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The field of computer vision has shown great potential for the identification of

crops at large scales based on multispectral images. However, the challenge in

designing crop identification networks lies in striking a balance between

accuracy and a lightweight framework. Furthermore, there is a lack of accurate

recognition methods for non-large-scale crops. In this paper, we propose an

improved encoder-decoder framework based on DeepLab v3+ to accurately

identify crops with different planting patterns. The network employs ShuffleNet

v2 as the backbone to extract features at multiple levels. The decoder module

integrates a convolutional block attention mechanism that combines both

channel and spatial attention mechanisms to fuse attention features across the

channel and spatial dimensions. We establish two datasets, DS1 and DS2, where

DS1 is obtained from areas with large-scale crop planting, and DS2 is obtained

from areas with scattered crop planting. On DS1, the improved network achieves

a mean intersection over union (mIoU) of 0.972, overall accuracy (OA) of 0.981,

and recall of 0.980, indicating a significant improvement of 7.0%, 5.0%, and 5.7%,

respectively, compared to the original DeepLab v3+. On DS2, the improved

network improves the mIoU, OA, and recall by 5.4%, 3.9%, and 4.4%, respectively.

Notably, the number of parameters and giga floating-point operations (GFLOPs)

required by the proposed Deep-agriNet is significantly smaller than that of

DeepLab v3+ and other classic networks. Our findings demonstrate that Deep-

agriNet performs better in identifying crops with different planting scales, and

can serve as an effective tool for crop identification in various regions

and countries.

KEYWORDS

multispectral image, crop identification, feature extraction, encoder-decoder,
lightweight, DeepLab v3+
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1 Introduction

Timely identification of large-scale crops is vital for agricultural

production, which can provide an important basis for yield

estimation, structure adjustment and optimization of agricultural

management (Becker-Reshef et al., 2010). The traditional

identification methods of farm crops are mainly based on

statistical statement, but the outdated method restricts

identification efficiency and increases labor costs (Tan et al., 2020).

Recently, a variety of automated detecting technologies have been

proposed in crop identification and achieved lots of successful

applications (Waldhoff et al., 2017; Longato et al., 2019; Xu et al.,

2019). Remote sensing, as a large-scale non-contact monitoring

technology, plays an extremely important role in modern

agriculture (Shi et al., 2019). Identification of farm crops in remote

sensing images in large-scale farmland can obtain the spatial location

information of farmland and the ground attachment. The related

information helps agricultural administrators to figure out the

distribution and planting structure of regional species from a

macro perspective, thereby formulate more accurate and efficient

agricultural policies.

Crop identification based on remote sensing has been a research

theme of considerable interest, which is of great value in the field of

precision agriculture. With the development of image processing

and artificial intelligence, the technologies of crop identification can

be summarized into three streams. In the first stream, the

traditional remote sensing feature extraction is mainly based on

spectral, spatial, and temporal features (Zhang et al., 2016; Qiong

et al., 2017; Sun et al., 2019b). Tian et al. (2021a) analyzed spectral

characteristics and vegetation indices at each growth stage of crops

and used reasonable thresholds to screen these parameters and

successfully identified winter wheat and garlic planting areas. The

result shows that varying vegetation indices could effectively

distinguish crops with different spectral characteristics. Li et al.,

(2015) used the Stepwise Discriminant Analysis (SDA) method for

feature selection from the Landsat MODIS Enhanced time series

data and screened out 10 optimal features for crop classification. In

the second stream, Machine learning methods are widely used in

the field of large-scale crop identification due to their heuristic

learning strategy and accelerated training mechanism (Jia et al.,

2019; Zhang et al., 2019; Tian et al., 2021b). Zheng et al. (2015)

applied Support Vector Machines (SVMs) to time-series Landsat

images of Arizona to test its ability to discriminate between multiple

crop types in a complex cropping system. Han et al. (2022)

extracted relevant features of corn lodging regions and proposed

the SMOTE-ENN-XGBoost model based on the Synthetic Minority

Oversampling Technique (SMOTE) and Edited Nearest Neighbor

(ENN) methods, which showed an F1 score of 0.930 and a recall rate

of 0.899 on the lodging detection test set. With the proposal of the

Convolutional Neural Network (CNN), deep learning leads the

third stream for crop identification using remote-sensing images

(Kuwata and Shibasaki, 2015; Wang et al., 2020; Yuan et al., 2020).

