future changes in their functioning (Hilt et al., 2017) and

services (Janssen et al., 2021).

A first experiment investigating responses of the different

primary producers typical for shallow aquatic systems to multiple

stressors revealed a direct positive effect of co-occurring nitrate and

pesticides on phytoplankton, with no significant effect of warming

(Allen et al., 2021). A subsequent study, involving also primary

consumers, showed that pesticides and nitrate may interact

synergistically to reduce macrophyte dominance, and that

pesticides and warming may have especially strong but opposite

effects on specific macrophyte species (Vijayaraj et al., 2022).

Climate warming has even been shown to lower critical

thresholds for shifts in dominance between aquatic primary

producers (Polst et al., 2022). These differences may derive from

the differential sensitivities to toxicants of different groups and

species of primary producers (Fairchild et al., 1998; Giddings et al.,

2013), some of which may be more tolerant or have the ability to

acclimate or adapt to them at different temperature-dependent rates

(Chalifour and Juneau, 2011; Larras et al., 2013). Additional trophic

levels, the structure of the ecosystem and the trophic status of the

water body may also play a role (Wendt-Rasch et al., 2004), further

complicating the analysis of direct and indirect effects of multiple

stressors that may lead to complex responses of shallow

aquatic ecosystems.

Reductionist factorial laboratory approaches are useful to

address related research questions. However, time and budget

constraints, and the invasive nature of macrophyte sampling

often limit both the number of testable stressor combinations and

the frequency of sampling that would be needed to understand
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community dynamics. Combining experiments with process-based

models may be a helpful tool to reveal variable trajectories, to test

for critical threshold values, and to disentangle indirect stressor

effects. Such models, however, need to be developed based on the

specific research questions and the experimental set-up, i.e.,

custom-tailored to avoid running into equifinality issues (López

Moreira et al., 2021). The empirical results, in turn, allow for

subsequent model refinement, calibration and validation (e.g.,

Kim et al., 2021), an iterative process that builds upon every new

insight and gained expert knowledge (Jakeman et al., 2006).

In this study, we combined a microcosm experiment on

multiple stressor effects in shallow aquatic ecosystems with

simulations we ran with a custom-tailored process-based model.

We developed this model to investigate the response of the different

primary producer groups (submerged macrophytes, periphyton and

phytoplankton) to the combined effects of nitrate and pesticides

typically found in agricultural run-off (ARO) with or without effects

of climate warming. We hypothesized: 1) that ARO differentially

affects primary producer groups increasing the likelihood of

phytoplankton dominance in shallow aquatic ecosystems; 2) that

warming facilitates this process and 3) that custom-tailored

process-based models can support mechanistic understanding of

experimental results through scenario comparison. First, we

developed a simple process-based mathematical model based on

the known effects of herbicides, fertilizers and warming on

phytoplankton, periphyton and macrophytes. To assess model

predictions, we carried out a microcosm experiment testing the

response of three submerged macrophyte species (Myriophyllum

spicatum, Potamogeton perfoliatus and Elodea nuttallii) and

mixtures of phytoplankton and periphyton typically occurring in

European freshwaters. We exposed these systems to a gradient of an

experimental ARO cocktail, an artificial mix of organic pesticides

(an herbicide, an insecticide and a fungicide), copper-(II) sulfate

(CuSO4) and potassium nitrate (KNO3) for 19 days. The ARO mix

was applied in a two-factor factorial design (dose-response set-up)

at two different temperatures (ambient: 22°C, warming: 26°C).

Experimental results led us to refine the process-based model and

test eight scenarios of differential herbicide sensitivities among

primary producer groups, temperature dependence of the

response, and development of tolerance to the herbicide for three

cases (sets) of phytoplankton community composition. Comparing

in silico simulations with experimental results allowed us to select

the best fit and improved mechanistic understanding of differential

sensitivities of phytoplankton, periphyton and submerged

macrophytes to combined ARO and warming.
2 Materials and methods

2.1 Process-based model to simulate
the microcosms

2.1.1 Governing and supplementary equations
To simulate the combined effects of ARO and warming on the

different groups of aquatic primary producers, we developed a process-
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based mathematical model, which we implemented in MATLAB

(R2020a). The model comprises a series of ordinary differential

equations (ODEs) similar to those proposed in previous works (Jäger

et al., 2010; Vasconcelos et al., 2016). These equations describe the

following state variables: the live carbon (C) biomass of phytoplankton

(as volume concentration, eq. 1, specific to each phytoplankton group),

periphyton, hereafter understood as the growth on the vertical inner

surface of the microcosm vases (as areal density, eq. 2), epiphyton, i.e.,

periphyton growing on macrophyte surfaces (as areal density, eq. 3)

and macrophytes (eq. 4). Because exudates and lysates resulting from

growth and senescence, respectively, are known to support microbial

communities (Kieft et al., 2021), the model also includes governing

equations for the C content of the cellular exudates of all primary

producer groups (as volume concentration, eqs. 5-8) and for their dead

C biomass (consistent units, eqs. 9-12). These processes were included

because the presence of pesticides in ARO and an increased

temperature may have important direct effects on decomposers (e.g.,

heterotrophic bacteria and fungi) and, consequently, on the rates of

nutrient recycling within the microcosms (Nielsen, 2006). Additional

governing equations describe the areal density of dead phytoplankton

cells accumulating in the sediments (eq. 13, specific to each

phytoplankton group), and the volume concentration of dissolved

inorganic phosphorus (eq. 14). The resulting system of ODEs is:

dClive,phyto

dt = (pphyto − lphyto −
wlive,phyto

HV
)Clive,phyto (1)

dClive,peri

dt = (pperi − lperi)Clive,peri (2)

dClive,epi

dt = (pepi − lepi)Clive,epi (3)

dClive,macro

dt = (pmacro − lmacro)Clive,macro (4)

dCexu,phyto

dt = lexu,phytoClive,phyto − bexu,phytoCexu,phyto (5)

dCexu,peri

dt = lexu,periClive,peri
Aperi

V − bexu,periCexu,peri (6)

dCexu,epi

dt = lexu,epiClive,epi
Aepi

V − bexu,epiCexu,epi (7)

dCexu,macro

dt = lexu,macroClive,macro
1
V − bexu,macroCexu,macro (8)

dCdead,phyto

dt = ld,phytoClive,phyto − (
wdead,phyto

HV
+ bdead,phyto)Cdead,phyto (9)

dCdead,peri

dt = ld,periClive,peri − bdead,periCdead,peri (10)

dCdead,epi

dt = ld,epiClive,epi − bdead,epiCdead,epi (11)

dCdead,macro

dt = ld,macroClive,macro − bdead,macroCdead,macro (12)

dCdead,sed,phyto

dt = wlive,phytoClive,phyto + wdead,phytoCdead,phyto

− bdead,phytoCdead,sed,phyto

(13)

dPd
dt =   Sphyto + Speri + Sepi + Smacro (14)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

where the parameters pi=phyto, peri,epi,macroand li=phyto,peri,epi,macro (eqs. 1-4)

are variable total unit gain and unit loss rates of C biomass of each

group; wlive,phyto (eqs. 1,13) and wdead,phyto (eqs. 9,13) are constant

sinking velocities of live and dead phytoplankton cells, respectively;HV

is the constant height of water in the microcosm of constant water

volume V ; the lexu,i=phyto, peri, epi,macro  (eqs. 5-8) are the variable unit

background exudation rates of each group; the bexu,i=phyto, peri, epi,macro

(eqs. 5-8) are the variable unit biodegradation rates of exudates; the

bdead,i=phyto, peri, epi,macro (eqs. 9-13) are the variable unit biodegradation
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rates of dead biomass; Aperi is the constant area of the microcosm

surface where wall periphyton can grow; and Aepi the variable area of

macrophyte surfaces where epiphyton can grow, formulated as a

function of macrophyte biomass. The time coordinate and all state

variables (governing eqs. 1-14) are listed and described in Table 1.

