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Nitrogen (N) is an essential element required for the growth and development of all

plants. On a global scale, N is agriculture’s most widely used fertilizer nutrient.

Studies have shown that crops use only 50% of the applied N effectively, while the

rest is lost through various pathways to the surrounding environment.

Furthermore, lost N negatively impacts the farmer’s return on investment and

pollutes the water, soil, and air. Therefore, enhancing nitrogen use efficiency (NUE)

is critical in crop improvement programs and agronomic management systems.

Themajor processes responsible for lowN use are the volatilization, surface runoff,

leaching, and denitrification of N. Improving NUE through agronomic

management practices and high-throughput technologies would reduce the

need for intensive N application and minimize the negative impact of N on the

environment. The harmonization of agronomic, genetic, and biotechnological

tools will improve the efficiency of N assimilation in crops and align agricultural

systems with global needs to protect environmental functions and resources.

Therefore, this review summarizes the literature on nitrogen loss, factors affecting

NUE, and agronomic and genetic approaches for improving NUE in various crops

and proposes a pathway to bring together agronomic and environmental needs.

KEYWORDS

conservation tillage system, NUE, nitrogen assimilation, nitrogen loss, QTLs
Abbreviations: N, nitrogen; NUE, nitrogen use efficiency; PAN, plant-available N; NH4
+, ammonium; NO3

−,

nitrate; NH3, ammonia; PE, physiological nitrogen use efficiency; NDT, nitrogen deficiency tolerance; NE,

nitrogen utilization efficiency; NupE, nitrogen uptake efficiency; QTL, quantitative trait loci; RSA, root

system architecture.
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1 Introduction

A rapidly growing global population places considerable

pressure on agricultural lands to produce more food and energy

per unit area. For sustainable production, agricultural practices

must both intensify productivity and simultaneously protect the

environment and human and animal health. Improving nitrogen

use efficiency (NUE) is an element of this framework (Zhang et al.,

2015; Xiong et al., 2018). Nitrogen (N) is a key constituent of all

living cells and is essential for the growth and development of

plants. Fertilizer N is the second largest requirement after water in

crop production, and N is the most common yield-limiting nutrient

deficiency (Marschner, 1995). The ratio of N taken up versus the

unit applied to a crop is referred to as NUE (Fageria and Baligar,

2005). The low N use of the crop indicates that uptake is inefficient

or higher than the plant’s requirement (Anas et al., 2020). Cereal

crops like rice, wheat, and maize require large amounts of N for

healthy growth and higher yields (Linquist et al., 2012). Hence,

varieties with higher NUE should be a priority for breeders

developing new varieties (Balyan et al., 2016; Mălinas ̧ et al., 2022).
The global estimates of N stored in soil are 65 Pg to 30 cm depth

and 92–140 Pg to 100 cm depth (Zinke et al., 1986; Batjes, 2014).

The largest portion of stores is in the form of organic N, which is

not directly plant available. Chemical fertilizers and manures add

200 Tg of N each year (Potter et al., 2010). Biological N fixation

provides an additional input of 258 Tg of N (Fowler et al., 2013).

Ammonium (NH4
+) and nitrate (NO3

−) are the two forms of plant-

available N. Globally, only 50% of applied N is converted and the

rest is wasted (Mălinaş et al., 2022).
Crop NUE is influenced by environmental factors, plants’

physiological activity, and their interactions. Biochemical

transformations of N in soil are complex and are best considered

as being in a state of continual flux (Table 1). The fluxes of

biochemical transformation in the soil system are primarily

responsible for constraints to NUE. However, physical losses of N

from the plant or soil system also decrease NUE. The major forms

of N loss are the volatilization of ammonia (NH3) gas, leaching of

dissolved NO3
−, and overland runoff of all soluble forms. Changes

in temperature and precipitation patterns affect biological and

enzyme activity rates, which are important for most

transformations listed in Table 1.
2 Approaches to evaluating NUE

The simplest approach to quantifying NUE is to divide the crop

yield (Y) by the nitrogen inputs (N) (Eq. 1).

NUE  = Y ÷ N   (1)

However, several authors have suggested that yield may be defined

in several ways, including the mass of the harvested portion of the

crop, total (aboveground) biomass of the crop, N content contained in

the harvestable portion, and N content of the total biomass. Fageria

and Baligar (2005) proposed a number of general “groups” of

approaches to calculate NUE that may be considered (Eqs. 2-7).
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Agronimic Efficiency (AE) = (
Gf − Gu

Na
) (2)

Where Gf and Gu are the grain yields (kg) of the fertilized and

unfertilized plots, respectively, and Na is the rate of N applied (kg).

Physiological Efficiency (PE) = (
((Yf − Yu)
(Nf ) − (Nu))

) (3)

Where Yf and Yu are the total aboveground biomass (kg) of the

crop in fertilized and unfertilized plots, respectively, and Nf and Nu

are the N contents (kg) of the aboveground biomass in the fertilized

and unfertilized plots, respectively.

Agrophysiological Efficiency (APE) = (
((Gf − Gu)
(Nf ) − (Nu))

) (4)

Where Gf and Gu are the grain yield in fertilized and unfertilized

plots, respectively.

Apparent Recovery Efficiency (ARE) = (
Nf −Nu

Na
) (5)

Utilization Efficiency (UE) = (
Yf − Yu

Na
) (6)

All of the above equations rely on the assumption that varied

nitrogen rate as fertilizer input is the independent variable.

Naturally, as the mass of N inputs decreases, the calculated

efficiency increases in equations using N rate or difference in N

accumulation in the denominator. It would therefore be quite easy

to interpret these as suggesting that the lowest rates of N fertilizer

inputs result in the best NUE. This outcome ignores the importance

of crop productivity.

Berendse and Aerts (1987) proposed a “biologically

meaningful” definition of NUE as the product of nitrogen

productivity (An/Ln) and the mean residence time (1/Ln) of

nitrogen in the plant (Eq. 7).

Biologically Meaningful  NUE = (
An

Ln
) (7)

This approach avoids the same pitfalls in Eqs. 1-6 but somehow

fails to provide an interpretation of NUE necessary to evaluate the

direct effects of climate change or advancements in crop

management to adapt to climate change. It is indeed likely that

future studies will not employ varied rates of N inputs to study NUE

but will instead evaluate changes in other practices, varieties, genetic

enhancements, and emerging biotechnologies. In this case, new

approaches to the calculation of NUE will be needed. Preferably,

these will also include mass balances of native soil plant-available N

(PAN) and potential PAN in addition to fertilizer or manure inputs.

When considering the pressures of climate change, increased

atmospheric carbon dioxide (CO2) will impact the ultimate

equilibrium states of many of these processes. Higher

temperatures will reduce soil N inventories by 5%–10% due to

increased mineralization (Fowler et al., 2015). With the twin

pressures of population expansion and climate change,

management and breeding will need to focus on fundamental

problems to make progress in NUE. Consider, for example, that
frontiersin.org
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leaf expansion and photosynthetic rates are affected by low N and

that root traits are chiefly responsible for N uptake and NUE in

maize (Wijewardana et al., 2015). Inbred maize lines exhibiting

higher NUE were those with larger root diameters (Wijewardana

et al., 2015). Root-ABA1, a major quantitative trait locus (QTL) for

root development in maize, plays a vital role in NUE along with four

other QTLs, viz., Qaer3.10, Qaer5.05–6, aer9.07–8, and Qaer10.04,

responsible for aerenchyma cell development. In rice, the

transcriptomic approach has helped to identify 62 candidate NUE

genes. SHORT ROOT and SCARECROW are root-patterning genes

responsible for root development and architecture. AUX1 and PIN

proteins regulate the auxin movement and lead to lateral root

development. NUE is a complex trait governed by the crop’s

agronomic, physiological, environmental, and genetic traits. The

integration of association mapping and genomics approach

accompanied by the phenomic approach will be a major

contributor to improve the NUE of global crops (Wani et al.,

2021). Therefore, it is increasingly important to improve our

understanding of factors affecting NUE and possible management

measures for improving the NUE of crops.

