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Short-term transcriptomic
analysis at organ scale reveals
candidate genes involved in low
N responses in NUE-contrasting
tomato genotypes
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and Maria Rosa Abenavoli 1
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Background: Understanding the complex regulatory network underlying plant

nitrogen (N) responses associated with high Nitrogen Use Efficiency (NUE) is one

of the main challenges for sustainable cropping systems. Nitrate (NO3
-), acting as

both an N source and a signal molecule, provokes very fast transcriptome

reprogramming, allowing plants to adapt to its availability. These changes are

genotype- and tissue-specific; thus, the comparison between contrasting

genotypes is crucial to uncovering high NUE mechanisms.

Methods: Here, we compared, for the first time, the spatio-temporal

transcriptome changes in both root and shoot of two NUE contrasting tomato

genotypes, Regina Ostuni (high-NUE) and UC82 (low-NUE), in response to

short-term (within 24 h) low (LN) and high (HN) NO3
- resupply.

Results: Using time-series transcriptome data (0, 8, and 24 h), we identified 395

and 482 N-responsive genes differentially expressed (DEGs) between RO and

UC82 in shoot and root, respectively. Protein kinase signaling plant hormone

signal transduction, and phenylpropanoid biosynthesis were the main enriched

metabolic pathways in shoot and root, respectively, and were upregulated in RO

compared to UC82. Interestingly, several N transporters belonging to NRT and

NPF families, such as NRT2.3, NRT2.4, NPF1.2, and NPF8.3, were found

differentially expressed between RO and UC82 genotypes, which might explain

the contrasting NUE performances. Transcription factors (TFs) belonging to

several families, such as ERF, LOB, GLK, NFYB, ARF, Zinc-finger, and MYB, were

differentially expressed between genotypes in response to LN. A complementary

Weighted Gene Co-expression Network Analysis (WGCNA) allowed the

identification of LN-responsive co-expression modules in RO shoot and root.

The regulatory network analysis revealed candidate genes that might have key

functions in short-term LN regulation. In particular, an asparagine

synthetase (ASNS), a CBL-interacting serine/threonine-protein kinase 1 (CIPK1),
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a cytokinin riboside 5’-monophosphate phosphoribohydrolase (LOG8), a

glycosyltransferase (UGT73C4), and an ERF2 were identified in the shoot, while

an LRR receptor-like serine/threonine-protein kinase (FEI1) and two TFs NF-YB5

and LOB37 were identified in the root.

Discussion: Our results revealed potential candidate genes that independently

and/or concurrently may regulate short-term low-N response, suggesting a key

role played by cytokinin and ROS balancing in early LN regulation mechanisms

adopted by the N-use efficient genotype RO.
KEYWORDS

Solanum lycopersicum L., nitrogen use efficiency, abiotic stress, RNAseq, weighted gene
co-expression network analysis (WGCNA)
Introduction

Nitrogen (N) is an essential nutrient whose availability limits

plant growth and development, causing crop yield and quality losses

(Wang et al., 2018; Fredes et al., 2019). The extensive use of N

fertilizers has been a strategy to boost agricultural production and

meet global food demand (Guo et al., 2010). However, less than 50%

of applied N is taken up by crops; the remaining is lost into the

environment, causing pollution and, indirectly, damage to human

health (Good and Beatty, 2011). Therefore, improving plant N use

efficiency (NUE) is an effective and promising approach to reducing

fertilizer use, maintaining crop yield, and alleviating detrimental

impacts on the environment (Hu et al., 2018). Many efforts have

been made to elucidate the complex regulatory networks underlying

plant N responses as well as to identify N-responsive genes and

transcription factors (TFs) associated with NUE (Han et al., 2016;

Mauceri et al., 2021; Nazish et al., 2022). However, it is a very

complex trait controlled by many factors, making the development

of varieties with low N requirements difficult (Yadav et al., 2017).

Although nitrate (NO3
-) and ammonium (NH4

+) are the major

inorganic N forms in aerobic agricultural soils (Wang et al., 2018),

NO3
- is the most used by plants (Tischner, 2000; Crawford and

Forde, 2002). Besides its role as a nutrient, NO3
- is a local and

systemic signal molecule that coordinates many physiological

processes essential for plant growth and development as well as

its uptake (Alvarez et al., 2012; Ruffel et al., 2014). It also regulates

the expression of genes involved in N assimilation and C

metabolism (Scheible et al., 2004; Vidal and Gutiérrez, 2008), the

root and shoot architecture, and delays flowering (Remans et al.,

2006; Vidal et al., 2014; Yuan et al., 2016).

To orchestrate all these adaptive responses, NO3
- provokes

plant transcriptome reprogramming (Canales et al., 2014; Medici

and Krouk, 2014; Vidal et al., 2015; Mauceri et al., 2021), by which

the transcript accumulation changes are cell- and tissue-specific,

taking place very fast after NO3
- exposure (Krouk et al., 2010;

Walker et al., 2017; Varala et al., 2018). Several transcription factors

(TFs) belonging to different families, such as B-box containing
02
proteins (BBXs), myeloblastosis (MYBs), ethylene response factors

(ERFs), basic leucine zipper (bZIPs), NIN-like proteins (NLPs),

lateral boundary domain-containing proteins (LBDs), BTB and

TAZ domain proteins (BTs), have been recently identified as key

regulator genes in the primary nitrate response (PNR) (Liu et al.,

2017; Gaudinier et al., 2018; Wang et al., 2018; Brooks et al., 2019).

Moreover, NO3
- induces dynamic changes in intracellular calcium

signaling to generate rapid control of nitrate uptake and

transcriptional PNR (Hu et al., 2009; Liu et al., 2017). Finally, it

elicits post-translational modifications such as chromatin

modification and protein phosphorylation and ubiquitination (Liu

et al., 2017; Poza-Carrión and Paz-Ares, 2019), which can lead to

rapid and reversible modifications that directly regulate the

localization, stability, interaction, function, and enzymatic activity

of target proteins (Yip Delormel and Boudsocq, 2019).

Recently, transcriptome analyses described different responses

to limited N supply in crops such as wheat, rice, potato, and

eggplant (Subudhi et al., 2020; Zhang et al., 2020; Zhang et al.,

2021; Mauceri et al., 2021; Meng et al., 2021). In tomato, an array

analysis of the root revealed N-induced genes that play a role in N

nutrition, including transport and assimilation genes related to C

and N metabolism as well as water channels, phosphate, and

potassium transporters (Wang et al., 2001). More recently, an

integrative transcriptomic and metabolomic approach was able to

identify pathways and key regulatory genes in response to low N,

again in tomato (Renau-Morata et al., 2021). Currently, a

comparative transcriptome analysis of NUE contrasting genotypes

in response to early LN resupply is not yet available.