Primary auxiliary variables, i.e., those appearing in the governing

equations of the model, are listed and described in Table 2. The

formulations of all secondary auxiliary variables appearing in the

equations of primary auxiliary variables are presented as part of

the supplementary information (SI), as well as the chosen values of

all model parameters (Tables S1–S6) and the initial values of all state

variables (Table S7).

Note that, in the model, periphyton and epiphyton are treated

as separate primary producer groups. While periphyton grows on

the vertical inner glass surface of the microcosm, which is of

constant area, epiphyton grows on macrophyte surfaces that

change over time as macrophytes develop. We implemented a

space limitation factor in the auxiliary equation for the growth

rates of periphyton and epiphyton (eqs. S19 to S22). Additionally,

the growth rates of all primary producers are also dependent on

nutrient and light availability, and are affected by temperature. On

this note, in general, all modelled processes are accelerated under

warmer conditions, as described in the SI. The effect of the herbicide

was modeled based on log-logistic dose-response curves that are

common in toxicokinetic studies (e.g., Copin and Chèvre, 2015).

These curves were made specific to each group of primary

producers, as described in the SI (Figure S1).
2.2 Microcosm experiment

2.2.1 Microcosm setup
To mimic shallow aquatic ecosystems, we used microcosms

based on the OECD Guideline 239 Water-Sediment Myriophyllum

Spicatum Toxicity Test (Allen et al., 2021; Polst et al., 2022; Vijayaraj

et al., 2022). The microcosms consisted of glass vases (diameter:

25 cm, height: 40 cm, manufacturer: Sandra Rich, Germany)

containing a glass bowl (diameter: 14 cm, height: 8 cm,

manufacturer: Sandra Rich, Germany) filled with 20% Kaolin

(Imerys, France), 5% peat (<1 mm), 1% nettle powder, 74%

quartz sand (grain size fraction<0.2 mm, manufacturer: Schicker

Mineral GmbH, Germany) and a 2 cm layer of quartz sand (<0.2

mm) on top to prevent resuspension of the sediment.

Three submerged macrophyte species that are common in

temperate eutrophic freshwater ecosystems (Hilt et al., 2018) were

collected from nearby eutrophic water bodies: Myriophyllum

spicatum and Elodea nuttallii from Lake Müggelsee (Germany)

and Potamogeton perfoliatus from River Spree (Germany). Two

apical shoots of 8 cm (M. spicatum, E. nuttallii) or 10 cm (P.

perfoliatus) were planted into the sediments of each microcosm.

All microcosms were filled with 8 L of Volvic® mineral water

(DanoneWaters Deutschland GmbH, Germany) to ensure homogeneity

and low initial nutrient concentrations (NO3-: 7.3 mg L−1). After one

week of initial adjustment of the system, the following species of

photoautotrophic microorganisms were added, that are typical of
frontiersin.org
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shallow freshwater ecosystems: four planktonic species – including two

cyanobacteria (Chroococcus minutus and Anabaena sp. PCC7210) and

two green algae (Scenedesmus obliquus and Desmodesmus subspicatus) –

and four benthic species – including a diatom (Nitzschia palea), two

filamentous green algae (Uronema sp. and Oedogonium sp.) and a

cyanobacterium (Komvophorum sp.). The species were selected and
Frontiers in Plant Science 04
grown in Volvic® water prior to inoculation, and then combined for an

inoculum with a total biovolume of 1.25×109 μm3. Three plastic strips

(30×2.5 cm) were fixed in the sediment bowl and attached to the inner

glass vase, providing a surface for periphyton growth (150 cm2 each). An

aeration system was constructed to ensure mixing of the water within

each microcosm using air pumps.
TABLE 1 Description, units of measurement of the time coordinate and state variables, and reference to the governing equations.

Variable Description Units Formulation

Time coordinate

t Time coordinate, with origin at the start of the simulated period and positive direction forward s –

State variables

Clive,phyto Volume concentration of live carbon biomass of phytoplankton mg C m-3 Eq. 1

Clive,peri Areal density of live carbon biomass of periphyton mg C m-2 Eq. 2

Clive,epi Areal density of live carbon biomass of epiphyton mg C m-2 Eq. 3

Clive,macro Live carbon biomass of macrophytes mg C Eq. 4

Cexu,phyto Volume concentration of carbon in phytoplankton exudates mg C m-3 Eq. 5

Cexu,peri Volume concentration of carbon in periphyton exudates mg C m-3 Eq. 6

Cexu,epi Volume concentration of carbon in epiphyton exudates mg C m-3 Eq. 7

Cexu,macro Volume concentration of carbon in macrophyte exudates mg C m-3 Eq. 8

Cdead,phyto Volume concentration of dead carbon biomass of phytoplankton mg C m-3 Eq. 9

Cdead,peri Areal density of dead carbon biomass of periphyton mg C m-2 Eq. 10

Cdead,epi Areal density of dead carbon biomass of periphyton mg C m-2 Eq. 11

Cdead,macro Dead carbon biomass of macrophytes mg C Eq. 12

Cdead,sed,phyto Areal density of dead carbon biomass of phytoplankton that is stored in the sediments mg C m-2 Eq. 13

Pd Volume concentration of dissolved inorganic phosphorus mg P m-3 Eq. 14
TABLE 2 Description, units of measurement of primary auxiliary variables (appearing in the governing equations), and reference to their formulation.

Variable Description Units Formulation

pphyto Fractional growth rate of carbon biomass of phytoplankton groups s-1 Eq. S15

pperi Fractional growth rate of carbon biomass of periphyton s-1 Eq. S19

pepi Fractional growth rate of carbon biomass of epiphyton s-1 Eq. S20

Aepi Area of macrophyte surfaces where epiphyton can grow m2 Eq. S24

pmacro Fractional growth rate of carbon biomass of macrophytes s-1 Eq. S25

li=phyto,peri,epi,macro Fractional loss rate of carbon biomass of primary producers s-1 Eq. S28

ld,i=phyto,peri,epi,macro Fractional death rate of carbon biomass of primary producers s-1 Eq. S29

lexu,i=phyto,peri,epi,macro Fractional exudation rate of carbon biomass of primary producers s-1 Eq. S30

bdead,i=phyto,peri,epi,macro Fractional biodegradation rate of dead carbon biomass of primary producers s-1 Eq. S34

bexu,i=phyto,peri,epi,macro Fractional biodegradation rate of cellular exudates of primary producers s-1 Eq. S35

Sphyto Source/sink of phosphorus, phytoplankton mg P m-3 Eq. S36

Speri Source/sink of phosphorus, periphyton mg P m-3 Eq. S37

Sepi Source/sink of phosphorus, epiphyton mg P m-3 Eq. S38

Smacro Source/sink of phosphorus, macrophytes mg P m-3 Eq. S39
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The microcosms were placed inside two climate chambers, each

containing a reference temperature sensor in one of the

microcosms. Heating and cooling of the microcosms happened

via air temperature changes. A 16h:8h light:dark cycle was applied

using luminescent light with a mean of 77.2 ± 9.9 μmol m-2 s-1

measured at the water surface.