This review focuses on describing different forms of N loss in

the environment, analyzing the factors influencing NUE, discussing

the consequences of poor NUE, and suggesting possible

management practices for enhancing the NUE in various crops.

Overall, better agronomic management of crops, genetic resources,

breeding programs, and biotechnological tools to improve NUE are

presented as potential solutions to low NUE of crops.

3 Loss of N in the soil environment

3.1 N loss pathways

The negative effect of N loss on water, the environment, and

human and animal health has been well reported (Singh et al.,

2010). Soil N is transient and moves rapidly away from the point of

application through various mechanisms. The processes responsible

for N loss include volatilization, nitrification, denitrification,

leaching, surface runoff, ammonium fixation, and immobilization

(Baggs et al., 2000). Overall, the amount of mineral N in the soil at

any given time can be described by the following N balance

equation (Eq. 19) (Di and Cameron, 2002).

N = Np + Nb + Nf + Nu + Nm − Npl − Ng − −Nl − Ne (19)

where Np is the precipitation and dry deposition, Nb is the

biological fixation (Eq. 10, Table 1), Nf is the fertilizer, Nu is the

urine and dung return to the soil, Nm is the mineralization, Npl is

the plant uptake (Eqs. 11 and 12, Table 1), Ng is the gaseous losses,

Ni is the immobilization, Nl is the leaching loss, and Ne is the

erosion and surface runoff.

3.1.1 Volatilization
The gaseous loss of NH3 is known as volatilization.

Volatilization is a complex process that is controlled by the

physical, chemical, and biological properties of soil and the

environment (Fan et al., 2011). Agriculture activities account for
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50% of the total annual global NH3 loss (32 Tg year−1) to the

atmosphere through volatilization (Liu et al., 2019a). Fertilizer and

manure application and livestock activity are the primary sources of

NH3 emissions in agriculture. Chemical N fertilizer alone is

responsible for 34% of the loss (He et al., 2014). In particular,

urea-based fertilizers are more susceptible than other N fertilizers

because of the temporary increase in soil pH through the

consumption of H+ ions during hydrolysis (Eq. 13). There is an

equilibrium between NH4 and NH3 in soil solution (Eq. 16). The

pKa for equilibrium in Eq. 16 is 9.3. Therefore, alkaline conditions

favor greater proportions of NH3 (Havlin et al., 2014). When soil

pH exceeds 7.5, temperatures increase up to 45°C, sufficient air

movement is present to remove NH3 gas at the soil–atmosphere

interface, and losses of N as NH3 are maximized (Bock and Kissel,

1988; Havlin et al., 2014). Application to acidic soils raises a little

risk of volatilization. Application to sandy soils with low native

cation exchange capacity (CEC) raises the risk. The common

management approaches to improve the NUE of NH4/NH3

fertilizers include incorporation into the soil through injection or

tillage to protect NH4/NH3 through the association of NH4 with

clay colloid cation exchange sites. When animal wastes are used as

nutrient sources for crops, volatilization has been markedly

diminished by incorporation or pretreatment with acidifying

agents (Marshall et al., 1998; Choi and Moore, 2008; Doydora

et al., 2011). Splitting applications between pre-plant and one or

more subsequent applications later in the growing season is also

commonly recommended to reduce the time that NH4/NH3

fertilizers are exposed to environmental conditions that

promote loss.
3.1.2 Urea hydrolysis
Urea hydrolysis (Eq. 13) may be considered the final step in the

mineralization of organic N. The urease enzymes (urea

amidohydrolases, EC 3.5.1.5) are produced by a large number of

organisms filling a variety of ecological niches including plants,

bacteria, algae, fungi, and invertebrates (Sigurdarson et al., 2018). In

most soils, the enzyme is more than sufficiently present and free in

solution to rapidly hydrolyze urea to NH3 (Klose and Tabatabai,

1999). Therefore, management to avoid losses of NH3 through

volatilization following urea application has commonly involved the

inhibition of ureases to prevent the reaction from occurring until

the urea itself may be safely incorporated into the subsurface soil.

Conventional urease inhibitors include N-(n-butyl)

thiophosphoric triamide (NBPT), perhaps the most widely

employed, with demonstrated effectiveness in rice, cotton, wheat,

maize, and pasture grasses (Zaman et al., 2009; Kawakami et al.,

2012; Marshall et al, 1998; Martins et al., 2017; Wallace et al., 2020).

Urease inhibition with NBPT and cyclohexylphopshoric triamide

(CHPT) may also be effective in preventing N losses from manure

sources (Svane et al., 2020). Plant-based materials such as those

isolated from Canavalia ensiformis (jack bean), Eucalyptus

camaldulensis (eucalyptus), allicin from Allium sativum (garlic),

and certain Acacia spp. have been shown to inhibit ureases in soil

(Mathialagan et al., 2017; Rana et al., 2021). This raises the

possibility of the increased entrance of plant biotechnologies into
frontiersin.org
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this area. Finally, as with any N source, urea may also be split

applied and/or subsurface applied to prevent exposure to

environmental conditions that lead to losses.
3.1.3 Leaching
Higher rates of animal manure or commercial N fertilizer

application increase NO3
− leaching as a result of increased available

N concentration in soil solution. Nitrate N is highly susceptible to

leaching due to the negative charge associated with NO3
− which

prevents its association with negatively charged soil colloids, whereas

NH4
+ is electrostatically attracted to colloids and therefore protected

from leaching (Lodhi et al., 2009). Therefore, rain and irrigation

would take the NO3
− out of the system. Nitrate leaching takes place

mainly after the heavy rainy season and the period of slow crop

growth. Pande et al. (1985) reported that the N leaching process

accounted for 2%–60% of the applied N loss. It has been estimated

that the irrigated wheat fields account for 5 to 12.5 kg N ha−1 N

leaching loss, where farmers have applied 250 kg N ha−1 with two

splits in northern Mexico (Riley et al., 2001). Clay soil typically has

lower NO3
− leaching than sandy soil due to limited hydraulic

conductivity. In clay soils, NO3
− measured in soil samples to 60 cm

can be subtracted from maize N fertilizer recommendations due to

the reduced leaching potential (Fromme et al., 2017).
3.1.4 Nitrification
Nitrification is a microbial process (Eq. 14, Table 1), in which

the ammonium is converted into nitrate by the oxidation process

(Ward et al., 2011). It is a two-stage process (Eqs. 8 and 9) and is

mediated by autotrophic bacteria.

NH3 + 11 2= O2 ! NO2− + H2O + H + +84 kcal mol−1 (8)

NO2 + 11 2= O2 ! NO3− + 17:8 kcal mol−1 (9)
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The first stage is initiated by the ammonia-oxidizing bacteria

like Nitrosospira and Nitrosomonas, which perform the oxidation of

NH4
+ to nitrite (NO2

−) by means of the membrane-bound

ammonia monooxygenase enzyme associated with hydroxylamine

oxygenase (Jiang et al, 2018). The second step involves the

conversion of NO2
− to NO3

− mediated by Nitrobacter. The last

stage is much faster and more effective than the first stage; hence,

nitrite rarely accumulates in the soil (Linn and Doran, 1984).

Nitrification takes place in an aerobic soil environment with

optimal soil moisture (60% water-filled pore space) (Linn and

Doran, 1984). However, it is a very slow process in anaerobic soil

environments (rice ecosystem) (Linn and Doran, 1984). The

process is also regulated by soil temperature, pH, NH4
+/NH3

concentration, and microbial population (Sharma and Ahlert,

1977). Nitrate produced by this process can be leached, absorbed

by plants, and immobilized by soil microorganisms.

3.1.5 Denitrification
Denitrification is also a microbe-mediated, though strictly

anaerobic, process (Eq. 15, Table 1) wherein NO2
− is reduced to

N2 gas using intermediate products such as nitrogen dioxide [NO2,

nitric oxide (NO), and nitrous oxide (N2O) (Figure 1)]. The

production of N2O is a major concern because of its greenhouse

gas (GHG) function, with approximately 300 times the GHG

potential of CO2. Soil N loss through denitrification as a

percentage of applied N varies widely and is a function of soil

water content, soluble carbon (C), the presence of NO3
−,

temperature, and time. Global loss of N from denitrification is

estimated to be 96 Tg year−1 in 2000 and would probably increase to

142 Tg year−1 by 2050 (Bouwman et al., 2013). The process is

carried out by a group of facultative anaerobic bacteria and

catalyzed by nitrate reductase and nitrite reductase enzymes

(Garbeva et al., 2007; Ranatunga et al., 2018). Two different

electron acceptors are used during the denitrification process in
TABLE 1 Nitrogen transformation processes.