Tomato (Solanum lycopersicum L.), as one of the most N-

demanding crops to achieve optimal yields (up to 250–300 kg/ha)

(Zotarelli et al., 2009), represents a reasonable target to develop

sustainable tomato cropping systems. In this respect, the selection of

high NUE tomatoes and the understanding of their responses to N-

limited conditions are relevant. Recently, NUE-contrasting tomato

genotypes have been identified among some long-storage ecotypes

(Abenavoli et al., 2016; Lupini et al., 2017). Notably, the differences in

NUE have been related to the ability to regulate long-distance N
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transport, assimilation, remobilization, and storage genes (Aci

et al., 2021).

Thepresentwork aims tohighlight the transcriptomemodifications

as well as the main metabolic pathways involved in the short-term LN-

resupply responses in both root and shoot of high (Regina Ostuni, RO)

and low (UC82) NUE tomato genotypes. This study allowed us to

identify putative candidate genes and transcription factors regulating

early LN-response useful for NUE improvement in tomatoes.
Material and methods

Plant material and growth conditions

Seeds of two NUE contrasting tomato genotypes, namely Regina

Ostuni (RO) (high NUE) from Apulia (Italy) and UC82 (lowNUE), a

North American old cultivar from the University of California (Davis,

USA), were sterilized with 10% (v/v) NaClO for 15 min, rinsed twice

(Figure 1). Then, they are placed in magenta boxes containing 0.8%

agarose gel (diluted in 0.5 mM CaSO4) for 10 days. Uniform selected

seedlings were transferred into an aerated hydroponic system

containing a complete Hoagland solution and grown for 10 days in

a growth-controlled chamber (25°C, 70% RH, and 16 h photoperiod

with a light intensity of 350 mmol m−2s−1) (Aci et al., 2021). The

nutrient solution was renewed every 2 days, and the pH was

maintained at 5.8 with 1M KOH. Since the internal NO3
-

concentration influences the N regulatory mechanisms (Forde and

Clarkson, 1999), a preliminary N-depletion experiment was carried

out to confirm the time required for N starvation in both RO and
Frontiers in Plant Science 03
UC82 as reported in Aci et al. (2021). The results confirmed that the

best N-recovery starting point was set at 5 days from N-starvation in

both tissues of each genotype. Therefore, RO and UC82 plants (20-d

old), grown as reported above, were starved for 5 days and then

resupplied with low (LN; 0.5 mM) and high (HN; 10 mM) NO3
-

concentrations as previously established for tomato (Abenavoli et al.,

2016; Figure 1). Both shoot and root of each genotype were harvested

before N resupply (T0), at 8 h (T1), and 24 h (T2) after HN and LN

resupply (Figure S1). Three biological replicates (a pool of three

plants) were adopted for transcriptome analysis.
RNA-seq analysis and data processing

Total RNA was extracted and purified using the RNeasy Plant

Mini Kit (Qiagen, Milano, Italy), following the manufacturer’s

protocol. RNA degradation and contamination were monitored on

a 1% denaturing RNA agarose gel, and samples were quantified using

a NanoDrop 2000 (ThermoFisher Scientific, Wilmington, Delaware,

USA). cDNA libraries were constructed using 500 ng of total RNA for

each genotype (RO and UC82), treatment (HN and LN), tissue

(shoot and root), and time sampling (T0, T1, and T2) following the

Transeq approach with single-end 60-bp reads as described by

Tzfadia et al. (2018). The 60 libraries were sequenced on a six-lane

HiSeq 2500 system (Illumina) using the SR60 protocol. The raw data

were processed to obtain high-quality clean reads using BBDuk

(http://jgi.doe.gov/data-and-tools/bb-tools/) to remove Illumina

adapters and for quality trimming (k = 23, mink = 11, hdist = 1,

trimq = 10, min length = 40). Clean reads were mapped to the S.
FIGURE 1

Tomato genotypes UC82 and Regina Ostuni (RO) grown in hydroponic systems at low N (LN) conditions.
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lycopersicum (tomato) genome (SL3.0) from Ensemble Plants (http://

plants.ensembl.org/Solanum_lycopersicum/Info/Index) using STAR

v2.7.10 (Dobin et al., 2013). Principal component analysis (PCA) was

carried out using PCAGO, an interactive web service useful for

analyzing RNA-seq data to obtain a first characterization of

biological sample clustering (Gerst and Hölzer, 2018).
Differential gene expression analysis

Differentially Expressed Genes (DEGs) between treatments were

detected using DESeq2 (Robinson and Oshlack, 2010; Love et al.,

2014). Read counts were normalized using the size factor

normalization method, and a Likelihood Ratio Test (LRT) was used

to test multiple factors and their interactions (genotype, N-treatment,

and sampling time). An adjusted p-value (Padj) of 0.05 was used as a

threshold (Benjamini and Hochberg, 1995). Principal Component

Analysis (PCA) and sample-to-sample distances were also evaluated

usingDESeq2. DEGs obtained from at least one comparison were used

for the clustering phase through time-course analysis and co-

expression network analysis. The tomato NPF gene supervised

clustering was performed by the DEGreport R package (Pantano,

2019) using DESeq2 Variance Stabilizing Transformed (VST) data.
Time-course analysis

To examine and visualize the DEG expression profiles and to

identify N-responsive genes over time (0 h, 8 h, and 24 h) after N-

resupply, the short time-series expression miner (STEM) software

(Ernst and Bar-Joseph, 2006) was used. Each gene was assigned to

the filtering criteria of the model profiles, and the correlation

coefficient was determined. A standard hypothesis test using the

true order of time-points, the number of genes assigned to the

model profile, and the expected number of assigned genes was

performed to detect significant enriched profiles for both genotypes

(P-value ≤0.05, Bonferroni correction).
Weighted gene co-expression
network analysis

A Weighted Gene Co-expression Network Analysis (WGCNA)

was performed on the DESeq2 variance stabilizing transformed

(VST) expression data of the previously identified DEGs using the

WGCNA package v1.51 (Langfelder and Horvath, 2008).

The analysis was performed on both tissues, distinctly. To select

the soft threshold for both root and shoot analyses, the scale-free

topology criterion was adopted (8 and 12, respectively). The

adjacency matrix obtained from the correlation matrix of gene

expression to construct the Topological Overlap Matrix (TOM) was

used (Yip and Horvath, 2007). After hierarchical clustering, the

highly correlated genes were assigned to the same module (Ravasz

et al., 2002) through the Dynamic Tree Cut algorithm (minimum

module size = 30). The similar modules were then merged into a

single module using the correlation coefficients between their
Frontiers in Plant Science 04
Module Eigengenes (ME) (the first principal component of the

expression matrix) (threshold = 0.25). The module membership

(MM) as well as the gene significance (GS) were calculated

(Langfelder and Horvath, 2008). Finally, a network visualization

and the selection of highly connected genes (hub-genes) were

carried out by Cytoscape v3.8.2 (Shannon, 2003).
RNA-seq data validation by RT-qPCR

To validate the transcriptomic results, RNA samples previously

utilized for sequencing were used for quantitative real-time PCR

(RT-qPCR) experiments on 10 key genes identified in both shoot

and root. Total RNA was extracted and purified using a TRIzol™

reagent (Qiagen, Milano, Italy) according to the instructions

provided by the manufacturer. The Maxima First Stand cDNA

Synthesis Kit (Thermo Fisher Scientific Baltics UBA) was used to

synthesize cDNA samples by RNA reverse transcription according

to the manufacturer’s instructions. The primer specificity of

candidate genes was verified by melting curves using the mixed

cDNA as a template and 2% agarose gel electrophoresis analysis.