2.2.2 ARO composition
The artificial mixture of pesticides representing a characteristic

agricultural run-off (ARO) was selected as in our previous studies

(e.g., Allen et al., 2021), including three organic pesticides –

terbuthylazine (selective chloro-s-triazine herbicide, PSII

inhibitor, CAS number 5915-41-3), pirimicarb (fast-acting

selective carbamate insecticide, AChE inhibitor, CAS number

23103-98-2) and tebuconazole (triazole fungicide, demethylation

inhibitor, CAS number 107534-96-3) – copper (inorganic pesticide,

as CuSO4) and nitrate (fertilizer, as KNO3). The initial

concentrations of pesticides were based on dose-response assays

and subsequent EC20 calculations (as described in Allen et al.,

2021). An initial concentration of 9 mg L-1 NO3-N was selected as

representative for nitrogen concentrations in small lakes in

agricultural catchments during spring and summer (James et al.,

2005; Xu et al., 2014). For the application in the microcosms, the

organic pesticides were diluted in dimethyl sulfoxide (DMSO,

Sigma-Aldrich, 67-68-5, final concentration in the microcosm

0.1%). CuSO4 and KNO3 were diluted in ultrapure water.

2.2.3 Two-factor factorial dose-response design
The experiment was conducted in two climate chambers (22°C,

26°C) and in each, we followed a dose-response setup for ARO with

one control and five concentration levels (ARO 1x, 2x, 4x, 8x, 16x;

enrichment factor of 2). The ARO mixture and concentrations were

chosen based on former work by Allen et al. (2021). The ARO

concentration used in their study was set as intermediate treatment

concentration in our experiment (ARO 4x) with two higher and two

lower concentrations for the gradient. Each treatment had five to

seven replicates.

2.2.4 Time schedule
The bowls filled with sediment were prepared and pre-wetted

with Volvic® mineral water and stored in dark conditions at 22°C

for two days before macrophytes were planted and microcosms

were filled with Volvic® mineral water. Afterwards, macrophytes

were given two weeks to adjust to the conditions. The inoculum of

microscopic primary producers and plastic strips were added one

week before the start of the experiment. At the start of the

experiment, treatments were applied by adding the ARO mix to

the microcosms and increasing the temperature in one of the

climate chambers to 26°C. Hereafter, nutrients in the form of a

KNO3 and KH2PO4 mixture as in Allen et al. (2021) were added

twice a week, simulating repeated nutrient loading to compensate

for a fast nutrient uptake by wall periphyton, and thus ensure

sufficient nutrient availability to sustain further primary producer

growth. On days 16, 17 and 18, we sampled periphyton and

phytoplankton, and took water samples for chemical analysis (day
Frontiers in Plant Science 05
18). On day 19, to end the experiment, the lights were turned off and

sampling of the macrophytes took place until day 23 (Figure S2).

2.2.5 Sampling methods
2.2.5.1 Biomass sampling of primary producers

Periphyton was brushed off from the plastic strips using a

toothbrush and suspended in Volvic® water. This periphyton-

suspension was then filtered with pre-weighted glass fiber filters

(0.7 μm), dried at 60°C and weighted to determine the periphyton

dry weight. To determine phytoplankton biomass, water samples

were filtered using pre-weighted glass fiber filters (0.7 μm), dried at

60°C and weighted. Macrophytes were removed from their

microcosm for the final sampling and the aboveground part of

each macrophyte specimen was separately packed in paper bags,

dried at 60°C for two days and then weighted to determine the dry

weight of each stem.

2.2.5.2 Water sampling for pesticide concentrations

Two hours and 18 days after application of the treatments, 4

mL-water subsamples of three microcosms per ARO treatment

were taken and frozen at −20°C. Later, the samples were filtered (0.2

μm) and analyzed for their concentration of the three pesticides

used in the ARO mixture. Measurement of the pesticides was

conducted using a UltiMate3000 HPLC System combined with an

LTQ-OrbiTrap XL (Thermo Scientific, USA). These samples were

then analyzed with an UltiMate3000 HPLC System (column:

Phenomenex, Art.-No. 00B-4462-Y0) and an attached LTQ

Orbitrap XL (Thermo Scientific) operated in positive

ionization mode.

2.2.6 Statistical analyses
Non-parametric statistical tests were used to test for differences

between treatments related to the ARO application or the

temperature. These analyses were conducted using the software R

(R Core Team, 2020; v4.0.0). For each of the three primary producer

groups differences in biomass were tested via the Kruskal-Wallis

test followed by Dunn's post hoc test without further correction due

to the low number of treatments.

Further, biomass of each primary producer group was

extrapolated to the whole biomass per microcosm, including

periphyton growing on the inner walls of the microcosm. Based

on this total microcosm primary producer biomass, the effect sizes

(as Hedges’ g) were calculated using the esc package (Lüdecke, 2019;

v0.5.1). Using the mean biomass of each primary producer group as

well as the total biomass of all primary producer groups together,

pie charts were created for simplified presentation of the share of

each primary producer group within each treatment.
2.3 Model refinement and assessment
against experimental results

The information we progressively gained over the course of the

experiment and after experimental results became available allowed

for further refinement of the model to account for some processes
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López Moreira Mazacotte et al. 10.3389/fpls.2023.1120441
like the decay of toxicant concentrations over time (revealed by

water sampling results), or to better represent processes like

nutrient uptake by wall periphyton, nutrient recycling due to

biodegradation, and trait-based phytoplankton community

adaptation by splitting the phytoplankton compartment into two

groups. Group a was conceived as a fast-growing phytoplankton

group that was highly sensitive to the herbicide (i.e., low EC50

value), whereas group b was made up of slow-growing

phytoplankton that were resistant to the herbicide (i.e., a much

higher EC50 value than group a).
Moreover, the log-logistic dose-response curves were made

variable in time to account for the potential development of

tolerance (adaptation) to the herbicide and/or acclimation of the

organisms to better cope with the combined stressors. We assumed

these adaptation and acclimation processes to be directly linked to

the generation time of the organisms, i.e., faster for microscopic

primary producers. This was achieved by implementing dynamic

parameters for the dose-response curves, as described in the SI. The

potential of the refined model to simulate community adaptation,

tolerance development and organism acclimation led us to design

and test the model under different scenarios of herbicide sensitivity,

temperature dependence of primary producer response and

adaptation and/or acclimation.

2.3.1 Scenarios of differential sensitivities,
temperature dependence, adaptation and/or
acclimation

We designed eight different scenarios to test our hypotheses and

to mechanistically understand experimental results. These scenarios

related to: a) whether microscopic primary producers

(phytoplankton group a, periphyton and epiphyton) were

equally, more or less sensitive to the herbicide than macrophytes;

b) whether these sensitivities were influenced by temperature or
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not; and c) whether sensitivities decreased over time or not as a

result of the development of tolerance to the herbicide by

adaptation or acclimation of microscopic primary producers to

environmental conditions (Table 3).