Nitrogen transformation process Chemical equation Eq. The direction of the PAN
flux

Biological fixation (enzymatic fixation of atmospheric N2 to
NH3)

N2 + 8H+ ! 2NH3 +H2 10 Input

Plant uptake of N as NH4
+

(Plant)ROH + NH+
4 ↔ RNH2 +H2O +H+ 11

Neutral (if target crop)
Loss (if non-target)

Plant uptake of N as NO3
−

(Plant)ROH + NO−+
3 H+ + 2CH2O ↔ RNH2 + 2CO2 + 2H2O 12

Neutral (if target crop)
Loss (if non-target)

Urea hydrolysis (enzymatic hydrolysis of urea) (NH2)2CO +H2O + H+ ↔ 2NH+
4 + CO2 13 Input

Nitrification (enzymatic oxidation of ammonium to nitrate) NH3 + 2O2 ↔ NO−
3 + 2H+ +H2O 14 Neutral

Denitrification (anaerobic enzymatic reduction of NO3
− to

N2 gas)
5CH2O + 4NO−

3 + 4H+ ↔ 2N2 + 5CO2 + 3H2O 15 Loss

Volatilization of N as NH3 NH+
4  ↔

 
 NH0

3 +H+   (pKa = 9:3) 16 Loss

Ammonification (enzymatic mineralization of organic N) RNH2 +H2O +H+ ↔ ROH + NH+
4 17 Input

Immobilization (uptake and incorporation into microbial
biomass)

NH+
4 + ROH ↔ RNH2 +H2O +H+ 18 Loss
PAN, plant-available nitrogen.
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aerobic conditions; oxygen acts as an electron acceptor, while NO3
−

is used as an electron acceptor in anaerobic conditions (Bock et al.,

1995). Chemo-denitrification is another process responsible for

nitrous oxide emission, but the quantity is smaller than biological

production (Kool et al., 2011). Likewise, the nitrification process

also releases N2O through the spontaneous oxidation of

hydroxylamine, which is an intermediate in the nitrification

process (Kool et al., 2011).

Conventional management for the prevention of denitrification

losses has conventionally been through inhibition of nitrification in

soil. Nitrification inhibition prevents the formation of NO3
−, the

substrate for denitrification, from NH4
+ (Eq. 14). There are a

number of chemistries known and used in agriculture for

nitrification inhibition. These include nitrapyrin (and various

other pyridines), thiourea, thiophosphoryl triamide (also a urease

inhibitor), 3,4-dimethylpyrazole phosphate (DMPP), and

dicyandiamide (DCD) (McGinn et al, 2016; Ruser and Schulz,

2015; Alonso-Ayuso et al., 2016). Each of these chemistries is

known to increase the production and release of nitrous oxide

(N2O) from soils, a fact that should be considered in all efforts to

increase NUE.

Research into biological nitrification inhibition (BNI) is

advancing rapidly (Coskun et al., 2017). The current state of BNI

research suggests that both plant-derived compounds (direct

inhibition) and indirect mechanisms may be simultaneously

responsible. For a thorough review of isolated plant exudates and

metabolomics responsible for BNI, please see Nardi et al. (2020).

Harnessing BNI for agricultural scale use will continue to be a

fecund area of research in the near future for plant biotechnology

and breeding disciplines.

3.1.6 Soil erosion and runoff
Slope, rainfall intensity, soil type, and vegetation are key

determinants of soil and nutrient loss and transport (Kang et al.,

2001). Soil nearest to the surface often contains the greatest

concentrations of N and organic matter which can be readily

transported through runoff and erosion. It is possible that up to
Frontiers in Plant Science 05
70% of surface-applied N fertilizer may be lost to a runoff if rain

occurs on the same day (Mandal et al., 2012).

Management of cropping systems to reduce such physical losses

of N will improve NUE. Conventional approaches to minimizing

erosion and runoff include reduced tillage or no-tillage, cover

cropping, surface residue retention (conservation tillage), contour

tillage, terracing, and grassed waterways (Boincean and Dent, 2019;

Farzadfar et al., 2021; Young et al., 2021). While no-till and reduced

till systems tend to protect or increase soil organic matter, which

includes organic nitrogen, Canisares et al. (2021) reported that no-till

increased mineralization rates without affecting the optimal corn

fertilization response. In this case, yields were greater under no-till

(~1,000 kg ha−1), though the response to N fertilizer was unchanged.

Depending on how it is defined (Eqs. 1-7), NUEmay or may not have

been improved in this case. However, efforts to control erosion and

loss of N through reduced tillage should improve soil stocks of N

through both conservation and enhanced mineralization and

continue to be the best recommended practices.

When cover crops are included in cropping systems, there are

multiple mechanisms that can lead to increased NUE. Reduction of

erosion caused by overland flow is more effective when covers with

finer roots such as cereal rye or oats are used as opposed to covers

with thick roots such as mustards or radishes (De Baets et al., 2011).

Leguminous cover crops fix N2 gas from the atmosphere into plant-

available NH3 (Eq. 10) and incorporated into the plant biomass.

Upon senescence of the cover crop, the biomass N may then be

remineralized (Eq. 18). Any measure of NUE which simply

considers the reduction of fertilizer requirement will naturally be

improved by increasing soil stores in this way. Cereal covers have

the potential to reduce leaching by scavenging N from soils into

biomass and releasing to the following cash crop through

mineralization as well. Ranells and Wagger (1997) reported that

the legumes hairy vetch and crimson clover could release 132 and

60 kg N ha−1, respectively, while the non-legume cereal rye released

24 kg ha−1.

3.1.7 Interlayer fixation of NH4
+ by clay minerals

Ammonium fixation occurs with 2:1 type of clay minerals such

as illite, vermiculite, and smectite because they have negative

charges and have the ability to expand interlayer spacing when

soil water enters the basal oxygen plane (Nieder et al., 2011). The

NH4
+ ion is comparable to that of K+ with respect to ionic radii and

low energy of hydration (Nieder et al., 2011). Therefore, the NH4
+

ion is fitted exactly in the ditrigonal holes, or interlayers, in the basal

oxygen plane of 2:1 clay mineral when soil water is present (Kunze

and Jeffries, 1953). The clay mineral interlayers collapse

approximately 1 nm upon drying, and NH4
+ ions are then

trapped between silicate sheets and largely removed from further

exchange reactions (Juang et al., 2001).

3.1.8 Immobilization of N in soils
Manure and residues are applied to the soil as a source of

nutrients (Figure 2). The first step after applying organic matter to

the soil is mineralization (Eq. 17, Table 1), which converts the

unavailable nutrient form into the available form NH4
+ (Chen et al.,

2014). The C:N ratio of organic matter influences the N
FIGURE 1

Different pathways of N2O production in soil (Kool et al., 2011).
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mineralization process because microbial biomass production

requires both N and C (Chen et al., 2014). The wider the C:N

ratio (e.g., >30:1) could hinder the mineralization process due to

insufficient N content, and this condition leads to the

immobilization of N (Eq. 18) (Quemada and Cabrera, 1995;

Yassen et al, 2010). Immobilization is a process by which applied

N can be incorporated into microbial biomass to provide for protein

synthesis and reproduction. When mineral N + mineralizable

organic N are insufficiently present to meet these needs,

immobilization will remove plant-available N from the system
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(Sakala et al., 2000; Bird et al., 2001). Immobilization is

considered negligible when the C:N ratio is <20:1.