Yu et al. (2022) improved the U-Net network by introducing the

Involution operator and Dense block module and proposed a wheat

lodging evaluation method based on UAV multispectral images.

Kussul et al. (2017) proposed a multi-level Deep Learning (DL)
Frontiers in Plant Science 02
method using multi-temporal land cover and crop type

classification to identify crops in a heterogeneous environment,

achieving a target accuracy of 85% for major crops. The proposal of

attentional mechanisms has dramatically advanced the field of deep

learning. Naturally, this ingenious mechanism has also been widely

used for crop identification with great success (Jin et al., 2021).

Wang et al. (2022) proposed a novel architecture called Coupled

CNN and Transformer Network (CCTNet), which combines the

local details of CNN and the global context of the transformer to

achieve a 72.97% mIoU score on the Barley remote-sensing dataset.

Lu et al. (2022) proposed a deep neural network with Dual

Attention and Scale Fusion (DASFNet) to extract farmland from

GF-2 images of southern Xinjian. The result shows that the dual

attention mechanism module can correct the shape and boundary

of the fields effectively.

The above methods show excellent performances in their

respective datasets. However, these datasets are mainly derived

from areas where crops are grown on a large scale. In fact, the

vast majority of China’s regions are planted discretely, and the plots

under this type of planting are relatively tiny, making it difficult for

existing networks to achieve high-precision crop identification. In

addition, a high-precision network is often accompanied by a

considerable amount of parameter calculation, which is difficult

to be applied to low-end agricultural equipment. Therefore, a highly

accurate and lightweight neural network is urgently needed for

agricultural production.

In this paper, we proposed a lightweight attention-based

encoder-decoder framework for crop identification, and

summarize the contributions of this paper as follows:
• Designed a lightweight network structure with much

smaller parameters and floating-point of operations than

DeepLab v3+ and other classical networks.

• Got an excellent identification accuracy, which can reach

more than 98% accuracy in large-scale plots and more than

97% accuracy in small-scale plots.

• We also built two datasets corresponding to regular large-

scale plots and irregular small-scale plots to test the

performance of the Deep-agirNet in different environments.
2 Materials and methods

2.1 Study area

As the most important winter crop in China, especially in the

Yangtze River basin, winter wheat and canola have similar planting

cycles, generally sown in September to October and harvested in

April to May of the following year. Given that winter wheat and

winter canola are important components of the agricultural

economy, it is significant to know the distribution of these two

crops for agricultural production and policy making. In this paper,

two representative regions in the middle and lower reaches of the

Yangtze River in China are selected as study areas, and their

geographical locations are shown in Figure 1:
frontiersin.org
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The first rectangular study area T49RFQ is bounded by

longitudes 112°0' to 113°10' E and latitudes 30°40' to 31°40' N

which mainly belongs to Jingmen City, Hubei Province. Jingmen

City is planted on a large scale with regular and continuously

distributed plots, which makes it easy to plant and harvest. The

second rectangular study area, T50SNA, is bounded by longitudes

117°0' to 112°10' E and latitudes 31°30' to 32°30' N which mainly

belongs to Hefei, Anhui Province. Hefei is planted discretely, with

small and scattered plot sizes and low land use.
2.2 Remote sensing images processing

Sentinel 2 is a high-resolution multispectral imaging satellite

built by the European Space Corporation and consisted of the

“twin” satellites Sentinel 2A and Sentinel 2B. The remote sensing

images taken by the Sentinel satellites contain 13 bands with

different spatial resolutions (10m, 20m, 60m). In this study, all

bands except Band 1 (Coastal aerosol), Band 9 (Water vapor), and

Band 10 (SWIR-cirrus), which have the lowest spatial resolution,

were screened and excluded, and a bilinear interpolation algorithm

was applied to Band 5, 6, 7 (Red edge), Band 8b (Narrow NIR) and

Band 11, 12 (SWIR) are resampled to a spatial resolution of 10m,

and then these bands are fused to obtain a 10-channel remote

sensing image with 10m spatial resolution.