In scenarios A1 and A2, all primary producer groups were

equally sensitive to the herbicide except for phytoplankton group b
(conceived as slow-growing and resistant to the herbicide). In

scenarios B1 and B2, macrophytes were more sensitive to the

herbicide than all other primary producer groups. In scenarios C1

and C2, microscopic primary producers were more sensitive to the

herbicide than macrophytes, with the exception of phytoplankton

group b, which, again, was more resistant than all other groups.

In all aforementioned scenarios (A1-2, B1-2 and C1-2), we

assumed that no development of tolerance to the herbicide by

acclimation or adaptation to environmental conditions (Lips et al.,

2022) occurred over the course of the exposure, i.e., sensitivities do

not decrease over time. In scenarios D1 and D2, however, we

account for this by implementing decreasing herbicide sensitivities

over the course of the exposure for all microscopic primary

producers. In these two scenarios, phytoplankton group a,
periphyton and epiphyton start off being more sensitive to the

herbicide than macrophytes, but end up becoming less sensitive

than macrophytes by the end of the simulated period as a result of

tolerance development. Here too, phytoplankton group b starts off

being less sensitive than all other groups, and becomes increasingly

tolerant over time.

In all scenarios indexed with “1”, we assumed that temperature

had no effect at all on herbicide sensitivities, whereas in all scenarios

indexed with “2”, sensitivities to the herbicide were assumed to be

higher at the lower temperature (22°C) than at the higher

temperature (26°C), following empirical evidence by Tasmin

et al., 2013. Moreover, this is consistent with the fact that

metabolic processes are in general accelerated at higher
TABLE 3 Scenarios of differential sensitivities, temperature dependence, adaptation and/or acclimation.

Scenario Herbicide sensitivity by group Effect of temperature
on herbicide sensitivity

A1 Fast-growing phytoplankton (group a), wall periphyton, epiphyton and macrophytes are equally sensitive to the
herbicide.
Slow-growing phytoplankton (group b) are less sensitive to the herbicide than all other groups.
Sensitivities do not decrease over time for any group (no adaptation or acclimation).

NO

A2
Sensitivities are higher at the
lower temperature (22°C)

B1 Macrophytes are more sensitive to the herbicide than all microscopic primary producers.
Slow-growing phytoplankton (group b) are less sensitive to the herbicide than all other groups.
Sensitivities do not decrease over time (no adaptation or acclimation).

NO

B2
Sensitivities are higher at the
lower temperature (22°C)

C1 Fast-growing phytoplankton (group a), wall periphyton and epiphyton are more sensitive to the herbicide than
macrophytes.
Slow-growing phytoplankton (group b) are less sensitive to the herbicide than all other groups.
Sensitivities do not decrease over time (no adaptation or acclimation).

NO

C2
Sensitivities are higher at the
lower temperature (22°C)

D1 Initially, fast-growing phytoplankton (group a), periphyton and epiphyton are more sensitive to the herbicide than
macrophytes. These groups become less sensitive to the herbicide over time to become less sensitive than macrophytes
by the end of the exposure.
From the beginning of the exposure, low-growing phytoplankton (group b) are less sensitive to the herbicide than all
other groups and become increasingly tolerant to it over time.

NO

D2
Sensitivities are higher at the
lower temperature (22°C)
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temperatures (Clarke and Fraser, 2004; Pedrosa Gomes and

Juneau, 2017).

To further account for possible community adaptation and

succession of phytoplankton to the applied stressors related to an

increasing dominance of the more tolerant species (Blanck, 2002;

Tlili et al., 2016; Lips et al., 2022), we ran three sets of simulations

under all eight scenarios. Set 1: a single phytoplankton group that is

fast-growing and highly sensitive to the herbicide, hereafter referred

to as group a; Set 2: a single phytoplankton group that is slow-

growing but much less sensitive to the herbicide, hereafter referred

to as group b; Set 3: a mixed community of both phytoplankton

groups a and b, as previously described.

2.3.2 Assessment of model simulation results
We assessed the goodness of fit between model results and the

observations from the microcosm experiment following a pattern-

oriented model validation approach that took the ARO treatment as

predictor offinal biomass values for each of the following three primary

producer groups: phytoplankton, periphyton (wall growth in the

model, periphyton strip growth in the experiment) and macrophytes.

The resulting patterns were compared qualitatively in terms of the
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similarity between simulated and observed response curves and

quantitatively on the basis of the correlation coefficients calculated for

all scenarios between model results and empirical observations.
3 Results

3.1 Microcosm experiment

3.1.1 Biomass of different primary
producer groups

At 22°C, all ARO treatments showed significantly lower

macrophyte biomass than the controls (p-value < 0.05), but did not

significantly differ among the five ARO treatments. At 26°C,

macrophyte biomass across all ARO concentrations was not

significantly different in relation to the controls or the respective

ARO concentrations at 22°C (Figures 1, 2 and Table 4). At 22°C,

phytoplankton biomass showed a significant increase compared with

the controls at the second tested ARO concentration level (ARO 2x)

and higher (apart from ARO 8x). At 26°C, phytoplankton biomass was

significantly higher at ARO 4x and ARO 16x. No significant differences
FIGURE 1

Effect sizes (Hedges’ g) and its standard deviation for the response of different primary producer groups (blue = macrophytes, green = phytoplankton,
orange = periphyton) and ARO treatment levels at 22°C (top row) and 26°C (bottom row).
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López Moreira Mazacotte et al. 10.3389/fpls.2023.1120441
between the respective ARO concentrations at the two temperatures

were detected (Figures 1, 2). Periphyton biomass was not significantly

affected by ARO neither at 22°C nor at 26°C, likely due to the high

variation among replicates in the controls (Figure 2). Effect sizes for

periphyton showed negative effects at the two highest tested ARO levels

for both temperatures (Figure 1).
Frontiers in Plant Science 08
The average accumulated microcosm biomass for all primary

producers decreased in the ARO treatments compared with the

control at 22°C. At 26°C, the accumulated microcosm biomass of

the ARO treatments was higher than their control at 26°C and the

respective ARO treatments at 22°C. (Figure 3). In the control

treatment, macrophytes dominated with periphyton having the
FIGURE 2

Response of different primary producer groups to multiple stressors by increasing concentrations of pesticides and nutrients in agricultural runoff
(ARO) and warming (+4°C) observed in experimental microcosms (left) and simulated (right) for a mixed phytoplankton community (set 3) under the
most plausible scenario (D2) for warm (26°C, red) and ambient (22°C, blue) temperature treatments. Asterisks indicate significant differences with
respect to the control.
TABLE 4 Nominal concentrations of all ARO constituents and measured concentrations 2 hours after its application (n=3, ARO 8: n=1,< d.l. = below
detection limit). Concentrations in µg L-1.

Treatment Terbuthylazine Pirimicarb Tebuconazole Copper NO3-N

Control 0 (< d.l.) 0 (< d.l.) 0 (< d.l.) 0 (< d.l.) 0 (< d.l.)