In addition, when the N concentration is insufficient at the early

stage of residue decomposition, the N content of the microbe’s own

tissues may be increased through the remineralization process

(Zelenev et al., 2006). Remineralization is a natural process by

which the microbes requiring N can meet by mineralization of dead

microorganisms using the enzymolysis process. Shindo and Nishio

(2005) reported that the remineralization rates of wheat straw were

0.71, 0.55, and 0.29 mg N kg−1 day−1 after 7, 28, and 54 days,

respectively. The high rate of remineralization is usually happening

due to high consumption and low assimilation of N by microbes

(Braun et al., 2018).
4 Factors affecting agronomic NUE of
various crops

The agronomic N use efficiency of crops is greatly

influenced by crop characteristics, environmental variability, and

management practices.
4.1 Crop factors

Crops and crop varieties differ considerably in their ability to

uptake N per unit of biomass production. The agronomic NUE of

major crops is given in Table 2. Crops grown in well-irrigated

conditions have a greater agronomic NUE than in unirrigated/

rainfed conditions. A study conducted on various irrigation regimes

on wheat in China concluded that the nitrogen partial factor

productivity was higher for 40 mm per irrigation (41.57 to
TABLE 2 Agronomic NUE of various field crops in the world.

Crops Agronomic NUE (kg grain kg−1 of applied N) Country References

Rice

Irrigated 23 Brazil Fageria and Baligar (2005)

Rainfed 21.18 Brazil Fageria et al. (2014)

Wheat

Irrigated 22-26 Nepal and Afghanistan Fazily et al. (2020); Rawal et al. (2022)

Rainfed 22.9-23 Spain and Mexico López-Bellido et al. (2005); Limon-Ortega (2021)

Corn

Irrigated 14-27 India Wang et al. (2014); Davies et al. (2020)

Rainfed 18-20 India Sravanthi et al. (2017)

Mustard 13-21 India Keerthi et al. (2017)

Sugarcane 230-241 Ghaffar et al. (2012)

Cotton 5 kg lint Snider et al. (2021)

Fodder pearl millet 632 kg India Shekara et al. (2020)
FIGURE 2

Three different process types regarding the effects of returning plant
residues on soil inorganic N over the limited experimental period
(Chen et al., 2014).
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43.69 kg grain per kg N applied) compared with 20 mm per

irrigation (32.24 to 32.47 kg grain per kg N applied) (Si et al.,

2020). High crop growth rate, yield, and N uptake in crops can be

achieved by maintaining optimal soil moisture conditions (Giller

et al., 2004; Ding et al., 2021). Annual crops have a higher

agronomic NUE than perennial crops due to the higher N uptake

efficiency and N concentration (Weih et al., 2011). However, yield-

specific N efficiency was more for perennial crops than wheat (Weih

et al., 2011). Compared with food crops, fodder crops have a higher

agronomic NUE because of the higher biomass production per unit

area and time.
4.2 Environmental factors

Important environmental factors that affect the agronomic

NUE are photosynthetic active radiation (PAR), temperature, and

rainfall. Environmental factors that affect the agronomic NUE of

crops in decreasing order are temperature > rainfall > irradiance

(Balasubramanian et al., 2004). The temperature requirement of

crops may vary greatly (Table 3). For crops like rice and wheat,

NUE increased significantly with increasing growing season

temperature, but it decreased for corn, which may be due to the

variation in plant N demand and uptake responses to temperature

(Yu et al., 2022). An et al. (2005) reported that when the crop suffers

because of lower than optimal temperature, an increase in seasonal

air temperature suddenly increases crop growth and nitrogen

demand, which could increase NUE. At low temperatures, the

ability to absorb N by the roots is greatly reduced due to the high

affinity of the temperature and nitrate influx systems in the roots

(Glass, 2003). However, the increase in temperature may lead to a

high loss of N, thus reducing the NUE (Bai et al., 2013). The N loss

and crop N uptake are highly influenced by the intensity, duration,

and frequency of rainfall in a crop season. The occurrence of rainfall

within a day of N fertilizer application had a positive impact on the

NUE. A strong correlation between the total rainfall and NUE was

observed for the dryland summer sorghum in Australia (Rowlings

et al., 2022). The highest NUE was reported for 125% simulated

rainfall for wheat and corn in a silt loam soil of Kentucky, USA

(Shahadha et al., 2021). Photosynthetic active radiation is a major

driving force affecting crop growth and N uptake (Shahadha et al.,
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2021). However, it is only important for tropical and subtropical

regions but not for temperate regions (Balasubramanian et al.,

2004). Studies have observed that crop growth and nitrogen

uptake vary significantly during the dry and wet seasons, mainly

due to variations in PAR in the tropics (Balasubramanian

et al., 2004).
4.3 Management factors

Globally, 50% of the nitrogen applied to crops is lost to the

environment, resulting in resource wastage and increased GHG

emissions (Grizzetti et al., 2013). The 50-year data from 124

countries suggest that increased N fertilization involved low

agronomical benefits and higher environmental risks. Different

management practices have resulted in reduced NUE. Basically,

the selection of crops or varieties with poor N uptake and

assimilation followed by inefficient utilization through reduced N

remobilization resulted in a lower N use efficiency (Dong and Lin,

2020). Furthermore, it is responsible for the loss of N from the soil

and plant residue after harvesting the economic part (Kant et al.,

2011). Galloway et al. (2003) reported that extensive crop

cultivation over grasslands exposes the protected and stored soil

organic carbon pool. Thus, it increases nitrate leaching and NH3 or

NO2 and N2O emission, leading to environmental pollution. In

South America, Africa, and Asia, reduced NUE was reported in

areas devoid of cropping systems with biological N fixation such as

soybean, beans, and groundnut (Herridge and Peoples, 1990; Liu

et al., 2010). Similarly, intensive cropping without integration of

livestock systems also reduced the N use efficiency at the local and

global levels (Lassaletta et al., 2014). The promotion of synthetic N

fertilizers rather than symbiotic N fixation resulted in poor N use

efficiency (Lassaletta et al., 2014). Likewise, uncontrolled flood

irrigation resulted in NO3
− leaching due to a negative charge and

high solubility; furthermore, it creates anoxic conditions which lead

to the development of denitrifying microorganisms (Chattha et al.,

2022; Shabbir et al., 2022).

Environmental factors, mainly higher temperature and wind

speed, increase the risk of NH3 volatilization (Chattha et al., 2022).

It was found that an increase in soil temperature due to climate

change increases the nitrification rate resulting in N loss and poor
TABLE 3 Temperature and water requirement of major crops.

Crops Temperature (°C) Water (mm) References

Rice 25–35 900–2,500 Ruser and Schulz, 2015; Nishad et al. (2018)

Wheat 16–23 450–650 Ruser and Schulz, 2015; Khan et al. (2020)

Corn 25–33 500–800 Ruser and Schulz, 2015; Wild et al, 2001

Sugarcane 21–27 1,500–2,500 Ebrahim et al. (1998); Ruser and Schulz, 2015

Cotton 25–45 700–1,300 Ruser and Schulz, 2015; Shahadha et al, 2021

Chickpea 10–30 250–300 Ruser and Schulz, 2015; Devasirvatham et al. (2012)

Groundnut 20–30 500–700 Rana et al, 2021; Ruser and Schulz, 2015

Sunflower 25–28 250–350 Ruser and Schulz, 2015; Guo et al. (2021)
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NUE (Engel et al., 2011). Higher soil compactness and wet

conditions promote the denitrification process, whereas no-till

and coarse soils showed higher leaching or volatilization/loss of

nitrogen. In coarse soils, NH4NO3 fertilizer is subject to severe

leaching and denitrification losses (Chattha et al., 2022).

Globally, the majority of countries are facing a decreasing trend

of NUE (from 68% to 47%) over a period offive to six decades (1960–

1970) (Lassaletta et al., 2014). Greater NUE in the initial years was

probably due to higher native soil fertility, less use of additional

nutrients, and favorable soil conditions (physical, chemical, and

biological) (Figure 3). During the last decade, intensive

management practices, monoculture, and increased use of off-farm

input resources have resulted in low NUE (Lassaletta et al., 2014).
5 Consequences of poor NUE

Modern agriculture is entirely dependent on excessive N

fertilizer application leading to ecosystem degradation and

environmental pollution (Brender et al., 2013). According to

estimates, 70% of applied nitrogen fertilizer is lost in the

biosphere and affects the local and global atmospheric chemistry

(Suthar et al., 2009). Nitrate pollution of groundwater in particular

has led to numerous socioeconomic and environmental issues

(Suthar et al., 2009). Nitrate contamination of drinking water is a

major concern, particularly for children (Suthar et al., 2009; Brender

et al., 2013). Continued consumption of NO3-contaminated

drinking water (recommended limit of 10 mg NO3-N L−1) results

in methemoglobinemia in children and gastric cancer among adults

(Taneja et al., 2017). Moreover, NO3 or NH4
+ contamination of

water bodies promotes the growth of algae and other aquatic plants,

which lowers the water’s oxygen level (Wild et al., 2001).