Since crops of different planting scales will have different Digital

Number (DN) distributions in remote sensing images, as shown in

Figure 2. To reduce the errors caused by DN, percentage linear

stretching is adopted in this study for each band of T50SNA:
Frontiers in Plant Science 03
result =
DN −minin
maxin −minin

� (maxout −minout) +minout (1)

here maxin andminin represent the maximum and minimum of

DN of the stretched image, thenmaxout andminout represent the set

maximum and minimum of DN, respectively. Specifically, the

maximum and minimum values of DN of T49RFQ are setas the

upper and lower limits of pixel values. Then, the other image is

linearly stretched to the set range so that the DN of the two images

is finally distributed in the same range to reduce the deviation.
2.3 A lightweight encoder-decoder
network based on DeepLab v3+

Since the first time used fully convolutional neural networks

(Long et al., 2015) for end-to-end segmentation of natural images,

semantic segmentation tasks for pixel-level classification have

achieved leap-forward development. The vast majority of state-of-

the-art (SOTA) segmentation networks, such as U-Net

(Ronneberger et al., 2015), PSPNet (Zhao et al., 2017), DeepLab

(Chen et al., 2017), and HRNetv2 (Sun et al., 2019a) are built based

on encoder-decoder architecture. As an excellent semantic

segmentation model with the encoder-decoder structure, DeepLab

v3+ (Chen et al., 2018) is widely used in the field of semantic

segmentation of remote sensing images. The part of the decoder

includes Atrous Spatial Pyramid Pooling (ASPP) and an improved

Xception module, where the ASPP module can control the size of

the perceptual field by adjusting the expansion coefficient to capture
A B

C

FIGURE 1

(A) Locations of the study areas in China (red), (B) Sentinel-2 image of the first study region, (C) Sentinel-2 image of the second study region.The red
hollow rectangle shows the crop cultivation in the two regions.
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the features at different scales. Then, two quadruple upsampling are

used in the decoder part, where the first upsampling concatenates

the low-dimensional features from the decoder and encoder to

make features fusing, and the second upsampling restores the

concatenated result to the same scale of inputs and classifies each

pixel to obtain the segmentation result finally.

Despite the excellent performance of DeepLab v3+, it is hard to

accept for agricultural production due to the large parameters.

Considering a network serving agricultural production must

balance accuracy and parameters, we made a lightweight

improvement to DeepLab v3+ and named the improved network

as Deep-agriNet.

As shown in Figure 3, the improvement of the network is

mainly reflected in the following parts: In the encoder part, we

chose ShuffleNet v2 (Ma et al., 2018), an advanced lightweight

network architecture, as the feature extractor of Deep-agriNet. The

design of ShuffleNet v2 is based on four network design criteria:
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• Keeping the numbers of input and output channels equal

minimizes memory access cost.

• A large group number used in group convolution increases

computational cost.

• Complex network structure (abuse of branches and basic

units) reduces the degree of network parallelism.