The PowerUp SYBR Green master mix (Applied Biosystems by

Thermo Fisher Scientific) and the Applied Biosystems

QuantStudio™ 5 Real-Time PCR System were employed to

perform qPCR with gene-specific primers designed using Primer3

(v0.4.0) and listed in Table S1. Three biological and three technical

replicates were adopted, and the means of the relative gene

expression (Ct) were normalized to the reference genes, Actin1

and Ef1-a (Løvdal and Lillo, 2009), and it was calculated for each

gene by using the 2−DDCt method as described by Livak and

Schmittgen (2001).
Results

In the present study, RO and UC82 (high and low NUE tomato

genotypes, respectively) transcriptomic profiles were analyzed. The

experimental design included three time samplings (T0, before N

resupply; T1 and T2, after 8 and 24 h N resupply, respectively) of

both shoot and root, collected from plants resupplied with low (LN;

0.5 mM) and high (HN; 10 mM) NO3
-.
RNA-seq analysis

For this purpose, 60 cDNA libraries were constructed,

generating 268 million clean reads, an expected number in

agreement with the Transeq approach (Tzfadia et al., 2018),

which were mapped to the tomato reference genome (SL3.0),

yielding an overall mapping percentage of 72.14% (Table S2).

After assembly, 35,845 transcripts were finally identified.

A principal component analysis (PCA) on the whole dataset

showed high distinctiveness between time sampling in the shoot

and in the root, with a clear distinction between shoot and root

samples (Figure S1). Thus, the following analyses were distinctly

performed on each tissue.
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In all the possible combinations of G, N, and T factors, we

identified 7,667 and 6,015 unique genes differentially expressed in

shoot and root, respectively (Padj<0.05) (Table S3; Figure S3).
Differentially expressed gene profiles trend
during the time-course

DEG expression profiles across time were examined using

STEM software to highlight clustered DEGs in shoot and root.

The expression patterns of all the DEGs allowed us to identify 14

and 13 significant (P-value<0.05) different gene clusters in shoot

and root, respectively, distinguished for each N condition and

genotype (Figure 2). In the shoot, after HN resupply, four clusters

were significantly enriched for both RO and UC82. A similar trend

between genotypes (upregulation during the time) for the shared

clusters (#11, 12, and 15) was highlighted, while cluster #13 was
Frontiers in Plant Science 05
upregulated only in RO and #14 exhibited an initial increase

followed by a decline for UC82. After LN resupply, three

significant enriched clusters for both genotypes were detected,

including an upregulated (#8) and two biphasic (with initial

decrease followed by upregulation; #5, 6) clusters for UC82, and

three biphasic ones with a contrasting trend (#5 vs. #10, 14) for

RO (Figure 2A).

In the root, after HN resupply, five and three specific clusters

were significantly enriched in RO and UC82, respectively. Three

downregulated (#2, 3, and 7), one biphasic (#9), and one

upregulated cluster belonged to RO, while two upregulated

patterns (#11, 12) and one biphasic were found in UC82. After

LN resupply, the same number of significant enriched clusters were

detected but with an opposite profile between genotypes in

comparison to HN: three in RO and five in UC82. In the latter

genotype, four (#11, 12, 13, and 15) out of five clusters showed an

upregulated pattern, while in UC82, all three clusters isolated (#1,
A

B

FIGURE 2

Significant enriched temporal expression profiles of the DEGs identified between genotypes, times, N levels, and their interactions in shoot (A) and
root (B). The number on the top refers to the cluster number. The numbers at the bottom are the P-values (left) and the gene number (right)
assigned in each cluster, respectively. The lines inside each square represent the trend at the three experimental time points for each cluster.
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10, and 14) were biphasic (Figure 2B). Overall, DEG number

increased across time (from 0 to 24 h) in both N conditions,

except for the downregulated genes in the shoot, and was higher

in the LN vs. HN in both tissues at 24 h.
Gene ontology and KEGG enrichment
analysis of DEGs after N-resupply

Functional characterization of up- and downregulated genes in

the RO vs.UC82 comparison at each tissue, N supply (LN and HN),

and time (at starvation, 8, and 24 h from N resupply), was

performed using a GO term enrichment analysis for the main GO

categories, Biological Process (BP), Molecular Function (MF), and

Cellular Component (CC) (Figures S4, S5).

In the BP group, the upregulated genes were significantly

enriched in the “oxidation–reduction process,” “response to

stimulus,” “response to stress,” and “catabolic process” GO terms

in both tissues (Figures S4, S5). Interestingly, 7.2% of the

upregulated genes in shoot were included in “signaling” and

“signal transduction” terms (Figure S4). In shoot, the

downregulated genes were mainly included in the “protein

metabolic process”, “response to stimulus”, “proteolysis”, and

“transmembrane transport” GO terms (Figure S4), while

“response to stimulus”, “localization”, and “transport” were the

main GO terms enriched in root (Figure S5).

Concerning the MF categories, most of the upregulated genes in

shootwere enriched in “hydrolase activity”, “catalytic activity actingona

protein”, and “oxidoreductase activity” categories (Figure S4), whereas

“oxidoreductase activity”, “cation binding”, “metal ion binding”, and

“cofactor binding” were significantly enriched in the root (Figure S5).

The “cationbinding,” “metal ionbinding,”and “oxidoreductaseactivity”

GO terms grouped the downregulated genes in shoot (Figure S4), while

“hydrolase activity,” “transporter activity,” and “transmembrane

transporter activity” were enriched in root (Figure S5).

Finally, in the CC categories, GO terms have not been found in

the shoot, while “extracellular region” and “apoplast” were enriched

in the root among the upregulated genes (Figure S5). Among the

downregulated genes, more terms were identified in the shoot than

the root, with “cell periphery”, “chloroplast”, “plasma membrane”,

and “plastid” being the terms enriched in the shoot (Figure S4), “cell

periphery”, “plasma membrane”, and “extracellular region” in the

root (Figure S5). The Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis did not show any significant enriched metabolic

pathways for the downregulated DEGs in both tissues. By contrast,

the upregulated genes were mainly enriched in “metabolic pathway”

in both tissues, as well as “plant hormone signal transduction” and

“MAPK (mitogen-activated protein kinases) signaling pathway” in

the shoot and “biosynthesis of secondary metabolites” and

“phenylpropanoid biosynthesis” in the root (Figure S6).
DEG functional analysis in shoot