The oxide forms of N are highly reactive and harmful to the

environment in many ways (Liu et al., 2019a). Excessive emissions

of nitrous oxide and nitric oxide contribute to the formation of

nitric acid, which is the key component of acid rain (Liu et al.,

2019a). It significantly affects soil microbial communities and

damages infrastructure (Liu et al., 2019a). Moreover, the

atmospheric pollutant ozone is created when nitrous oxide

combines with volatile organic pollutants (Karlsson et al., 2017).

In this way, the loss of N leads to serious health and environmental

problems. To avoid these consequences, the NUE of crops needs to

be improved on a global basis.

6 Management and breeding
approaches to improve NUE

6.1 Agronomic measures to enhance N use
efficiency

6.1.1 Conservation tillage system and NUE
The level of soil disturbance induced by different tillage

practices affects soil N dynamics and plant N availability (Power

and Peterson, 1998). For example, Francis and Knight (1993)

reported that compared with conventional tillage systems,
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conservation tillage techniques reduced nitrogen availability. The

absence of soil disturbance under the conservation tillage system

can reduce the N mineralization rate, thereby decreasing the N

availability to crops as well as the loss of N. In the conventional

tillage system, however, increased oxidation of soil organic matter

due to disturbance and exposure, as well as increased soil erosion,

hastens the loss of soil organic matter (Schillinger et al., 1999). Soil

organic matter loss caused by conventional tillage systems results in

poor soil quality and low N availability. Therefore, the role of the

tillage system will be vital for improving NUE.

The relationship between the conservation tillage system and

NUE varies between studies, but overall NUE is often improved by

the conservation tillage system (McConkey et al., 2002; Giacomini

et al., 2010). Long-term conservation tillage systems (10–15 years)

enhance the quantity of soil organic matter and increase the

concentration of mineralizable organic nutrients at the soil

surface layer (Sirivedhin and Gray, 2006), thereby improving the

nutrient-supplying capacity of the soil (Van Den Bossche et al.,

2009). As a result, conservation tillage systems that retain crop

residues often result in higher crop yields and NUE compared with

conventional tillage systems with a similar N application level (Stahl

et al., 2019).

A long-term (10-year) study conducted in the southern United

States of America showed that with the optimum application of N,

cotton yields were higher in conservation tillage than in

conventional tillage plots (Boquet et al., 2004). However, without

N fertilizer application, the yields were lower in the conservation

tillage system as a result of slow mineralization and immobilization

of soil N (Boquet et al., 2004). For instance, in a study conducted in

Kentucky, Phillips et al. (1980) found that fertilizer N applied on

well-drained soil in a no-tillage system produced a greater (13.2 kg

greater) corn yield per kilogram of applied N than under

conventional tillage, but without N fertilizer, the corn yield was

lower under a no-tillage system. On the contrary, crop residue

retention, wetter soil surface, and anaerobic environments in no-till

systems promote N immobilization, NH4 volatilization, and

denitrification, negatively affecting N availability and NUE. In a

wheat–fallow cropping system under the conventional tillage
FIGURE 3

Average nitrogen use efficiency in different countries over the years
(source: Lassaletta et al., 2014). https://ourworldindata.org/fertilizers
http://creativecommons.org/licenses/by/4.0/deed.en_US.
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system, the N uptake was greater than that of stubble mulch

systems. This is probably due to increased N immobilization in

the stubble mulch system (Rasmussen and Rohde, 1991). Therefore,

changes in N management, rate of application, and type of N

fertilizer can improve NUE under conservation tillage systems.

Overall, the role of conservation tillage and NUE requires more

research to find practical compatibility.

6.1.2 Managing N inputs for NUE
It has been demonstrated that NUE could be improved through

management practices such as timing, rate, source, and placement of

fertilizer application. These practices are considered fundamentals to

N management and may be refined or supplemented by emerging

and future technologies, but not replaced.

6.1.2.1 Source

The chemical composition of N fertilizers influences the NUE of

crops. Urea-based N sources can be lost through volatilization when

hydrolyzed to ammonia (Eq. 16) and the effect is intensified when

urea is surface applied (Chien et al., 2009). Slow-release N fertilizers

have the potential to minimize N leaching and denitrification losses

and to improve the synchronization of N release and uptake in

accordance with crop demand (Shapiro et al., 2016). Similarly, coated

N sources such as neem-coated urea, sulfur-coated urea, and slow-

release synthetic urea-based fertilizers such as isobutylidene diurea

(IBDU) and crotobylidene diurea (CDU) have also improved the

NUE. Polymer-coated urea was also found to reduce N volatilization

loss (23%–62%) and ammonia emissions (51.3%–91.3%) and

improve NUE (3%–34%). The combined application of 150 kg N

through urea + 2,000 kg manure and 90 kg N + 2,000 kg manure

under normal and dry years, respectively, has recorded maximum

grain yield and NUE by improving the nitrogen nutritive index and

nitrogen productivity of wheat in dry land area (Liu et al., 2023).

Furthermore, the combined application of N fertilizer (276 kg ha−1)

with biochar (15 t ha−1) produced the maximum yield of maize and

the NUE (46.3%). Zhang et al. (2023) demonstrated that integrated

application of 180 kg N ha−1 + 900 g Se ha−1 utilized the maximum

resources and recorded maximum apparent recovery efficiency of N,

agronomic N use efficiency, partial factor productivity, NUE, and

grain yield of wheat.

6.1.2.2 Rate

Before determining the amount of fertilizer to apply, consider

the soil’s nutrient-supplying capacity through a regionally

appropriate soil testing program. Excessive fertilizer application

leads to losses from the system, environmental problems, and

economic losses to farmers. On the other hand, an insufficient

nutrient application can exhaust soil fertility and lead to nutrient

mining (degradation) and poor long-term soil productivity.

Optimizing the nutrients’ rate based on soil status and crop

requirement is the right way to improve NUE.

Typically, N fertilizers are applied either in single or two split

applications. Split application of N at various crop stages is effective

at increasing NUE. The application of 120 kg N ha−1 proved

optimal to produce a higher grain yield and NUE in direct-seeded
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rice than 60 and 180 kg N ha−1 (Mahajan et al., 2012). A higher

fodder maize seed yield (3.80 t ha−1) and N utilization were

recorded for 120 kg N ha−1 in a semiarid region (Halli et al.,

2019). Application of 180 kg ha−1 has been recommended to

achieve higher grain yield, NUE, and protein yield of buckwheat

(Wan et al., 2023). Hu et al. (2023) reported that among the rates of

N studied (0, 150, 200, 250, and 300 kg ha−1), fertilization at the rate

of 250 kg N ha−1 recorded a maximum grain yield, maximum grain

N accumulation, improved aboveground dry biomass and N

metabolism enzymes, and increased NUE in corn.

Site-specific N scheduling could be an alternative option to the

blanket application of N. Results from a study conducted in 107

farmers’ fields indicated that the leaf color chart (LCC)-guided N

management in hybrid rice had decreased N requirement by 25%

without compromising the crop yield (Bhatia et al., 2012).

Therefore, LCC can be further explored as a diagnostic tool to

help farmers make appropriate decisions about N fertilizer

applications throughout the crop cycle. However, the use of

sensor-based N application techniques is still at a nascent stage in

many parts of the world.

6.1.2.3 Placement

Fertilizer placement nearer to the root zone of crop plants, as

opposed to even distribution in the field, has the potential to

minimize N losses. The incorporation of fertilizers in the soil (via

tillage or injection) is recommended over broadcasting (Ladha et al.,

2005). The placement of N fertilizer under the seeds at the time of

planting, band application, and fertilizer injection increased the

NUE and reduced the NH3 volatilization compared with

broadcasting in winter wheat (Dao, 1998; Ladha et al., 2005).