• The costs of element-wise operations cannot be neglected

either.
The operation of channel split was used in the basic shuffle unit

of ShuffleNet v2. Then, it divided input channels evenly into two

branches to replace the group convolution. As shown in Figure 4A,

one branch of the basic shuffle unit does nothing to reduce network

computation, and the other branch maintains the same number of

channels in each convolution. The shuffle unit for spatial down

sampling, as shown in Figure 4B, removes the channel split and

doubles the number of output channels compared to the input
FIGURE 3

The framework of the Deep-agriNet.
A B

FIGURE 2

The Digital Number distribution plot of a multispectral of (A) the first study region of T49RFQ, (B) the second study region of T50SNA. Solid lines
represent means and shaded areas represent one standard deviation from the mean.
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channels. In addition, the outputs of both shuffle unit are no longer

an add operation between elements but a concatenation, which can

fuse the extracted features or output information instead of simple

superposition. Finally, the results of concatenation are shuffled at

the end of the basic unit by the channel shuffle operation to increase

the information exchange between channels, thus improving the

network performance.

In the decoder part, a Convolutional Block Attention Module

(CBAM) (Woo et al., 2018) was added to the DeepLab v3+ decoding

module. As a “plug-and-play” lightweight convolutional attention

module, CBAM is composed of a Channel Attention Module

(CAM) and a Spatial Attention Module (SAM) in series, as

shown in the Figure 5.

In the channel attention module, both the operation of average-

pooling and max-pooling are used simultaneously to generate

average-pooled features and max-pooled features. Then, the two
Frontiers in Plant Science 05
kinds of features are forwarded to a Multiple-layer Perceptron

(MLP) to share feature. The output features of MLP are merged

by element-wise summation and then activated by a sigmoid

function to generate the channel attention feature maps Mc(F). In

short, the detailed operation to obtain channel attention can be

computed as:

Mc(F) = s (MLP(AvgPool(F)) +MLP(MaxPool(F))) (2)

In the spatial attention module, the output features of CAM are

taken as the input feature of SAM. Firstly, twice operations of

pooling based on channels are used to aggregate channel

information and generate average-pooled features and max-

pooled features. Then, these features are concatenated and

convolved by a standard convolution layer and produce the

spatial attention feature map Ms(F). In short, the detailed

operation to obtain spatial attention can be computed as:
A

CB

FIGURE 4

The structure of (A) Convolutional Block Attention Module, (B) Channel Attention Module, (C) Spatial Attention Module.
A B

FIGURE 5

The structure of (A) basic unit, (B) unit for spatial down sampling.
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Mc(F) = s (f 7�7½AvgPool(F);MaxPool(F)�) (3)

Where s is an activation function of sigmoid, F denotes the

input feature, and f7x7 denotes a convolution operation with the

filter size of 7 x 7.

In addition, some simple but effective adjustments are applied to

the network improvement. Specifically: (a) The channels of input layer

of the encoder were modified to ten layers because of the multispectral

remote-sensing images containing more feature information than the

traditional 3-channel RGB images (Zhao et al., 2022). (b) It is worth

noting that the continuous large-scale upsampling is not conducive to

obtain a satisfactory segmentation result, so we replaced the second 4-

fold upsampling in thedecoder section with a 2-fold upsampling and a

transpose convolution (Luo et al., 2021).

To extract richer multi-level features from the encoder, Deep-

agriNet defined the low-level, mid-level and deep-level features in

different scales to represent the extracted features by the Conv1,

Maxpooling and Stage3 in the ShuffleNet v2, respectively. The

specific process of this network could be described as below. Firstly,

our network took 10-bands remote sensing images of 512 x 512 pixels

as input and then processed by a 3 x 3 convolution layer with a stride of

2x 2 in the encoder module to obtain the low-level features of 256 x 256

pixels. These low-level features are then passed through a max-pooling

layer to obtain mid-level features of 128 x 128 pixels. With the forward

transmission of data, these intermediate features are down-sampled by

multiple Shuffle blocks to obtain the deep-level features of 32 x 32 pixels.