In response to the level of NO3
- resupplied, several hormone

signaling-related genes were differentially expressed in shoots
Frontiers in Plant Science 06
between genotypes. Two auxins (auxin-regulated IAA17 and IAA-

amido synthetase GH3.6), three ethylene response factors (AP2/

ERF4, ERF1a, and ERF2), a cytokinin activating enzyme (cytokinin

riboside 5’-monophosphate phosphoribohydrolase, LOG8) and a

gibberellic acid signaling (DELLA-GAI) related genes, resulted

more expressed in RO compared to UC82, after 24 h LN resupply

(Figure 3A). Many protein kinases (PKs), which act as signal

transducers or receptor proteins in protein phosphorylation, were

also found differentially expressed (DE) between the two genotypes

in both tissues, mainly at 24 h after LN resupply. In particular, 22

PKs were identified, including four receptor-like protein kinases

(RLKs), four serine/threonine protein kinases (STPKs), four protein

kinases family proteins, three mitogen-activated protein kinase

(MAPKKKs), two CBL-interacting protein kinase kinase kinase

(CIPK), two receptor-like protein kinases (RPKs), as well as a

SNF1-related protein kinase, a protein NSP-interacting kinase 3-

like, and a calcium dependent protein kinase (CDPK) (Figure 3A).

Among the PKs, a CIPK2 andMAPK72 as well as a CDPK and a PK

superfamily protein resulted up- and downregulated, respectively,

after 8 h LN resupply, while two RLKs, two STPK, a RPK, a CIPK,

and a SNF1-related protein kinase appeared upregulated at the

same condition (LN) but at 24 h in RO compared to

UC82 (Figure 3A).

In the early response to LN resupply, many DEGs identified in

shoots were enriched in proteolysis (protein degradation processes),

which regulates the availability of organic N for remobilization and

allocation to N-demanding tissues. Genes encoding proteasome

subunits and E3 ubiquitin-protein ligase, involved in the ubiquitin-

proteasome system, appeared more expressed in RO compared to

UC82. In particular, the proteasome subunit beta type and an E3

ubiquitin transferase transcript were more abundant in RO at 24 h

in LN compared to HN condition, as well as an E3 SUMO-protein

ligase MMS21 and two E3 ubiquitin-protein ligase (CHFR and

RHG1A) encoding genes, which were upregulated after 8 and 24 h

LN resupply, respectively (Figure 3A). Moreover, many protease/

proteinase inhibitor related genes were downregulated in RO

compared to UC82 only after 24 h LN resupply, among which are

an ethylene-responsive proteinase inhibitor, a proteinase inhibitor 1

PPI3A2, and a proteinase inhibitor 1 PPI3B2 (Figure 3A).
DEG functional analysis in root

In the root, many DEGs were involved in plant hormone signal

transduction and the PK signaling pathway in the RO vs. UC82.

Five auxins (an auxin-responsive protein SAUR26, an auxin efflux

carrier, two-auxin response factor ARF, and the IAA-amido

synthetase GH3.6), an abscisic acid (ABA) (protein STH-2-like), a

jasmonic acid (JAZ3/TIFY6B), and a brassinosteroid (CURL3)

related genes, as well as three ethylene-responsive transcription

factors (ERF4, ERF1b, and ERF2b), involved in plant hormone

signal transduction, were identified (Figure 3B). In detail, GH3.6,

ARF22-like, and ERF1b were upregulated, while SAUR26, ARF3,

ERF4, and STH-2-like were downregulated in the N-use efficient

genotype (RO) after 24 h LN resupply (Figure 3B). Besides, fifteen

PKs were identified, among which three STPKs, three MAPKs,
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three RPKs, three receptor-like kinases (LRR-RLK), as well as a

histidine kinase (HK4), a CDPK, and a protein kinase domain

(Figure 3B). MAPK14 and LRR-RLK were upregulated, while HK4,

MKS1, and a cysteine-rich RPK42 were downregulated in RO vs.

UC82 after 24 h LN resupply (Figure 3B).

Finally, several genes involved in the phenylpropanoid and

flavonoid pathways, including a chalcone synthase (CHS1) (after

8 h), a cinnamyl alcohol dehydrogenase (CAD), a cytochrome P450,

and the peroxidase 7, were upregulated in root RO at the 24 h LN

condition (Figure 3B).
Differentially expressed transcription
factors after N-resupply

In the shoot, 14 TFs, including an ethylene response factor

(AP2/ERF4), two basic helix-loop-helix (bHLH), a calmodulin-

binding transcription activator (CAMTA4), a Gibberellic Acid

Insensitive (DELLA/GAI), two ethylene responsive transcription

factors (ERF), a Golden2-like 2 (GLK2), two MYBs, and four zinc
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finger proteins (ZF) were differentially expressed between genotypes

after 8 and 24 h LN or HN resupply (Figure 3B).

In the root, 23 differentially expressed TFs between genotypes

were identified. Two-auxin response factor (ARF), a CAMTA4,

three ERF, a protein far-red impaired response 1 (FAR1), a

GAGA-binding transcriptional activator (GAF), a heat stress

transcription factor A-5 (HSF A-5), a lateral organ boundaries

(LOB/LBD37), a MADS-box transcription factor, two MYB, three

nuclear factors Y (NFYA6, B5, and B10), a protein indeterminate-

domain (IDD9), a Teosinte branched1/Cincinnata/Proliferating cell

factor (TCP), a TGACG motif-binding protein (TGA), and four ZF

proteins (Figure 3C). All the differentially expressed TFs were

tissue-specific, except CAMTA4, which appeared downregulated

in RO vs. UC82 in both tissues regardless of time sampling and N-

condition. Overall, 50% and 56.5% of TFs identified were

differentially expressed at LN condition in shoot and root,

respectively, mainly after 24 h. In shoot, bHLH93-like, ERF2,

GLK2, ZF-Constans-9-like, and ZF-STOP1 were upregulated in

RO after 24 h LN resupply. In root, 17 out of 23 TFs exhibited

differential expression between RO and UC82 after 24 h LN
A B C

FIGURE 3

Expression level of DEGs included in functional classes based on GO term and KEGG pathway enrichment analyses in both tissues. Heatmap of
DEGs involved in signal transduction, protein kinases signaling, N-transport, proteolysis, phenylpropanoid, and flavonoid biosynthesis in shoot (A) and
root (B), and the differentially expressed TFs in shoot and root (C) in the RO vs. UC82 comparison at 0, 8, and 24 h after low (LN) and high (HN)
nitrate resupply.
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resupply, of which eight TFs resulted upregulated in

RO (Figure 3C).
Weighted gene co-expression
network analysis

To identify the co-expression modules correlated to short-term

N resupply and the hub genes involved in their transcriptional

regulatory networks by using the NUE contrasting genotypes, a

weighted gene co-expression network analysis (WGCNA) was
Frontiers in Plant Science 08
carried out, including 7,667 and 6,015 DEGs identified in shoot

and root, respectively, by using DESeq2. Our results revealed 11 co-

expressed modules in the root and 12 in the shoot, gathering from

62 to 1,779 and from 49 to 1,979 genes, respectively (Figure 4A;

Figure S7). Module Eigengenes (ME) were used to evaluate the

Pearson correlation coefficient between each module and sample

condition (Figure 4B); a box plot indicated the time course

expression level for the midnight blue and magenta modules in

shoot and root, respectively (Figure S8).