ARO 1x 0.75 | 0.64 ± 0.01 3.75 | 3.82 ± 0.22 22.5 | 21.11 ± 1.21 10.5 2250

ARO 2x 1.5 | 1.28 ± 0.06 7.5 | 7.24 ± 0.14 45 | 38.07 ± 4.00 21 4500

ARO 4x 3 | 2.74 ± 0.06 15 | 15.56 ± 0.62 90 | 83.46 ± 6.56 42 9000

ARO 8x 6 | 5.70 ± 0.00 30 | 31.07 ± 0.00 180 | 171.80 ± 0.00 84 18000

ARO 16x 12 | 11.6±+0.59 60 | 63.64 ± 3.02 360 | 323.03 ± 23.06 168 36000
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second highest share. The share of both macrophytes and periphyton

decreased with ARO treatments due to increasing phytoplankton

abundance, with the lowest share of macrophytes on the

accumulated microcosm biomass at ARO 4x (Figure 3). The share of

phytoplankton increased at 26°C.

3.1.2 Change in pesticide concentrations
After two hours of exposure, the pesticide concentrations were

approximately 10% lower than the nominal concentration (Table 4).

One microcosm showed higher concentrations than planned (and

wrong ratios between the three pesticides) and was, thereafter, excluded

from further analysis. At the end of the experiment, between 55-90% of

the initial pesticide concentrations were still detected (Table S8). No

temperature-related differences in the final pesticide concentrations

were found.
3.2 Process-based microcosm model

Our custom-tailored process-based model showed that, in all

simulation sets, periphyton and macrophyte carbon biomass values

per unit volume (mg C m-3) decreased along the axis of increasing

ARO concentrations at both 22°C and 26°C.Whether this decrease was

more or less pronounced, and the pattern itself of the response

ultimately depended on how well phytoplankton developed, with a

stronger decrease in benthic primary producers when phytoplankton

performed better. For simulation set 1, a community of only fast-

growing phytoplankton that are highly sensitive to the herbicide (group

a only, Figure 4), none of the eight scenarios resulted in phytoplankton

response patterns similar to those observed empirically, i.e., from the

microcosm experiment (Figures 1, 2). Empirical and simulated

phytoplankton response patterns to ARO were more comparable for

simulation sets 2 (group b only, Figure 5) and 3 (mixed community of
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phytoplankton groups a and b, Figure 6), but only under warm

conditions. Correlation coefficients calculated for the 3 sets also

showed that the best fits across all primary producer groups were

obtained for sets 2 and 3 when herbicide sensitivities were assumed to

be temperature dependent and to decrease over time as a result of

tolerance development, i.e., scenario D2 (Table 5).
4 Discussion

To better understand the complex nature of primary

producer interactions and responses to multiple stressors, we

combined indoor microcosm experiments with a custom-tailored

process-based model. We confirmed hypotheses 1) that ARO

differentially affects primary producer groups increasing the

likelihood of phytoplankton dominance in shallow aquatic

ecosystems and 3) that custom-tailored process-based models can

support mechanistic understanding of experimental results through

scenario comparison. Hypothesis 2, a facilitation of shifts to

phytoplankton dominance by warming, was only partially

confirmed. Here we discuss the respective implications of

our findings.
4.1 Agricultural run-off differentially affects
primary producers and their interactions

Our results demonstrate that ARO has a differential effect on the

tested primary producer groups. While we did not observe a full

dominance of either primary producer group at the end of the

microcosm experiment, an increasing proportion of phytoplankton

and decreasing proportion of macrophytes in the total microcosm

biomass clearly indicates an increasing risk for the system to shift to
FIGURE 3

Biomass proportions of the three primary producer groups upscaled to whole microcosm biomass. Size of the pies indicate relative total biomass in
comparison with the controls (ARO 0) at 22°C.
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full phytoplankton dominance. The overall non-linear increase of

phytoplankton biomass with increasing ARO concentrations was

most likely caused by nitrate (Scheffer et al., 1993; Olsen et al.,

2015). Similar microcosm studies testing the same ARO mixture

also found an increase in phytoplankton biomass with accompanied

decrease in macrophyte biomass when nitrate and pesticides co-

occurred (Polst et al., 2022; Vijayaraj et al., 2022). The increase in

phytoplankton biomass may have contributed to the observed

decline in macrophyte biomass by shading. Regime shifts with

macrophyte loss due to nutrient loading are usually caused by

increased shading by periphyton and phytoplankton (Phillips et al.,

2016). Yet, at 22°C, a decline in macrophyte biomass was already

observed at the lowest ARO concentration, which did not increase

phytoplankton biomass, indicating a higher sensitivity of the tested

submerged macrophyte species to ARO compared with

phytoplankton. This contrasts the findings of Giddings et al.

(2013) who reported a higher sensitivity of phytoplankton species

compared with macrophytes for 4 out of 5 photosystem-II-

inhibiting herbicides in a meta-analysis based on standardized

single-species tests. In longer lasting experiments allowing for

multiple generation cycles, microalgae community composition

can change via acclimation, adaptation and selection of more

tolerant species leading to a pollution-induced community
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tolerance (Blanck, 2002; Lorente et al., 2015; Lips et al., 2022).

Such processes could explain the higher sensitivity and the lower

tolerance of macrophytes to ARO in comparison to phytoplankton

and periphyton in our experiment. Our results thus suggest that

differential sensitivities of primary producers to pesticides can

modulate their competition for light and facilitate the loss of

macrophytes, eventually leading to regime shifts in shallow lentic

aquatic ecosystems.
4.2 Warming affects the risk of an
ARO-induced regime shift to
phytoplankton dominance

In our experiment, ARO at both tested water temperatures

clearly changed the contributions of different primary producers to

the total biomass towards a higher proportion of phytoplankton

indicating the risk of an ARO-induced shift to full phytoplankton

dominance. However, absolute macrophyte biomass did not

respond to ARO in the warming (+4°C) treatment, similar to

findings by Allen et al. (2021). Possibly, higher temperatures led

to an enhanced macrophyte growth partially, compensating

negative pesticide effects on macrophytes. Higher growth rates of
FIGURE 4

Response of primary producer groups under the eight scenarios (A1-D2) for the case of a single, fast-growing phytoplankton group that is highly
sensitive to the herbicide (simulation set 1, group a only) under ambient (22°C, blue) and warm (26°C, red) temperature conditions.
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macrophytes at higher temperatures are known from other studies

(e.g., Zhang et al., 2019; Zhang et al., 2022). Moreover, Vijayaraj

et al. (2022) and Polst et al. (2022) described a stronger decrease in

macrophyte biomass and thus lower threshold levels for ARO-

induced shifts to phytoplankton dominance in +4°C treatments.