To obtain multi-scale fusion features, the deep-level features flow to an

ASPP module of the decoder, where the input features are processed in

parallel and concatenated by dilated convolutions with different dilation

rates to capture the multi-scale information. Subsequently, the ASPP

output information is passed through a single quadrupling up-sampling

layer and a CBAM module in turn, resulting in 128times128 pixels

feature with channel and spatial attention. These features are

concatenated with the mid-level features in the encoder to reduce the

loss of detail caused by multiple convolutions. After a 2-fold up-

sampling, the concatenated features arerestored to 256 x 256 pixels

and then concatenated with the low-level features in the encoder to fuse

different level features from low to deep. Finally, the fused results are

processed by transposed convolution to obtain the predicted image of

pixel-level classification with 512 x 512 pixels.
2.4 Data acquisition

In this study, the remote sensing images of the T49RFQ area

were cropped according to the size of 512 x 512 pixels, and 380

small-size patches were obtained in total. Since some patches did

not contain crops or the cropped area is extremely tiny, we filtered

and removed the data where the crop coverage was less than 30% of

the total area. Finally, 100 patches were retained as dataset DS1. The

same treatment was used on the T50SNA region to build dataset

DS2, aiming to verify whether large-scale cropping affects the

identification performance of the network. Then, we used the

ArcMap program to annotate each pixel of the patches. When a

pixel belongs to winter canola, its value is assigned as 1; when a pixel

belongs to winter wheat, its value is assigned as 2, and in the rest
Frontiers in Plant Science 06
cases, its value is assigned as 0. Finally, we obtained the same

number of single-channel images corresponding to the patches on

the dataset and used it as the annotation of the dataset. Prior to

training, the dataset was split into training set and validation set

randomly with a 7:3 ratio, which could reduce the imbalance of data

and improve the network’s generalization ability.
2.5 Model training

During the training process, Back Propagation (BP) algorithm

(LeCun et al., 2015) and Adaptive Moment Estimation (Adam)

(Kingma and Ba, 2014) algorithm were adopted to speed up and

optimize the convergence rate of Deep-agriNet. Since Deep-agriNet

is a multi-class crop identification network, the multi-class cross-

entropy loss function was used to calculate the loss between the

predicted result and the true value of each epoch:

Loss(y, ŷ ) = −o
N

i=1
yi log  byi (4)

where yi is the true value of a category whose value is 0 or 1, ŷi is

the predicted probability of the category whose value is distributed

between 0 and 1,and N represents the category contained by the

sample. Usually, the Learning Rate decays gradually during

training, so we adopted the Polynomial Learning Rate Policy

(Mishra and Sarawadekar, 2019) to dynamically adjust the

learning rate:

lr = base _ lr � (1 −
epoch

max _ epoch
)power (5)

where lr is the dynamic learning rate, base_lr is the baseline

learning rate, epoch is the current number of iterations, max_epoch

is the maximum number of iterations, and power is the power of

the polynomial.

To prevent overfitting during training, we employed the

operations of rotation, mirroring, and adding noise to augment

the dataset to improve the generalization ability and robustness of

the model. Meanwhile, the same operations were applied to the

annotation as well.
2.6 Evaluation metrics

To evaluate the performance of Deep-agriNet, overall accuracy

(OA), mean intersection over union (mIoU), and recall as evaluation

metrics were used in this experiment. mIoU is one of the most basic

metrics to evaluate the performance of semantic segmentation, and it

represents the average of the ratio of the intersection and union of the

predicted and true values for all classes:

mIoU =
1
No

N

i=1

Pi ∩ Gi

Pi ∪ Gi
(6)

where N is all categories of the sample including background. P

and G are predicted and true pixels of a sample, respectively. OA

represents the proportion of correctly classified pixels to all sample
frontiersin.org
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pixels. Recall represents the proportion of correctly classified pixels

to all positive sample pixels:

OA =
TP + TN

TP + TN + FP + FN
(7)

recall =
TP

TP + FN
(8)

where TP is True Positive, indicating correct classification of

pixels and positive predicted outcomes, FP is False Positive,

meaning that the negative pixel is divided into positive samples,

TN is True Negative, indicating the real background area is

identified as the background area, and FN is False Negative,

which represents the positive pixel is divided into negative samples.