The dark red, green, and cyan modules in the shoot, as well as

the midnight blue, yellow, and salmon modules in the root,
A

B

FIGURE 4

Merged clusters and dendrograms (A) and module–trait relationships (B) were obtained through the WGCNA analysis using 7,667 and 6,015 DEGs
identified in shoot and root, respectively. In the heatmap, each Module Eigengene (ME) was correlated to each experimental condition. Inside each
condition (0 h, 8 h-LN, 8 h-HN, 24 h-LN, 24 h-HN), the two genotypes were coded as RO (0) and UC82 (1) (columns 1–5), and ME were also
correlated to each experimental condition regardless of the genotype (columns 6–9).
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exhibited limited differences in expression levels regardless of N

levels (LN and HN) and time of sampling (0 h, 8 h, and 24 h). The

N-responsive modules showed similar trends with significant

changes in expression levels in both genotypes. In particular, the

midnight blue, salmon, and magenta modules in the shoot and the

gray60, blue, magenta, and black modules in the root (Figure 4B)

exhibited the highest differences between genotypes. The N-

responsive modules also showed four types of induction, which

confirmed the evidence from the STEM analysis. In particular, the

most abundant modules, magenta in the root and brown in the

shoot, were quickly induced at 8 h after N-resupply for both

treatments (LN and HN). The blue modules in both tissues

showed a biphasic expression pattern, with a fast downregulation

at 8 h and an upregulation at 24 h, while the gray60 (root) and the

black (shoot) modules were upregulated mainly at 24 h for both N-

resupply. Finally, the black (root) and magenta (shoot) modules

showed a steady increase in upregulation after LN-HN resupply.

In the shoot, the midnight blue and salmon modules, highly

downregulated at both sampling times and N treatments, grouped

586 and 625 genes, respectively (Table S4); in particular, the salmon

module showed a significant lower downregulation in RO compared

to UC82. The magenta module (918 genes) resulted in high

upregulation by N (LN and HN) in RO at both 8 and 24 h, while

the brown module (1,979 genes) showed a significant upregulation

induced by N in RO after 8 h and a strong downregulation after 24 h

N resupply. GO enrichment analysis of the midnight blue and

salmon modules showed a significant enrichment in water and

inorganic molecule transporter activity, ubiquitination, and

oxidoreduction processes. The magenta and brown modules were

enriched in translation regulation processes, mRNA and DNA

binding, N-methyltransferase activity, and RNA-binding molecular
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functions GO terms (Table S5). In the shoot, 72 hub genes in the

midnight blue module were identified (Figure 5A; Table S6). Among

these, an asparagine synthase (ASNS, Solyc01g079880.3), a CBL-

interacting serine/threonine-protein kinase 1 (CIPK1 ,

Solyc05g053210.3), a cytokinin riboside 5’-monophosphate

phosphor ibohydro la se (LOG8 , So lyc06g075090 .3 ) , a

glycosyltransferase (UGT73C4, Solyc10g085870.1), a sulfate

transporter 3.1 (SULTR3.1, Solyc09g082550.3), an alternative

oxidase 1 (AOX1, Solyc08g075540.3), and an ethylene-responsive

transcription factor 2 (ERF2, Solyc01g090340.2) were identified

(Table S7).

In the root, the gray60 (including 84 genes), black (395), and

magenta (1,779) modules appeared highly induced by N resupply.

The gray60 module was significantly upregulated after 24 h from N

resupply in RO, while the blackmodule showed a higher induction in

UC82 at both 8 h and 24 h. Furthermore, the magenta module,

including the highest gene number, showed a rapid induction at 8 h

with a rapid downregulation after 24 h, more evident in the UC82

genotype. The gray60 module was significantly enriched in passive

transmembrane transporter activity, channel activity, water

transport, and zinc ion transport molecular function GO terms

(Table S5). Moreover, 17 hub genes mainly involved in water and

zinc ion transmembrane transport and oxidoreductase activity,

including two aquaporins (Solyc10g055630, Solyc12g044330), two

peroxidases (Solyc02g064970, Solyc02g084800), and two protein

kinases (Solyc09g008860, Solyc10g007290) were detected in the

gray60 module (Figure 5B, Table S7). The magenta module was

significantly enriched in amino acidN-methyltransferase activity and

translation regulatory processes GO terms (Table S6). Among the

270 hub-genes identified in the magenta regulatory network, we

identified a high-affinity nitrate transporter (NRT2.4 ,

Solyc11g069750), a low-affinity nitrate transporter (NPF7,

Solyc04g079530), an LRR receptor-like serine/threonine-protein

kinase (FEI1, Solyc01g109650.3), a style cell-cycle inhibitor 1

(SCI1, Solyc05g008750.3), two MYBs, an AP2/ERF transcription

factor (Solyc06g076350, Solyc06g053610, Solyc06g063070), and a

translation initiation factor IF2/IF5 (Solyc06g082580) (Table S7).

The bluemodule showed an opposite trend compared to themagenta

module, being downregulated after 8 h of N resupply in both

genotypes and significantly more expressed in UC82 after 24 h. It

was mainly enriched in water and passive transmembrane transport

activity and hydrolase activity (Table S6). By contrast, the black

module grouped genes upregulated by N resupply with increasing

expression levels across time, mainly in UC82. They were involved in

nitrate and inorganic transmembrane transport, peroxidase, and

oxidoreductase activity, and ribosomal constituents.
N transporter modulated expression during
short-term N resupply

Several transporters involved in both high- and low-affinity

NO3
- systems were differentially expressed in both tissues and

genotypes. In particular, the NRT2.3 (Solyc06g074990) and the

NRT2.4 (Solyc11g069750), two high-affinity NO3
- transporters,

were found to be differentially expressed. In UC82, the NRT2.3
A

B

FIGURE 5

Network visualization of the midnight blue module detected in the
shoot (A) and the gray60 module detected in the roots (B). Hub
gene annotation (SL3.2) is highlighted on each node.
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was downregulated in shoot, especially at 24 h, while the NRT2.4

was highly upregulated in root, mainly at 8 h in both LN and HN.

In the nitrate/peptide transporter family (NPF), 30 and 23

members were detected among DEGs in shoot and root,

respectively, of which seven were shared between tissues. In the

shoot, 10 of 30 NPFs clustered in the N responsive modules, of

which six were included in the midnight blue module (Table S4). In
Frontiers in Plant Science 10
the root, 16 of 23 NPF members clustered in the N responsive

modules, of which 11 were included in the blue module (Table S5).