Deep placement of the USG fertilizer resulted in better N

recovery efficiency (49%) compared with the broadcasting method

(37%) in Australia (Schmidt et al., 2002). Granular ammonium

nitrate fertilization at the depth of 20 cm below the soil surface

recorded the highest NUE (134%), N recovery efficiency (18.1%),

and grain yield (11%) in spring wheat and barley (Rychel et al,

2020). Qiang et al. (2022) noted that placement of controlled release

urea at the depth of 16 cm achieved maximum grain yield, water

productivity, partial factor productivity, and NUE in rainfed spring

maize in Northern China.

Fertigation, or co-application of N with irrigation, is a viable

option for the improvement of NUE. N fertilization at 15 cm depth

increased grain yield (13.9%–98.9%), NUE (7.1%–44.3%), and N

absorption (6.5%–38.0%) in summer maize (Chen et al., 2023). This

approach gives the farmer with the proper equipment the flexibility

to engage in multiple applications of low rates to minimize exposure

to losses and optimize the opportunity of the crop to take up the

right amount at the right time.

6.1.2.4 Timing

The timing of fertilizer application should coincide as close as

possible with crop nutrient demand to avoid nutrient loss. For

instance, in single applications, part of the applied nutrient is

absorbed by plants, while a substantial portion is vulnerable to

loss. Improved N partial factor productivity, agronomic N
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efficiency, N recovery efficiency, physiological efficiency, grain

yield, and N uptake may be optimized when N is applied in four

splits at the sowing, 6th leaf stage, 12th leaf stage, and silking stage

in maize (Zhou et al., 2019). However, commercial-scale agriculture

will likely avoid multiple trips across the field and traffic when the

crop canopy has closed to reduce fuel, compaction, and crop

damage. Likewise, the application of N fertilizer in three splits has

increased the wheat grain yield and N recovery use efficiency (Liu

et al., 2019b).

Ranatunga et al, 2018 indicated that more than 6 t ha−1 grain

yields can be achieved in dry direct-seeded rice production systems

when urea application is delayed by 10 days after sowing or split

application compared with the blanket application. Although

optimized in this way, the commercial-scale application on

flooded rice will be impossible without aerial application. Split

application of N at the time of sowing and later stages (V12, R1,

and R2) increased the plant uptake, photosynthetic efficiency, and

grain yield and improved NUE in summer maize (Deng et al.,

2023). Late and split application of N during jointing, booting,

anthesis, and grain filling stages through microsprinkler irrigation

increased grain yield, protein concentration, and NUE of wheat by

5.8%, 8.6%, and 15.8%, respectively, as compared with the

conventional method of fertilization and irrigation (Yao et al.,

2023). N application with basal to top dressing ratio of 2:8

between the sowing and jointing stages recorded maximum dry

matter yield, crude protein, N recovery, water, and N use efficiency

of forage maize in a semiarid region of China (Ma et al., 2023).

Hence, the split application of N would be superior to the blanket

application, though the number and timing of these applications

will be limited due to the practical considerations mentioned above.

6.1.3 Cropping system and NUE
Nitrogen use efficiency is also dependent on the ability of the

cropping system (Ortiz-Monasterio et al., 1997; Reddy, 2011). Crop

diversification can improve soil structure, soil health, vertical

nutrient stratification, and mycorrhizal fungal interactions, as well

as offer diversity in crop residues. A potential cropping system

could help improve N availability and plant uptake (Tisdall and

Oades, 1979; Lehman et al., 2012). Cereal- and legume-based

cropping is the best system for leaving more residual N

accumulation (Lehman et al., 2012). In a study with fallow

followed by rice and legume followed by rice systems in Japan,

the fertilizer NUE was higher for the legume (broad bean) followed

by rice with 40 kg N application compared with fallow followed by

rice in a clay loam soil (Rahman et al., 2009). Similarly, in a 20-year

study on clay loam soil in Ontario, Canada, Gaudin et al. (2015)

reported an increase in maize fertilizer NUE when winter wheat is

inserted into a maize–soybean (especially when wheat is under-

seeded with red clover) cropping system. In another study

conducted in China, Li et al, 2022 found a higher N uptake and

N harvest index in faba bean when intercropped with wheat

compared with sole faba bean. The benefits associated with crop

rotation and intercropping are mainly due to the facilitation

through interaction between legumes and cereals and shallow-

rooted and deep-rooted crops. Therefore, the rotation of crops
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with different depths of roots can improve soil structure and

stability (Obalum and Obi, 2010) and enhance resource use

efficiency (Halli et al, 2019). Tap-rooted crops can more easily

penetrate compacted soil layers than shallow or fibrous-rooted

crops, which serve to enhance the water and N use efficiency of

the overall system (Chen and Ray, 2010). In Denmark, van

Oosterom et al, 2010 observed a maximum mineralized N (81 kg

N ha−1) within the rooting zone of pea–cabbage compared with the

onion–cauliflower cropping sequence, where the mineralized N was

only 52 kg ha−1 within the root zone. The selection of varieties/

crops with different root systems, varied capacity to fix atmospheric

N, and higher biomass production is an effective strategy to enhance

NUE that deserves future research attention.

6.1.4 Inclusion of cover crops and forage crops in
the cropping system

Nitrogen use efficiency of plants depends on the rate of soil N

used by roots and accumulation in different plant parts such as the

stem, leaf, and harvestable portions. Therefore, NUE is influenced

by the inclusion of cover crops in a cropping system. The inclusion

of high biomass-producing crops such as cover crops and dual-use

forage crops can enhance the overall NUE of any system (Reicosky

and Forcella, 1998). Cover crops are the crops planted in the off-

season when the land is otherwise left uncultivated. Leaving land

fallow increases the likelihood of soil erosion and nutrient leaching.

Cover crops can help to protect the soil from loss, keep living roots

in the soil as much of the year as possible, and recycle nutrients.

Cover crops with low C:N ratio residues (legume) can hasten

the mineralization of organic N which may be responsible for the

high NUE of the main crops (Franzluebbers et al., 2014). However,

the cover crops with high biomass and high C:N ratio residues can

lead to the immobilization of N, decreasing NUE for the following

cash crop. A simulation model study using NLEAP (N Leaching and

Economic Analysis Package) predicted that the inclusion of winter

cover crops increased the NUE of lettuce by 3.1 kg per 4.5 kg of

available N (Delgado, 1998). The cover crops in this study included

winter wheat and rye, which were modeled to recover and retain soil

NO3-N in tissue, preventing leaching loss and fertilizing the next

crops. Similarly, planting cereal rye crops after no-till corn has

reduced N leaching by 100% (McCracken, 1989). The CERES-N

model modified by Quemada and Cabrera (1995) includes

important considerations outside of simple C:N ratios to predict

the mineralization or immobilization potential of cover crop

residues. The model requires inputs for water-soluble

carbohydrates, cellulose/hemicellulose, lignin, total C, total N, and

C:N ratio.

Forage crops (often perennials) also contribute to the reduction

in N loss and improved NUE. For example, a study from the USA

reported that a perennial, such as alfalfa, reduced NO3-N leaching

by 10-fold over a corn–soybean rotation or continuous corn

systems (Randall and David, 2001). Moreover, persistent roots of

forage grasses are important to bind the soil particles together to

develop a stable soil structure and potentially capture N from 1.5 m

deep in the soil. Thus, surface available N can be utilized by

subsequent crops to improve NUE.
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6.2 Genetic resources and breeding
approaches to enhance/improve NUE

During the green revolution and post-green revolution, high

fertilizer-responsive cultivars have been favored owing to low N-

fertilizer costs. Though there are contradictory reports that under low

N, more N-responsive modern varieties still perform better than

historical varieties (Ding et al., 2005; Echarte et al., 2008), breeding

efforts to develop high fertilizer-responsive cultivars under high

fertilizer conditions have resulted in high-yielding cultivars with

poor NUE (Garnett et al., 2015). As a consequence, yielding

increases are fast approaching a theoretical limit with given

physiological and genetic potential of crop cultivars under high N

availability (Ali et al., 2018). To narrow down the demand–supply

gap of food amid decreasing farmland and depleting soils around the

globe without further magnifying environmental impacts, breeding

strategies to improve the NUE of crop cultivars are becoming the

prime focus of agricultural researchers (Fiaz et al., 2021; Ciampitti

et al., 2022). Breeding for high input-responsive cultivars, occurring

during the last five to six decades, is different from breeding for NUE.