Additionally, we introduced some metrics to evaluate the

lightness of the network. The parameter is a commonly used

evaluation metric for lightness of a network, which can measure

the complexity of a model and the consumption of memory in

computation. Theformula of parameter is shown as follow:

parameter = K � K � Cin � Cout (9)

where the K x K means the size of kernel, and the Cin and Cout

represents the number of input channels and output channels,

respectively. In addition, the FLOPs which stands for floating-point

of operations is a measure of network complexity. The FLOPs can

be computed as:

FLOPs = K � K � Cin �Hout �Wout � Cout (10)

whereHout andWout represents the height and width of the output

feature map. In this paper, we used the giga floating-point operations

(GFLOPs, 109 x FLOPs) to measure the complexity of network.
2.7 Hyperparameters and environment
setting

To obtain more effective hyperparameters, we set the base

learning rate to 0.0005, 0.001, 0.005, and 0.01. and batch size to 4,

8, 16, and 32, respectively. After several training sessions, the best

results were obtained when the base learning rate was 0.001 and the

batch size was 4. This experiment was trained on the Linux

platform, and the deep learning framework used was Google’s

open-source TensorFlow, and the GPU used for training was

24GB Nvidia GeForce GTX3090Ti.
3 Results

3.1 The comparison of lightweight
between Deep-agriNet and other methods

To verify the effectiveness and superiority of the Deep-agriNet

in terms of lightness, we calculated the parameter, GFLOPs and

Inference Time(IT) for Deep-agriNet and other methods, and the

results are shown in Table 1. From this table, it can be seen that

HRNetv2 has the most parameters at 65.94M, while U-Net has the
Frontiers in Plant Science 07
most GFLOPs at 450.64. In comparison, Deep-agriNet has

significant advantages in evaluation metrics, parameters and

GFLOPs, which are only 3.89M and 47.5. Moreover, the IT of

Deep-agriNet is roughly comparable to that of U-Net (2.4 vs 1.8s).

In addition, we adopted a scatter plot better visualize the trade-

off between accuracy and complexity and clarify the superiority of

the proposed model Deep-agriNet. In the scatter plot, the x-axis

indicates OA and the y-axis indicates GFLOPs. As shown in

Figure 6, Deep-agriNet expresses the higher accuracy and lower

GFLOPs than the other benchmark methods which means more

lightweight and accurate of the proposed network.
3.2 The performance of Deep-agriNet for
crop identification

The loss function curve can reflect the robustness and accuracy

of the network. The smoother the curve is, the better the robustness

of the model, and the smaller the loss value, the higher the accuracy

of the model. The annotated DS1 was fed into Deep-agriNet and

other methods for training. After 50 epochs, the loss convergence

curves are shown in Figure 7. It clearly demonstrates that the cross-

entropy loss tends to decrease with increasing epochs. According to

the results in Figure 7, it can be seen that the Deep-agriNet based on
TABLE 1 The lightweight metrics for Deep-agriNet and other methods.

Method Backbone Parameters(M) GFLOPs IT(s)

U-Net VGG-16 24.9 450.64 1.8

PSPNet ResNet-50 46.77 116.5 2.7

DeepLab v3+ Xception 54.2 103.16 3.1

HRNetv2 HRNetv2-W48 65.94 169.94 9.4

Deep-agriNet ShuffleNetv2 3.89 47.5 2.4
frontier
The bold values indicate the highest scores in the experiments.
FIGURE 6

The scatter plot of accuracy and complexity of the networks on
DS1.
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DeepLab v3+ has more stable performance and higher accuracy in

the training process.

To further analyze the performance of Deep-agriNet, this

experiment compared these methods in terms of more evaluation

metrics on accuracy, and the specific experimental results are shown

in Table 2. From this table, it can be seen that Deep-

agriNetperforms best in all aspects, where mIoU, OA, and recall

is 0.972, 0.981, and 0.980. This results are significant improvement

of 7.0%, 5.0% and 5.7% over the original DeepLab v3+, and slightly

better than the next best performer U-Net by 0.8%, 0.6%,and 0.6%.