The NPF members differentially expressed were then clustered by

using the Degprofiler package (Figure 6, Table S8), and five and four

clusters were detected in the shoot and root, respectively. Groups 3

(shoot) and2 (root) included a higher number of genes (Figures 6A, B),

which were strongly downregulated after N resupply, especially at HN
A

B

FIGURE 6

Expression profiles of the differentially expressed NPF genes in shoot (A) and root (B). Genes were clustered through the DEGreport R package using
Variance Stabilized Transformed (VST) data.
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compared to LN, and this N treatment effect was more marked in the

shoot than in the root. After 24 h, a significant re-induction

(upregulation) was observed in both groups. Furthermore, in group

2, the NPF6.3 (Solyc08g007430) and another NPF1.2 isoform

(Solyc05g006000) transporters resulted in upregulation of UC82 at

24 h in bothN conditions (Figure 6A).More interestingly, group 5 that

includes the NPF1.2 (Solyc12g044310) and NPF8.3 (Solyc12g042250)

transporters showed a higher upregulation in RO compared to UC82

in shoot (Figure 6A). Finally, group 4, including two isoforms of

NPF7.3 (Solyc01g080870 and Solyc10g024490), was significantly

upregulated in UC82 compared to RO in root, mainly after 24 h of

both LN and HN resupply (Figure 6B).
RNA-seq data validation by RT-qPCR

To validate the accuracy of the RNA-seq expression patterns, 10

key candidate genes, five from the shoot (ASNS, CIPK1, LOG8,

GLK2, and ERF2) and five from the root (AnnSl5, FEI1, NF-YB5,

and LOB37) for RT-qPCR validation, were chosen. The results were

plotted in a scatter plot, revealing that the relative expressions of

these genes were significantly in agreement with RNA-seq data, as

reflected by a high correlation coefficient (R2 = 0.94, P<0.0001)

between the methods (Figure S9).
Discussion

Improving nitrogen use efficiency (NUE) in crops has become a

significant challenge for sustainable agriculture. To achieve this

goal, a deep understanding of plant responses to variable soil N

availability, at both physiological and molecular levels is crucial.

This knowledge is critical to dissecting the regulatory networks of

this complex trait. The transcriptomic approach contributed to

understanding the changes regulating crop responses to abiotic

stress such as low N availability as well as to identifying key genes

related to N-stress tolerance comparing NUE-contrasting

genotypes (Goel et al., 2018; Sinha et al., 2018; Subudhi et al.,

2020; Sultana et al., 2020; Mauceri et al., 2021; Puccio et al., 2022).

In tomato, transcriptomic analyses led to the identification of genes

differentially regulated by N availability (Wang et al., 2001; Renau-

Morata et al., 2021), while no comparative transcriptome profiling

between NUE-contrasting genotypes in response to N starvation

and resupply has been reported so far.

In this study, the early molecular responses to low NO3
- (LN) at

tissue scale in two NUE contrasting tomato genotypes, RO (N-use

efficient) and UC82 (N-use inefficient) (Abenavoli et al., 2016; Aci

et al., 2021), were evaluated. The tissue-specific transcriptome time-

course analysis revealed the highest LN-sensitivity of the root

compared to the shoot, in contrast with other findings revealing

the shoot as the more responsible tissue for low N (Renau-Morata

et al., 2021). These results were confirmed by the number of N-

responsive genes (3,000 vs. 2,000), among which 482 and 395 were

differentially expressed between genotypes in root and shoot,

respectively (Table S3). Similar responses to LN were already

observed in potato (Tiwari et al., 2020) and spinach (Joshi et al.,
Frontiers in Plant Science 11
2020), confirming the central role played by root in NUE.

Interestingly, our experimental design, in which two NUE

contrasting genotypes were included, allowed us to identify DEGs,

hub genes, and a network of co-expressed genes between the N-use

efficient genotype, RO, and the N-use inefficient genotype, UC82.
LN resupply promotes a differential spatio-
temporal genes expression in NUE-
contrasting genotypes

The N-responsive DEGs in the RO vs. UC82 showed significant

differences between LN and HN in both tissues and across times of

sampling, mainly after 24 h. Our results suggested that these DEGs,

in the early response to LN resupply, might govern NUE

performances in tomatoes. The GO and KEGG pathways

enrichment analyses identified tissue-specific biological processes

and pathways related to “plant hormone signal transduction” and

“protein kinase signaling” as well as “phenylpropanoid and

flavonoid biosynthesis” pathways significantly enriched in the

shoot and root in the high NUE genotype (RO), respectively

(Figures S4, S5). Thus, for their key role in NO3
- signaling and

stress adaptation, we focused our attention on genes belonging to

these last pathways. Among the DEGs included in “plant hormone

signal transduction,” two and five auxin-related genes were

identified in shoot and root, respectively. In detail, an IAA

amido-synthetase GH3.6, which regulates auxin excess in plants

(Nakazawa et al., 2001; Staswick et al., 2005), was upregulated in RO

in both the shoot and root, suggesting a synergic regulation of shoot

and root auxin content in the N-use efficient genotype during early

LN response (Figure 3). Auxin transport and signaling play a critical

role in plant adaptation to N availability (Krouk et al., 2010;

Vanstraelen and Benková, 2012; Wang et al., 2019), which in turn

significantly alters auxin biosynthesis, transport, and transduction

(Asim et al., 2020). Moreover, nitrate and auxin signaling might

overlap in root system architecture regulation (Walch-Liu and

Forde, 2008; Asim et al., 2020). In addition, two auxin response

factor genes (SAUR26 and ARF3) were also downregulated in RO

compared to UC82 in the root after 24 h LN resupply. The ARF

family was involved in the response to LN supply, as previously

reported. For example, ARF18, an auxin response factor, regulates

NRT2.4, DUR3, and AMT1.2 expression in Arabidopsis and tomato

(Gaudinier et al., 2018; Renau-Morata et al., 2021).

Furthermore, putative tomato cytokinin riboside 5’-

monophosphate phosphoribohydrolase LOG8 transcripts, the

main enzyme converting inactive cytokinin nucleotides to the

biologically active free-base form (Kuroha et al., 2009), were more

abundant in the RO shoot compared to UC82 after 24 h LN

resupply. Cytokinins are signaling molecules that indicate plant N

status (Sakakibara, 2006; Sakakibara, 2021). Besides their role in

root–shoot–root communication (Narcy et al., 2013; Naulin et al.,

2020), they can repress high-affinity NO3
- transporter genes (Ruffel

et al., 2011), as well as induce N-metabolism-related genes such as

nitrate reductase (NR) (Gaudinova, 1990). Accordingly, our results

confirmed a potential crosstalk between NO3
- and cytokinin

signaling in tomatoes. Finally, many ethylene responsive
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transcription factors (ERFs) genes, such as AP2/ERF4 and ERF2 in

shoot as well as ERF1b in root, resulted in RO upregulation after

24 h LN resupply. ERFs are involved in ethylene signaling pathways

and regulate many stress-related gene expressions controlling plant

growth and development (Kazan, 2015; Xiao et al., 2016). Similar

results were already observed in contrasting N-responsive

genotypes of rice, barley, and spinach in response to LN (Quan

et al., 2016; Xie et al., 2019; Joshi et al., 2020; Sun et al., 2020).