For NUE, the inherent capacity of the plant has to be improved and

selected to facilitate efficient uptake and to use N and produce higher

yield under moderate or marginal N availability (Anbessa and Juskiw,

2012). Therefore, breeding for high NUE is mainly aimed at realizing

maximum benefit by reducing the N application rate while

maintaining the high yield level.

6.2.1 Breeding approaches to improve NUE
Although there has been a consensus on the need to increase the

NUE of crop plants through breeding, practically, no breeding

program is primarily dedicated worldwide for this purpose, to the

best of our knowledge. Theoretically, there may be different ways to

improve NUE through breeding, such as overall consideration of

grain yield or biomass growth under limited N conditions, selection

and improvement of specific traits that contribute to high NUE, or

introduction of the foreign gene. However, indirect selection for

yield has been the common method for achieving higher NUE

(Cormier et al., 2016).

NUE is considered a complex trait. Modifications in traits such

as plant height, tiller number, dry weight of shoots and roots, grain

yield, spikelet number, number of filled grains per panicle, 1,000-

grain weight, and chloroplasts were reported to improve NUE

(Lawlor, 2002; Zhao et al., 2011a; Hamaoka et al., 2013). Breeding

targets for genetic improvement of the plant may be grouped into

two major categories: first, improving N uptake efficiency by

increasing uptake capacity (Le Gouis et al., 2000) and breeding

for ideal root morphology (Liao et al., 2006) and, second, improving

N utilization efficiency by modifying the leaf area index, specific leaf

N, and biomass yield (Gastal and Lemaire, 2002) and by delaying

the senescence (Foulkes et al., 2009).

6.2.2 Improving N uptake efficiency
Before initiating the new breeding efforts to create genetic

variability for high NUE in modern crop cultivars, the rich
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world should be explored for screening high NUE lines. There is

proven genetic diversity for root N uptake in plants (Pereira et al,

2010; Le Gouis et al., 2000), and exploiting this property requires

researchers to understand the underlying mechanism of higher

root uptake.

Root morphology plays a critical role in modulating N uptake

by plants (Garnett and Rebetzke, 2013). Plants with rapid root

growth can minimize N losses that occur through various field

processes (Gastal and Lemaire, 2002). Anbessa and Juskiw (2012)

observed that barley plants with higher root dry weight and volume

assessed at the five-leaf stage showed higher NUE than normal

plants. Improvements in root traits such as length of root, root-

length density, the radius of the root, root surface area, and number,

length, and density of root hairs (Wang et al., 2006) are associated

with greater N uptake in plants. Breeding efforts for enhancing root-

related traits are essential for improving NUE. However, the limited

scope of large-scale and high-throughput root phenotyping creates

obstacles in breeding programs for selecting and screening

specifically for such beneficial root architecture (Fiorani and

Schurr, 2013).
6.2.3 Improving N utilization efficiency
The uptake of additional N must match with the metabolism of

the plants to avoid systemic feedback control of metabolites

representative of the whole-plant N status (Nacry et al., 2013).

The uptake and utilization of N for the entire plant growth period

can be separated into two phases: pre-anthesis and post-anthesis

(Cormier et al., 2016). At the pre-anthesis stage, plants take up N,

and the whole-plant system utilizes it upon receiving fractional

interception of light at the start of the stem elongation phase.

However, at post-anthesis, once grains appear, plants begin

partitioning available N for higher grain yield, jeopardizing the

simultaneous improvement in grain yield and protein content

(Oury and Godin, 2007). Higher N utilization is possible under

low N supply through an increased specific leaf N area (SLN), which

is reported to be associated with the embryo size of the plant

(López-Castañeda et al., 1996) and earlier canopy closure (Rebetzke

and Richards, 1999). Physiological conditions wherein N is more

efficiently utilized are associated with the abundance of prostrate

leaves during vegetative growth and semi-erect to erect leaves

during later vegetative and reproductive stages. This can be

difficult for plant architecture to manipulate (Cormier et al.,

2016). Normally, at the post-anthesis stage, the grains draw N

from the stem and rachis in cereals and then from leaves if

necessary. However, the stay-green plant types are prone to

supply N to growing grains slowly and thus impact the balance in

the N demand–supply framework (van Oosterom et al., 2010).

Researchers are in consensus that physiologically important traits

that directly or indirectly improve N utilization are taken into

consideration in breeding programs, in addition to the common

target traits. However, assessing those traits on the bulk scale is a

question of technological advancement, resources available to the

breeders, and practical limitations (Cormier et al., 2016).
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6.3 Biotechnological approaches to
enhance NUE in crops

The integration of molecular tools, such as genomics and

marker-assisted breeding, into traditional breeding programs has

revolutionized genetic enhancements for various intricate traits in

crops (Jagannadham et al., 2019). The incorporation of these tools

has significantly increased the efficiency of the selection process,

resulting in a reduction in the time and resources required to

develop improved varieties or hybrids. Recent advances in genomics

have further accelerated the generation of genomic resources for

many crops, providing breeders with more data and insights into

the genetic makeup of crops, ultimately leading to more effective

breeding strategies (Kumar et al., 2018c; Jagannadham et al., 2019).

Ultimately, these resources can be exploited for identifying,

characterizing, and developing molecular markers linked to N-

responsive genes in crop plants (Yang et al., 2017; Lenka et al.,

2018). Two molecular approaches can be explored for improving

NUE in crops; one is through a traditional breeding strategy

combined with genomic selection, and the other is a transgenic

approach, which would target specific NUE-associated genes for the

genetic engineering of the plant (Good and Beatty, 2011; McAllister

et al., 2012; Kumar et al., 2018c).

6.3.1 Genes/QTLs associated with NUE
It is of utmost importance to identify genes or QTLs that govern

NUE to enable the breeding of crops with high NUE using

approaches such as marker-assisted selection (MAS) and genomic

selection. Nutrient use efficiency is a complex trait, and as a result,

several research groups have undertaken efforts to map the genetic

loci in correlation with specific traits (Balyan et al., 2016; Kumar et al.,

2018b; Mălinas ̧ et al., 2022). In rice, 20 single QTLs (S-QTLs) and 58

pairs of epistatic loci (E-QTLs) were identified for the grain N, straw

N, shoot N, harvest index, grain yield, straw yield, and PE in low N

and ordinary N conditions. Harvest index and grain yield were

positively correlated with PE in both conditions (Cho et al., 2007).

In another study carried out with rice, four QTL clusters harboring

QTLs for both NDT and NUE traits were identified (Wei et al., 2012).

In European winter wheat, a genome-wide association study using

214 varieties identified 333 genomic regions associated with 28 traits

related to NUE (Cormier et al., 2014). For the second approach,

specific NUE-associated genes should be identified. Some of the

efforts successfully mapped genes and identified QTLs. In maize, a

meta-analysis of published NUE QTLs revealed 37 “consensus”

QTLs, of which 18 were detected under low N conditions.