The Figure 8 shows the identification results of Deep-agriNet

and other methods for winter wheat and winter canola on DS1,

where the yellow markers represent the winter canola planting area,

the green markers represent the winter wheat planting area, and the

gray markers represent the background. To show the prediction

results of different methods more clearly, the marked patch1, patch2

and patch3 in the figure are enlarged to observe the details of the

images. Comparing the original images and theprediction of multiple

methods, the crop planting areas identified by U-Net, PSPNet and

Deep-agriNet are highly consistent with the original images. Both the

paths in the fields and the edges of the plots can be predicted with

clarity. In contrast, the identification results of DeepLab v3+ and

HRNetv2 are much worse. In patch1, the majority of the roads are

not identified, and in patch2 and patch3, almost all the plots have

different degrees of missing boundaries.

To further demonstrate the predictive capability of Deep-

agriNet on the area with irregular small-scale plots, we trained
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and validated it on DS2. As shown in Table 3, Deep-agriNet still

hold the best results in the respect of mIoU, OA, and recall with

0.961, 0.974, and 0.973, respectively. Figure 9 shows the prediction

results of different methods for winter wheat and winter canola on

DS2. From the local magnification results of patch1, patch2 and

patch3, Deep-agriNet still shows excellent performance on

background identification and can predict the roads in the plots

clearly. However, compared with the results on DS1, it can be

obviously found that the model is less effective in irregular plots

prediction and there is a slight phenomenon of boundaries missing.

Comparing the identification results in Figures 8, 9, Deep-agriNet

performs better for crop identification with different planting scales.
3.3 Ablation study

To validate the role of CBAM in this network, The Deep-

agriNet without CBAM was used as the baseline, and the two

networks were trained with the same hyperparameters such as

baseline learning rate and training epochs. As shown in Table 4, the

network with CBAM is slightly improved in all aspects, including

0.8%, 0.6% and 0.6% for mIoU, OA and recall respectively on DS1.

In addition, the parameters of the network only increased by 0.2M

after adding CBAM. Figure 10 shows the identification results of

winter wheat and winter canola on DS1 before and after adding

CBAM. As shown in the figure, CBAM was able to focus attention

on the areas where winter wheat and winter canola were mixed and

clearly identified plots of several pixel widths. In contrast, the

network without CBAM was only able to identify fuzzy outlines

but was unable to identify cross-planted plots.
4 Discussion

4.1 Effects comparison between DeepLab
v3+ and improved network

In this study, DeepLab v3+ was used as the base crop

identification network, and a series of improvements were made

on its basis. Finally, Deep-agriNet, the improved network, was

applied to spring crop identification. Firstly, the backbone of

DeepLab v3+, Xception, was replaced with ShuffleNet v2, a more

advanced feature extractor. Based on this improvement, the

identification accuracy was significantly improved, with mIoU,

OA and recall improving by 6.3%, 4.5% and 5.1% on DS1.

Meanwhile, the number of parameters and GFLOPs were also

greatly optimized, much smaller than DeepLab v3+ and other

methods. These performance improvements are mainly attributed

to the following two factors: (a) the channel split method proposed

by ShuffleNet v2 makes the input channels to be divided into two,

with one part being passed down directly and the other part

participating in the convolution operation, and finally the two

parts are reassembled to reuse features. (b) ShuffleNet v2

transforms the elementwise add operation in depthwise

convolution into a concatenation operation and replaces the

grouped convolution with the ordinary convolution to greatly
TABLE 2 Comparison of the identification results of different methods
on DS1.

Method mIoU OA Recall

U-Net 0.964 0.975 0.974

PSPNet 0.962 0.974 0.973

DeepLab v3+ 0.902 0.931 0.923

HRNetv2 0.930 0.951 0.949

Deep-agriNet 0.972 0.981 0.980
The bold values indicate the highest scores in the experiments.
FIGURE 7

The convergence curves of Deep-agriNet and other methods.
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TABLE 3 Comparison of the identification results of different methods
on DS2.