The mitogen-activated PKs (MAPKs , MAPKKs , and

MAPKKKs) in the “protein kinase signaling” pathway are

reported to be involved in plant stress resistance signal

transduction, NO3
- sensing, and metabolism in several plants (Hu

et al., 2009; Hao et al., 2011).MPK7 is responsible in Arabidopsis for

phosphorylating the nitrate reductase (NR2) and LOB domain

binding proteins (LDB37 and LDB39), involved in NO3
- signaling

and targeted by many MAPKs (Chardin et al., 2017). Five

MAPKKKs were identified as direct targets of the NIN Like

Protein 7 (NLP7) TF, a master regulator of early nitrate signaling

in the root (Marchive et al., 2013; Chardin et al., 2017). In

agreement, we also identified three MAPKKKs and MAPK14

upregulated in the shoot and root, respectively, in the RO vs. UC82.

Moreover, some leucine-rich repeat receptor-like kinases

(LRR-RLKs) were more expressed in the N-use efficient

genotype (RO) in both tissues. The LRR-RLKs are involved in

many crit ical biological processes , including growth,

development, and abiotic stress responses (de Lorenzo et al.,

2009). Several genes encoding different subfamilies of RLKs are

regulated by NO3
-, but these responses appear sometimes

contrasting depending on cell types, organs, developmental

stages, and growth conditions (Liu et al., 2020). In our

experiment, the LRR-RLKs appeared involved in tomato

response to low N. In addition, two CBL-interacting protein

kinases (CIPK1 and CIPK2) were upregulated in the shoot of

RO compared to UC82 after 8 and 24 h LN resupply. By contrast,

Ca2+-dependent PKs (CDPK) were strongly downregulated after

8 h of LN resupply. These PKs are involved in the regulation of the

cross-link between Ca2+ and NO3
- signaling and uptake regulation

(Sakakibara, 2003; Hu et al., 2009). More interestingly, recent

studies revealed that NO3
- resupply stimulated rapid CIPK2

phosphorylation, underlining the important role of NO3
--

activated Ca2+-sensor protein kinases (CPKs) and the NO3
-–

CPK–NLP regulatory network (Liu et al., 2017; Liu et al., 2020).

Finally, the limited NO3
- availability induces “phenylpropanoids

and flavonoid biosynthesis,” which represents a plant adaptive strategy

to LN stress (Diaz et al., 2006; Peng et al., 2008). Interestingly, the high-

NUE genotype RO displayed in the root higher transcriptional levels of

genes related to the phenylpropanoid and flavonoid biosynthesis

pathways compared to UC82 after LN resupply. A chalcone synthase

1 (CHS1) and a cinnamyl alcohol dehydrogenase (CAD) gene, key

enzymes in flavonoids, anthocyanins, and other phenylpropanoid

compound biosynthesis (Tobias and Chow, 2005; Dao et al., 2011),

resulted in RO upregulation after 8 h and 24 h LN resupply,

respectively. The upregulation of genes involved in the

phenylpropanoid pathway and others encoding flavonoids, described

as signal molecules in root-to-shoot signal transduction in plants

exposed to N deficiency, was frequently underlined (Buer et al., 2007;
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Brunetti et al., 2013; Quan et al., 2016; Goel et al., 2018; Sun

et al., 2020).
N transporters differentially expressed in
shoot and root

According to Renau-Morata et al. (2021), the different

responses between tissues underlined the different roles displayed

by transporters to cope with low N conditions (Tables S4, S5).

Transcriptomic analysis identified several N transporter genes in

both tissues, which played a key role in root uptake, root to shoot

and leaf to sink transport, remobilization, and storage (Tegeder and

Masclaux-Daubresse, 2018), whose engineering modification

improved yield or NUE (Melino et al., 2022). In our condition,

two members of the high-affinity nitrate transporter NRT2 were

differentially expressed between genotypes in the shoot and root. In

particular, NRT2.3 was strongly downregulated in the shoot of

UC82 compared to RO, mainly after 24h LN resupply. Interestingly,

these NO3
- transporters were reported to play a key role in long-

distance nitrate transport from root to shoot, mainly at low external

nitrate supply in rice and tomato (Tang et al., 2012; Abenavoli et al.,

2016). Furthermore, RO showed significant SlNRT2.4 N transporter

downregulation in the root. Recently, a substantial overexpression

of the orthologous BnNRT2.4 was also identified in rapeseed root,

which is not effective for boosting N absorption but mainly

contributes to loading NO3
- in shoot phloem vessels (Kiba et al.,

2012; Tong et al., 2020). Taking together, this evidence suggests that

the higher N-use efficiency of RO compared to UC82 could be due

to its ability to uptake nitrate by a lowNRT2.4 expression in the root

and to transport NO3
- from the root to the shoot by a higher

NRT2.3 expression in the shoot.

In addition, in our experiment, 30 NPF transporters were

alternatively up and downregulated in response to N resupply.

NPF3.1 was significantly upregulated in RO after 24 h LN resupply,

although its expression decreased at 8 h. Interestingly,NPF3.1 encodes

for efflux-type NO3
- transporters, loading it into chloroplast stroma

during NO3
- assimilation, an important physiological process in plant

N nutrition and efficiency (Sugiura et al., 2007). More recently,NPF3.1

expression was upregulated by low exogenous NO3
- concentrations

and involved in GA transport in plants under low NO3
- supply (David

et al., 2016). More interestingly, we detected two N transporters

(included in group 5) highly upregulated in RO compared to UC82,

orthologues toNPF1.2 andNPF8.3 inArabidopsis.NPF1.2, classified as

a low-affinity nitrate transporter, is involved in xylem-to-phloem

transfer for redistributing NO3
- into developing leaves in

Arabidopsis, a critical step for optimal plant growth performance

(Hsu and Tsay, 2013). Besides, NPF8.3 was reported to encode a di-

and tri-peptide transporter able to recognize a variety of different

amino acid combinations (Komarova et al., 2008), andmore recently it

was included among the transporters differentially expressed in

rapeseed under nitrogen deficiency (Chao et al., 2021).