Comparing expressed sequence tags (ESTs) associated with low N

stress response, N uptake and transport, and assimilation with the

QTL map has resulted in identifying candidate NUE-associated

genes. Among those genes, nine candidates introgressed into Ye478

have significantly altered grain yield/yield components (Liu et al.,

2012). Five significant QTL clusters associated with large-rooted

architecture and high N uptake efficiency (NupE) were identified in
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maize. The root system architecture (RSA), such as that found in

maize, has an essential role in N acquisition. NupE had significant

phenotypic correlations with RSA (Li et al., 2015). Three QTLs,

NUE1a, NUE1b, and NUE2, were identified in maize for NUE

(Mandolino et al., 2018). Under N starvation, the expression of

TaNLP7 displayed enhanced expression in root and shoot tissues of

the high NUE genotype (Kumar et al., 2018a). Forty-seven genes are

known to involve N uptake, metabolism, and distribution in maize

(Wani et al., 2021). In barley, 10 independent mapping studies were

screened and a number of NUE-associated genes that control

complex physiological traits were mapped (Han et al., 2016). Even

though a large number of reports claim to be identifying QTLs for

NUE, some of them are yet to be validated. Since NUE involves a

myriad of factors, the traditional breeding strategy combined with

MAS will be cumbersome. Therefore, exploiting genomic selection

for improving NUE will speed up the development of superior

genotypes by combining high-throughput phenotyping and

genotyping (Han et al., 2016; Kumar et al., 2018c; Stahl et al.,

2019). In wheat, four QTLs, viz., QNue.151-1D, QNue.151-4A,

QNue.151-6A, and QNue.151-7D, were associated with NUE; one

QTL, QNupe.151-4A, was associated with N uptake efficiency; and

one QTL, QNute.151-4A, was associated with N utilization efficiency

(Brasier et al., 2020). The details of the QTLs identified in the crop

plants are given in Table 4.
6.3.2 The role of small RNAs and transcription
factors in the regulation of nutrient response

The role of small RNAs in regulating the nutrition assimilation/

starvation response is well documented in many crops (Balyan et al.,

2016). A total of 126 long non-coding RNAs (lncRNAs) were

altered during N starvation, and these RNAs regulate various

protein-coding genes involved in diverse cellular functions (Chen

et al., 2016). Forty-four miRNAs are differentially regulated under

high and low N conditions (Li et al., 2016). Most of these targets

were found to be the genes encoding for the transcription factors.

The important miRNAs and transcription factors involved in the N

starvation response in Arabidopsis are shown in Figure 4. In

Arabidopsis and maize, the expression of miR167 was enhanced

under N starvation conditions (Xu et al., 2011; Balyan et al., 2016).

miR167 regulates the lateral root growth response to N starvation in

Arabidopsis (Gifford et al., 2008). Conversely, downregulation of the

transcription factors ARF10, ARF16, and ARF17 by N-responsive

miR160 regulates the process of seed germination and development

of the seedling after post-germination under N-deficient conditions

(Liu et al., 2007; Hao et al., 2022). Downregulation of miR169

enhances the expression of the NFYA transcription factors; these

genes regulate the function of the nitrate transporter genes, viz.,

AtNRT1.1 and AtNRT2.1 (Zhao et al., 2011b). These studies showed

the involvement of small RNAs and their functional importance in

inducing/repressing multiple genes in response to N assimilation/

deprivation and regulation of root development in plants. In wheat,

simple sequence repeat markers developed frommiR171a effectively
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group the panel of wheat genotypes into N-efficient and non-

efficient markers. These markers can be employed to characterize

the wheat germplasm/breeding lines in crop breeding programs

(Sagwal et al., 2022).

6.3.3 Genetic engineering
Plants have evolved mechanisms to alter the molecular

machinery in response to N availability (Gaudinier et al., 2018).

Yang et al. (2017) identified 1,158 and 492 genes that were

differentially expressed in leaf sheaths and roots, respectively,

after 12 h of N starvation in rice. Conversely, in Dunaliella salina,

3,127 were differentially expressed (2,380 genes were upregulated

and 747 were downregulated) under N starvation (Lv et al., 2019).

In maize, ZmGLK5, bZIP108, CLC-a, and miRNA399b genes play a

significant role in regulating genes in response to N (Jiang et al.,

2018). The NIGT1/HRS1s transcriptional repressors are essential in

regulating N starvation response during high N availability (Kiba

et al., 2018). The CLE peptides and the CBL7 and TAR2 proteins

regulate root architecture in response to N starvation (Kiba et al.,

2018); the DUR3 and AMT family proteins play an important role

in the uptake of urea and ammonium, respectively, during N

starvation (Krapp et al., 2014). The nitrate transporters, NRT1/

NPF and NRT2, regulate nitrate uptake (Krapp et al., 2014).

The availability of high-throughput genomics tools and efficient

transformation systems in model crops further eases the functional

validation of NUE (Muthusamy et al., 2016; Lenka et al., 2019).

Several attempts have been made to develop transgenics with high

NUE. Overexpression of AtDof1, AtGS1, and AtGS2 enhances the N

assimilation in transgenic tobacco lines grown under N-starved

conditions compared with wild-type plants (Wang et al., 2013).

Transgenic overexpression of OsDof25 modulates C and N

metabolism in transgenic Arabidopsis lines during an increased

supply of N (Santos et al., 2012). Plant species comprising the C4

photosynthetic pathway have evolved highly efficient molecular
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mechanisms of carbon fixation. C4 plants exhibit high radiational,

N, and water use efficiencies compared with species with the C3

photosynthetic mechanism (Ghannoum et al., 2011; Muthusamy

et al., 2019). Engineering the genes involved in the C4

photosynthetic pathway in C3 plants remains an essential strategy

for enhancing the NUE in C3 crops (Lin et al., 2019; Muthusamy

et al., 2019). Moreover, the availability of N regulates the ethylene and

jasmonic acid hormone signaling, thereby regulating the plant

response to pathogen infection (Vega et al., 2015; Farjad et al.,

2018). miRNAs are known to play an important role in regulating

the function of N-responsive genes during N-limiting conditions

(Nguyen et al., 2015; Zuluaga et al., 2017). Thus, the identification of

gene regulatory networks, including small RNAs involved in

regulating the stress response, will further help to understand the
FIGURE 4

Schematic representation of important nitrogen-responsive miRNAs and
their transcription factor targets involved in nitrogen starvation response.
TABLE 4 QTLs identified in various crops related to NUE.

S.
no.

Crop QTL Description References

1 Wheat Qnue.151-6A Involved in the assimilation of ammonium into amino acids Brasier et al. (2020)

2 Wheat QNue.151-1D Indicate a role in seedling vigor Brasier et al. (2020)

3 Wheat QNue.52-7A Significantly increased NUE under the reduced N rate and resulted in
higher NUE

Brasier et al. (2020)

4 Wheat 36 QTLs 13 QTLs for NUE, 13 QTLs for NUpE, and 6 QTLs for NUtE Singh et al. (2022)

5 Rice QAE_2.1, qAE_4.1, qAE_6.1, and qAE_12.1 Agronomic efficiency of applied nitrogen in terms of P conditions Jewel et al. (2019)

6 Wheat QSnc.2, Qtnc, and QRsnc.1 Three N uptake efficiency (NUpE) (GNC, StNC, and ANC) Zhang et al. (2019)

7 Wheat Qsnue.2, QTnue.4, Qgnue, and QAnue.3 Three N utilization efficiency (NUtE) traits (GNUE, StNUE, and
ANUE)

Zhang et al. (2019)

8. Potato NUE_D_LN1, NUE_K_HN, NUE_D_LN2 and
NUE_K_LN

Nitrogen use efficiency (NUE) Getahun et al.
(2020)

9 Maize NUE1a, NUE1b, NUE2 N use efficiency for grain production Mandolino et al.
(2018)
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development of stress-responsive crops with high NUE (Muthusamy

et al., 2017; Zuluaga et al., 2017; Farjad et al., 2018). The details of the

QTLs identified in the crop plants are given in Table 5.

7 Conclusion

In global agriculture, the low-efficiency uptake by crops of applied

N fertilizer is a major concern because of its negative impact on

production costs and the environment. To improve NUE in crops,

modern agronomic, breeding, and biotechnological strategies should be

incorporated to supplement fundamental nutrient management.

Agronomic practices such as precise timing and placement of N

fertilizer, site-specific nutrient management, conservation tillage, crop

residue retention, and cultivation of high biomass crops can enhance

NUE under various soil and climatic conditions. NUE is a multifaceted

trait that involves physiological, biochemical, and molecular

regulations. Therefore, the engineering of N-responsive genes

through genome editing has great potential for improving NUE in

crops. To breed superior genotypes with high NUE, the use of genomic

selection combined with speed breeding techniques in breeding

programs is expected to be a valuable approach in the future.
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