Method mIoU OA Recall

U-Net 0.956 0.967 0.963

PSPNet 0.954 0.965 0.965

DeepLab v3+ 0.907 0.935 0.929

HRNetv2 0.921 0.945 0.943

Deep-agriNet 0.961 0.974 0.973
F
rontiers in Plant Science
The bold values indicate the highest scores in the experiments.
09
TABLE 4 Comparison of the identification results of Deep-agriNet
before and after adding CBAM.

Method mIoU OA Recall Parameters

Deep-agriNet without CBAM 0.964 0.975 0.974 3.87

Deep-agriNet 0.972 0.981 0.980 3.89
A B C D E F

FIGURE 8

The original images and clipped regions of the experimental area on DS1 and the prediction results of different methods. (A) original image, (B)
prediction result of U-Net, (C) prediction result of PSPNet, (D) prediction result of DeepLab v3+, (E) prediction result of HRNetv2, (F) prediction
result of Deep-agriNet.
A B C D E F

FIGURE 9

The original images and clipped regions of the experimental area on DS2 and the prediction results of different methods. (A) original image, (B)
prediction result of U-Net, (C) prediction result of PSPNet, (D) prediction result of DeepLab v3+, (E) prediction result of HRNetv2, (F) prediction
result of Deep-agriNet.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1124939
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu et al. 10.3389/fpls.2023.1124939
reduce the amount of computation. Then, A CBAM module was

added between the encoder module and the decoder module in this

study. Based on this improvement, the performance of mIoU, OA

and recall has been improved slightly at the cost of a small

computational cost. Specifically, on DS1, mIoU, OA, and recall

are improved by 0.7%, 0.5%, and 0.6%, respectively, and the number

of parameters hardly increased. As shown in Figure 10, although the

improvement of evaluation metrics is quite small, the identification

performance is improved considerably, and the phenomenon of

missing edges and misidentified mixed-species regions is

significantly improved compared with that before the improvement.
4.2 Result analysis of different areas

To investigate whether large-scale planting will affect the network

performance, two regions, T49RFQ and T50SNA, were selected for

this experiment, and Deep-agriNet was used to train DS1 and DS2

corresponding to the two regions. As shown in the Tables 2, 3, Deep-

agriNet has a better identification effect on the T49RFQ region of

large-scale planting. Compared with the training results of DS2, the

mIoU, OA and recall of DS1 increased by 0.9%, 0.7% and 0.7%,

respectively. The author believes that the attention mechanism can

capture the context dependence, and the data in DS1 has stronger

spatial continuity. Even after multiple feature extraction, there is still

a strong context dependence, which is beneficial to the decoder to

infer the category of surrounding pixels through this dependence, and

therefore the identification effect is improved.
5 Conclusions

In this paper, we proposed an improved lightweight network

based on DeepLab v3+ and apply the network to spring crop

identification. An advanced feature extractor, ShuffleNet v2, was

used in this network to replace the backbone of DeepLab v3+. In
Frontiers in Plant Science 10
addition, a CBAM combining channel and spatial attention

mechanisms was added at the end of the encoder. In the decoder

part of the original network, a 4-fold upsampling was modified to

two adjacent 2-fold upsampling. To verify the performance of

Deep-agriNet, two datasets with different planting scales were

constructed for experiments. The experimental results show that

the Deep-agriNet exhibits better performance on both datasets, and

the parameters of the Deep-agriNet are only one-fourteenth of the

original network. The Deep-agriNet can be applied not only for

spring crop identification but also extended to other agricultural

projects, such as crop yield prediction or crop disaster detection.

However, to achieve this goal, further research on related work is

needed to improve the algorithm so that the quantification of crop

acreage can be achieved. In future work, we will try to use more

advanced networks and larger agricultural datasets to meet more

kinds of crop precision identification needs, and strive toserve our

research results more effectively in the agricultural field.
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