These results may be caused by a lower sensitivity of phytoplankton

towards herbicides at elevated temperatures (Chalifour and Juneau,

2011; Tasmin et al., 2013). Periphyton also seems less sensitive to

herbicides at elevated temperatures (Larras et al., 2013), but we

could not confirm this neither in our experiment nor in related

experiments using the same ARO mixture (Allen et al., 2021; Polst

et al., 2022). Another recent study also found no effect of combined

warming, nutrients and pesticides on periphyton and suggested that

treatment effects compensated each other (Zhang et al., 2022). We

conclude that warming facilitates macrophyte and phytoplankton

growth, which can modulate macrophyte response thresholds to

ARO. However, the increasing proportion of phytoplankton in the

primary producer community under combined warming and ARO

exposure indicates an overall increased risk of macrophyte loss, also

supported by findings in Vijayaraj et al. (2022) and Polst

et al. (2022).
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4.3 Process-based models support
mechanistic understanding of
experimental results

Custom-tailored models of appropriate complexity, i.e.,

including only the processes that are strictly necessary to

reproduce empirical observations, are helpful to shed light on the

critical mechanisms behind ecosystem-wide responses

(Vasconcelos et al., 2016; López Moreira et al., 2021). This is

particularly true when addressing the effects of multiple stressors,

for which the knowledge base is currently just starting to develop.

Moreover, the nearly infinite amount of combinations of stressor

levels limits the potential contribution of purely laboratory-based

studies, e.g., microcosm experiments, where decisions are made

based on several factors including space, materials and budget

available, viability and phenology of model organisms, time

constraints and the human effort that is needed. Considering that

readily available models would need substantial modifications,

recalibration and revalidation before use and may still remain

unnecessarily complex for exploratory research, we suggest to

calibrate and validate newly developed, custom-made simple
FIGURE 5

Response of primary producer groups under the (A1- D2) for the case of a single, slow-growing phytoplankton group that is highly resistant to the
herbicide (simulation set 2, group b only) under ambient (22°C, blue) and warm (26°C, red) temperature conditions.
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models with experimental data and to test scenarios which allow

subsequent model refinements and mechanistic interpretation of

model results.

Our pattern-oriented modeling effort allowed for the

reconstruction of primary producer temporal dynamics at

different levels of approximation to the empirical observations. It

also made it possible to assess the trajectories of all state variables

(exemplified in Figures S3, S4) and the most likely limiting

conditions to primary producer growth and their change over

time (exemplified for epiphyton in Figure S5). Because the

empirical data was mostly limited to end-point values, however,

model calibration and scenario selection was limited to final

biomass results. Correlation coefficients allowed for the

quantitative identification and selection of the most plausible

scenario that best fitted empirical observations.

4.3.1 Phytoplankton biomass
Assuming a community of only fast-growing phytoplankton that

are highly sensitive to the herbicide (set 1: group a only), correlation

coefficients for phytoplankton biomass where mostly negative

(Table 5), indicating that the model was clearly not able to

reproduce the pattern observed in the experiment, where final

biomass values were generally higher for the highest ARO
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concentrations (Figures 2, 4). This complex phytoplankton

response was better captured under the assumption of a single,

slow-growing but relatively resistant phytoplankton group (set 2:

group b only) (Figure 5) and under the assumption of a mixed

phytoplankton community (set 3: both groups) (Figure 6), for which

we obtained several positive albeit not statistically significant

correlation coefficients (Table 5). However, this was generally true

only under warm conditions (26°C). The exceptions to this were

scenarios C1 and D1, for which correlation coefficients for

phytoplankton were negative under both temperature treatments

(both sets, although marginally less negative for set 3, mixed

phytoplankton community).

4.3.2 Periphyton and macrophyte biomass
For periphyton, statistically significant positive correlations were

obtained for all three sets under all eight scenarios at the higher

temperature of 26°C (Table 4). For the cool temperature treatment (22°

C), these positive correlations were statistically significant only under

scenarios B2, C1-2 and D1-2. Macrophyte responses to ARO were also

generally positively correlated across all scenarios, sets and temperature

treatments, but statistically significant only under scenarios B1-2 and

D1-2 at 22°C, and under scenarios B2, C1 and D1-2 at 26°C (Table 4).

However, the only scenario where the simulated macrophyte response
FIGURE 6

Response of primary producer groups under the eight scenarios eight scenarios (A1- D2) for the case of a mixed phytoplankton community (simulation
set 3, groups a and b) under ambient (22°C, blue) and warm (26°C, red) temperature conditions.
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pattern qualitatively resembled the observed one was scenario

D2 (Figure 6).

4.3.3 Most plausible scenario
To identify the most plausible scenario, we first discarded all

scenarios where final macrophyte biomass patterns were not

significantly correlated under both temperature treatments.

Scenarios A1-2, B1, and C1-2 were thus removed from further

consideration. Subsequently, scenario D1 was also discarded, as it

failed to produce positive correlations for phytoplankton biomass.

Finally, considering that, between the two remaining scenarios, i.e.,

scenarios B2 and D2: a) phytoplankton responses were both
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qualitatively and quantitatively fundamentally the same under

scenarios B2 and D2; b) positive correlations for periphyton were

higher and more statistically significant under scenario D2; and

that, c) qualitatively, macrophytes were best simulated under

scenario D2, quantitatively supported by statistically significant

and highly positive correlation coefficients; we identified and

selected scenario D2 as the most plausible scenario.

4.3.4 Comparisons among the three
simulation sets

Because the model failed to produce good fits for the final

phytoplankton biomass response pattern for set 1 (group a only),
TABLE 5 Correlation coefficients between simulated and observed patterns under eight scenarios and three cases of phytoplankton community composition.

Scenario
Phytoplankton Periphyton Macrophytes

Cool Warm Cool Warm Cool Warm

Set 1: Phytoplankton group a only

A1 -0.514 -0.532 0.582 0.876** 0.472 0.777*

A2 -0.514 -0.524 0.582 0.786* 0.472 0.615

B1 -0.502 -0.552 0.584 0.877** 0.969** 0.579

B2 -0.170 -0.549 0.748* 0.927** 0.969** 0.753*

C1 -0.522 -0.381 0.862** 0.951** 0.453 0.757*

C2 -0.522 -0.562 0.862** 0.926** 0.453 0.598

D1 0.013 -0.416 0.843** 0.970** 0.836** 0.849**

D2 0.013 -0.547 0.843** 0.952** 0.836** 0.765*

Set 2: Phytoplankton group b only

A1 0.471 0.537 0.654 0.926** 0.471 0.777*

A2 0.471 0.506 0.654 0.798* 0.471 0.614

B1 0.537 0.644 0.655 0.926** 0.969** 0.579

B2 -0.509 0.660 0.805* 0.968** 0.969** 0.753*

C1 -0.522 -0.523 0.883** 0.869** 0.465 0.770*

C2 -0.522 0.539 0.883** 0.968** 0.465 0.606

D1 -0.491 -0.522 0.870** 0.915** 0.837** 0.849**

D2 -0.491 0.586 0.870** 0.979** 0.837** 0.766*

Set 3: Mixed community of phytoplankton groups a and b

A1 0.477 0.518 0.590 0.878** 0.472 0.777*

A2 0.477 0.544 0.590 0.779* 0.472 0.615

B1 0.507 0.480 0.592 0.880** 0.969** 0.579

B2 -0.582 0.439 0.778* 0.951** 0.969** 0.753*

C1 -0.365 -0.344 0.861** 0.890** 0.459 0.767*

C2 -0.365 0.432 0.861** 0.950** 0.459 0.604

D1 -0.414 -0.365 0.850** 0.939** 0.837** 0.849**

D2 -0.414 0.505 0.850** 0.971** 0.837** 0.766*
* Significant at a 90% confidence level (p-value<0.1).
** Significant at a 95% confidence level (p-value<0.05).
** (in bold) Significant at a 99% confidence level (p-value<0.01).
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with all correlation coefficients being negative at 26°C and only

marginally positive for scenarios D1-2 at 22°C (Table 5), this

simulation set was removed from any further consideration.

Under scenario D2, selected as the most plausible one, for

simulation sets 2 (group b only) and 3 (mixed community of groups

a and b), simulated and observed responses were positively

correlated for both periphyton (lowest correlation coefficients

were 0.870 and 0.850 for sets 2 and 3 at 22°C, respectively) and

macrophytes (lowest correlation coefficients were 0.766 for both sets

2 and 3 at 26°C). All these correlations were statistically significant

at a confidence level of either 90%, 95% or even 99% (Table 5).

Phytoplankton responses, however, were only weakly positively

correlated in the warming treatment (0.586 and 0.505 for sets 2

and 3 at 26°C, respectively) and even negatively correlated under

ambient temperature (22°C). However, none of these correlations

for phytoplankton were statistically significant.

In scenario D2, sensitivities to the herbicide of all primary

producer groups were dependent on temperature (organisms were

less sensitive at the higher temperature). Additionally, herbicide

sensitivities of all microscopic primary producers also decreased

over time as they became more tolerant to the herbicide. This

resulted in a simulated pattern under scenario D2 that was

positively correlated with the observed phytoplankton response

for the warm temperature treatment. Under scenario D1, where

sensitivities were not affected by temperature, a positive correlation

could not be achieved for any of the sets at neither of the two

temperature treatments.

In our study, the most plausible scenario was the one involving

stress-induced phytoplankton tolerance development, including

temperature-dependent organism acclimation and adaptation to

ARO (scenario D2) as well as stress-induced succession in

communities (simulation set 3, mixed phytoplankton community).

The relevance of these processes has been shown under the concept

of pollution-induced community tolerance (Blanck, 2002; Schmitt-

Jansen et al., 2016; Lips et al., 2022). Another recent study reported

observed changes in phytoplankton communities of small lentic

waters following exposure to agricultural run-off (Wijewardene

et al., 2021) but did not test for changes in tolerance to the

pesticides. While designed for a specific experimental set-up, our

model can be used for future hypothesis testing in experimental

studies with a similar complexity (focusing on primary producer

interactions), but can also be extended to include higher

trophic levels.
4.4 Final remarks

Our microcosm experiment revealed a differential response of

aquatic primary producers to the combined effects of warming and

ARO, potentially leading to phytoplankton dominance, a less

desirable ecosystem state. At both tested temperatures,

phytoplankton was favored and increased its biomass and

proportion in the primary producer community with increasing

ARO concentrations due to the higher availability of nitrate and

ability to adapt to pesticides. Macrophytes became less sensitive to
Frontiers in Plant Science 14
ARO with warming, but may still be weakened due to the increasing

proportion of phytoplankton eventually shading them out. The

development of a simple, process-based model allowed

understanding the role of temperature dependence, tolerance

development and community adaptation to combined ARO and

warming, because a scenario including these processes ultimately

led to the best fit between predicted and observed responses. Our

results highlight the importance of considering stress-induced

tolerance development, adaptation and succession when

predicting mid- and long-term effects of toxicants on complex

primary producer communities that include multiple species.

Trait diversity may compensate for the direct negative effects of

pesticides on individual species to keep ecosystems productive at a

macroscopic scale, especially at higher temperatures and under

nutrient-enriched conditions, where ARO may unbalance the

system through indirect effects on vulnerable communities

like macrophytes.
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López Moreira Mazacotte et al. 10.3389/fpls.2023.1120441
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Plant Science 15
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1120441/

full#supplementary-material
References
Allen, J., Gross, E. M., Courcoul, C., Bouletreau, S., Compin, A., Elger, A., et al.
(2021). Disentangling the direct and indirect effects of agricultural runoff on freshwater
ecosystems subject to global warming: a microcosm study.Water Res. 190, 116713. doi:
10.1016/j.watres.2020.116713

Blanck, H. (2002). A critical review of procedures and approaches used for assessing
pollution-induced community tolerance (PICT) in biotic communities.Hum. Ecol. Risk
Assessment: Int. J. 8 (5), 1003–1034. doi: 10.1080/1080-700291905792

Chalifour, A., and Juneau, P. (2011). Temperature-dependent sensitivity of growth
and photosynthesis of scenedesmus obliquus, navicula pelliculosa and two strains of
microcystis aeruginosa to the herbicide atrazine. Aquat. Toxicol. 103 (1-2), 9–17. doi:
10.1016/j.aquatox.2011.01.016

Clarke, A., and Fraser, K. (2004). Why does metabolism scale with temperature?
Funct. Ecol. 18 (2), 243–251. doi: 10.1111/j.0269-8463.2004.00841.x

Copin, P.-J., and Chèvre, N. (2015). Modelling the effects of pulse exposure of several PSII
inhibitors on two algae. Chemosphere 137, 70–77. doi: 10.1016/j.chemosphere.2015.05.035

Fairchild, J. F., Ruessler, D. S., and Carlson, R. A. (1998). Comparative sensitivity of five
species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and
metolachlor. Environ. Toxicol. Chem. 17 (9), 1830–1834. doi: 10.1002/etc.5620170924

FAO (2021). “Land cover statistics. global, regional and country trends 2000-2019,”
in FAOSTAT analytical brief series no. 37 (Rome: FAO).

Giddings, J. M., Arts, G., and Hommen, U. (2013). The relative sensitivity ofmacrophyte
and algal species to herbicides and fungicides: an analysis using species sensitivity
distributions. Integrated Environ. Assess. Manage. 9 (2), 308–318. doi: 10.1002/ieam.1387

Hilt, S., Brothers, S., Jeppesen, E., Veraart, A. J., and Kosten, S. (2017). Translating
regime shifts in shallow lakes into changes in ecosystem functions and services.
BioScience 67 (10), 928–936. doi: 10.1093/biosci/bix106

Hilt, S., Alirangues Nuñez, M. M., Bakker, E. S., Blindow, I., Davidson, T. A.,
Gillefalk, M., et al. (2018). Response of submerged macrophyte communities to external
and internal restoration measures in north temperate shallow lakes. Front. Plant Sci. 9.
doi: 10.3389/fpls.2018.00194

Jackson, M. C., Loewen, C. J. G., Vinebrooke, R. D., and Chimimba, C. T. (2016). Net
effects of multiple stressors in freshwater ecosystems: a meta-analysis. Global Change
Biol. 22 (1), 180–189. doi: 10.1111/gcb.13028

Jäger, C., Diehl, S., and Emans, M. (2010). Physical determinants of phytoplankton
production, algal stoichiometry and vertical nutrient fluxes. Am. Nat. 175 (4), E91–
E104. doi: 10.1086/650728

Jakeman, A., Letcher, R., and Nortonac, J. (2006). Ten iterative steps in development
and evaluation of environmental models. Environ. Model. Software 21 (5), 602–614.
doi: 10.1016/j.envsoft.2006.01.004

James, C., Fisher, J., Russell, V., Collings, S., and Moss, B. (2005). Nitrate availability
and hydrophyte species richness in shallow lakes. Freshw. Biol. 50 (6), 1049–1063. doi:
10.1111/j.1365-2427.2005.01375.x

Janssen, A. B. G., Hilt, S., Kosten, S., Klein, J. J.M., de Paerl, H. W., and Van de Waal,
D. B. (2021). Shifting states, shifting services: linking regime shifts to changes in
ecosystem services of shallow lakes. Freshw. Biol. 66 (1), 1–12. doi: 10.1111/fwb.13582

Kazanjian, G., Velthuis, M., Aben, R., Stephan, S., Peeters, E. T.H.M., and Frenken,
T. (2018). Impacts of warming on top-down and bottom-up controls of periphyton
production. Sci. Rep. 8, 9901. doi: 10.1038/s41598-018-26348-x

Kieft, B., Li, Z., Bryson, S., Hettich, R. L., Pan, C., Mayali, X., et al. (2021).
Phytoplankton exudates and lysates support distinct microbial consortia with
specialized metabolic and ecophysiological traits. PNAS 118 (41), e2101178118. doi:
10.1073/pnas.2101178118

Kim, Y., Lee, Y.-S., Wee, J., Hong, J., Lee, M., Kim, J. G., et al. (2021). Process-based
modeling to assess the nutrient removal efficiency of two endangered hydrophytes:
linking nutrient-cycle with a multiple-quotas approach. Sci. Total Environ. 763, 144223.
doi: 10.1016/j.scitotenv.2020.144223

Larras, F., Lambert, A.-S., Pesce, S., Rimet, F., Bouchez, A., Montuelle, B., et al.
(2013). The effect of temperature and a herbicide mixture on freshwater periphytic
algae. Ecotoxicol. Environ. Saf. 98, 162–170. doi: 10.1016/j.ecoenv.2013.09.007

Lips, S., Larras, F., and Schmitt-Jansen, M. (2022). Community metabolomics
provides insights into mechanisms of pollution-induced community tolerance of
periphyton. Sci. Total Environ. 824, 153777. doi: 10.1016/j.scitotenv.2022.153777
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Mahdy, A., Hilt, S., Filiz, N., Beklioğlu, M., Hejzlar, J., Özkundakci, D., et al. (2015).
Effects of water temperature on summer periphyton biomass in shallow lakes: a pan-
European mesocosm experiment. Aquat. Sci. 77, 499–510. doi: 10.1007/s00027-015-
0394-7

Meerhoff, M., Audet, J., Davidson, T. A., De Meester, L., Hilt, S., Kosten, S., et al.
(2022). Feedback between climate change and eutrophication: revisiting the allied
attack concept and how to strike back. Inland Waters 12 (2), 187–204. doi: 10.1080/
20442041.2022.2029317

Mooij, W. M., Janse, J. H., De Senerpont Domis, L. N., Hülsmann, S., and Ibelings, B. W.
(2007). Predicting the effect of climate change on temperate shallow lakes with the ecosystem
model PCLake. Hydrobiologia 584, 443–454. doi: 10.1007/s10750-007-0600-2

Nielsen, J. (2006). “Microbial process kinetics,” in Basic biotechnology, 3. ed, vol. pp .
Eds. C. Ratledge and B. Kristiansen (New York: Cambridge University Press), 155–180.

Olsen, S., Chan, F., Li, W., Zhao, S., Søndergaard, M., and Jeppesen, E. (2015). Strong
impact of nitrogen loading on submerged macrophytes and algae: a long-term
mesocosm experiment in a shallow Chinese lake. Freshw. Biol. 60 (8), 1525–1536.
doi: 10.1111/fwb.12585

O’Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J.,
et al. (2015). Rapid and highly variable warming of lake surface waters around the
globe. Geophys. Res. Lett. 42 (24), 10773–10781. doi: 10.1002/2015GL066235

Pedrosa Gomes, M., and Juneau, P. (2017). Temperature and light modulation of
herbicide toxicity on algal and cyanobacterial physiology. Front. Environ. Sci. 5 (50).
doi: 10.3389/fenvs.2017.00050

Phillips, G., Willby, N., and Moss, B. (2016). Submerged macrophyte decline in
shallow lakes: what have we learnt in the last forty years? Aquat. Bot. 135, 37–45. doi:
10.1016/j.aquabot.2016.04.004

Polst, B. H., Hilt, S., Stibor, H., Hölker, F., Allen, J., Vijayaraj, V., et al. (2022).
Warming lowers critical thresholds for multiple stressor-induced shifts between aquatic
primary producers. Sci. Total Environ. 838 (Part 4), 156511. doi: 10.1016/J.SCITOTENV.
2022.156511

R Core Team (2020). “R: a language and environment for statistical computing,” in R
foundation for statistical computing (Vienna, Austria: R Foundation for Statistical
Computing). Available at: https://www.R-project.org/.

Sayer, C. D., Davidson, T. A., and Jones, J. I. (2010). Seasonal dynamics of macrophytes
and phytoplankton inshallow lakes: a eutrophication-driven pathway fromplants to
plankton? Freshw. Biol. 55, 500–513. doi: 10.1111/J.1365-2427.2009.02365.X
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2023.1120441/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1120441/full#supplementary-material
https://doi.org/10.1016/j.watres.2020.116713
https://doi.org/10.1080/1080-700291905792
https://doi.org/10.1016/j.aquatox.2011.01.016
https://doi.org/10.1111/j.0269-8463.2004.00841.x
https://doi.org/10.1016/j.chemosphere.2015.05.035
https://doi.org/10.1002/etc.5620170924
https://doi.org/10.1002/ieam.1387
https://doi.org/10.1093/biosci/bix106
https://doi.org/10.3389/fpls.2018.00194
https://doi.org/10.1111/gcb.13028
https://doi.org/10.1086/650728
https://doi.org/10.1016/j.envsoft.2006.01.004
https://doi.org/10.1111/j.1365-2427.2005.01375.x
https://doi.org/10.1111/fwb.13582
https://doi.org/10.1038/s41598-018-26348-x
https://doi.org/10.1073/pnas.2101178118
https://doi.org/10.1016/j.scitotenv.2020.144223
https://doi.org/10.1016/j.ecoenv.2013.09.007
https://doi.org/10.1016/j.scitotenv.2022.153777
https://doi.org/10.4081/jlimnol.2021.2035
https://doi.org/10.1016/j.scitotenv.2014.06.108
https://doi.org/10.5281/zenodo.1249218
https://doi.org/10.1007/s00027-015-0394-7
https://doi.org/10.1007/s00027-015-0394-7
https://doi.org/10.1080/20442041.2022.2029317
https://doi.org/10.1080/20442041.2022.2029317
https://doi.org/10.1007/s10750-007-0600-2
https://doi.org/10.1111/fwb.12585
https://doi.org/10.1002/2015GL066235
https://doi.org/10.3389/fenvs.2017.00050
https://doi.org/10.1016/j.aquabot.2016.04.004
https://doi.org/10.1016/J.SCITOTENV.2022.156511
https://doi.org/10.1016/J.SCITOTENV.2022.156511
https://www.R-project.org/
https://doi.org/10.1111/J.1365-2427.2009.02365.X
https://doi.org/10.3389/fpls.2023.1120441
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
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