In the early response to N resupply, 23 N-transporters were also

identified as differentially expressed in the root. Among these, group

4 that included two NPF7.3 low affinity bidirectional NO3
-

transporters, involved in root nitrate allocation but not essential
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for root to shoot translocation in Arabidopsis, was significantly

upregulated in UC82 (Lin et al., 2008; Chen et al., 2012). These

results might confirm a higher N-use efficiency of RO compared to

UC82 due to the higher N-utilization efficiency (NUtE), which is

similar between genotypes. Overall, we firstly demonstrated a

significant genetic distance between RO and UC82 by SNP

analysis (Tranchida-Lombardo et al., 2019), then the differences

in NUE between the same genotypes were reported (Aci et al.,

2021), and here, among the most significant DEGs between NUE

contrasting genotypes, we identified putative genes and pathways

involved in the early response to low N.
Transcription factors

Transcription factors (TFs), which usually represent around 6%

of coding sequences within a plant genome, are important regulators

of plant signal transduction pathways under plant nutritional stress

(Canales et al., 2014; Hoang et al., 2017). Among them, many TF

families such as MYB, bHLH, bZIP, DOF, ERF, FAR1, GLK, NF-YA,

NF-YB, and LOB were reported to be involved in plant N deficiency

responses (Hao et al., 2011; Goel et al., 2018; Subudhi et al., 2020)

and in coordination of nitrogen metabolism enzymes regulation

(Zhang J. et al. 2020; Zhang X. et al. 2021). In our analysis, TFs

belonging to the basic helix–loop–helix (bHLH) and Golden2-like

(GLK) families were upregulated in RO shoots in early response to

LN resupply (Figure 3C). Interestingly, GLK2 appeared involved in

the regulation of chloroplast development as well as the activation of

many genes encoding chloroplast-localized or photosynthesis-

related proteins, including those for chlorophyll biosynthesis, light

harvesting, and electron transport (Kobayashi et al., 2013; Nguyen

et al., 2014). More recently, GLK2 overexpression was able to

increase photosynthetic capacity, leading to higher biomass and

grain yield in rice (Li et al., 2020). In agreement, the significantGLK2

upregulation in RO (shoot) could determine an increase in its

biomass production at LN, conferring NUE efficiency to this

genotype compared to UC82.

Many other TFs were found differentially expressed in the root of

RO compared to UC82 at LN, including LOB/LBD, NF-YA, NF-YB,

ARF, FAR1, and HSF. The Lateral Organ Boundaries Domain TFs

(LBD/LOB37/38/39) resulted in upregulation by NO3
- and, NO3

- a

lesser extent, NH+
4 , but they are also involved in NIA1, NIA2, and

other NO3
--inducible gene downregulation (Rubin et al., 2009;

Medici and Krouk, 2014). In our experiment, LOB37 transcripts

were less abundant in RO root after 24 h LN resupply, suggesting a

lower repression of NO3
- assimilation-related genes compared to

UC82. Finally, NF-YA6 and B5, belonging to the NF-YA and NF-YB

TF families, involved inmany plant processes such as N nutrition and

primary root growth (Ballif et al., 2011; Sorin et al., 2014), were found

upregulated in RO root after 24 h LN resupply. Similarly, Renau-

Morata et al. (2021) found two nuclear factors, NF-YA5 and 9,

differentially expressed in tomato roots under N deficiency.

Overall, the results indicated a tissue-specific TF role in tomato

(root), suggesting that different networks could contribute, at

different tissue-scales, to cope with N limited conditions.
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Co-expression network analysis reveals N
responsive modules

Nitrate regulates more than one thousand genes in both root

and shoot; thus, the complex mechanisms by which NO3
- elicits

changes in transcript abundance are still not fully understood

(Vidal et al., 2015). Our co-expression network analysis allowed

us to identify NO3
- responsive modules significantly upregulated

(gray60 and magenta in root as well as brown and magenta in

shoot) in response to N in both genotypes and, together with the

results obtained by the STEM analysis, to highlight four main

patterns of induction in response to N, interestingly highly

similar in both tissues (Figures 4A, B). However, several modules

also showed significant differences between genotypes. In particular,

the N-use efficient genotype RO showed significantly higher

upregulation of the gray60 module genes and significantly lower

downregulation of those in the magenta module in the root.

Interestingly, many hub genes in these modules might play a key

role in tomato N responses. The midnight blue module included a

cytokinin riboside 5’-monophosphate phosphoribohydrolase

(LOG8, Solyc06g075090.3), an activator of cytokinin biosynthesis

directly involved in nitrate signaling and N-metabolism regulation

(Ruffel et al., 2011; Naulin et al., 2020). In the same module, the

ERF2 TF (Solyc01g090340.2), belonging to the AP2/ERF gene

family in tomato and a homolog of the cytokinin response factor

5 encoding gene (CRF5), was also identified (Figure 5A).

Interestingly, the analysis of tomato knockout mutants revealed

that CRF5 regulates leaf and flower development, appearing

upregulated in response to cytokinins; these findings indicate that

SlCRF3 and SlCRF5 are potential regulators and are involved in the

regulation of tomato developmental processes associated with

cytokinin or abiotic stresses (Gupta and Rashotte, 2014). These

results might suggest an important regulatory role played by

cytokinins in the early N differential response between N-

contrasting tomato genotypes. N resupply seems to downregulate

these genes after 8 h, with their expression increasing again after

24 h, mainly in RO. Moreover, an asparagine synthetase (ASNS,

Solyc01g079880.3) upregulated in RO vs. UC82 was identified as a

hub gene in the same module. The ASNS is a key enzyme in the N-

metabolism involved in the hydrolyzation of glutamine to

synthesize asparagine, the amino acid with the highest N/C ratio,

used as the main stored and transported N form through the

vascular tissues in many plants (Lea et al., 2007; Gaufichon et al.,

2010; Gaufichon et al., 2013). The ASNS overexpression in

Arabidopsis revealed a higher asparagine level in plant tissues

together with an increased tolerance to N-deprivation (Lam et al.,

2003; Igarashi et al., 2009), suggesting that this may be a good and

viable strategy for improving NUE. Accordingly, our results

suggested that RO showed a faster induction of these genes after

initial downregulation compared to UC82, allowing RO to better

withstand N-deficiency.

In the root, both the gray60 and magenta modules included

many hub genes involved in N-related regulatory pathways

(Figure 5B). In the magenta module, two nitrate transporters

were detected as hub genes: SlNRT2.4, a high-affinity nitrate
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transporter homologue of AtNRT2.4, and SlNPF22 (NRT1/PTR).

Although SlNRT2.4 expression in tomato is the least abundant

among the NRT2 genes in almost all tissues, it is involved in both

root and shoot NO3
- transport under N starvation in Arabidopsis

(Kiba et al., 2012; Akbudak et al., 2022). Interestingly, its homolog

in Camellia sinensis was detected as a hub gene among the LN

responsive genes and was suggested as one of the main control

factors for N uptake modulation in tea plants under low N (Zhang

F. et al. 2020; Zhang F. et al. 2021). Our results indicated that, after

initial induction, SlNRT2.4 was downregulated, allowing tomato

plants to maintain higher N uptake, especially under N-

limited conditions.

Nitrate is also known to induce the expression of aquaporin

genes in tomato, and some PIP genes were found to be correlated to

NRT2 gene activity in Arabidopsis (Wang et al., 2001; Li et al., 2016).

In our experiment, two aquaporins (TIP2 and PIP2) as hub genes in

the gray60 module were detected, confirming their central role in the

short-term response to NO3
-. The high correlation between NO3

-

uptake and the hydraulic response in the root system was previously

described in several plants (Górska et al., 2010), further suggesting

that the differences in NUE performances between RO and UC82

might also be derived from a different regulation of genes involved in

water transport. A genotype-specific hydraulic response to NO3
-,

putatively derived from different aquaporin protein levels, was

recently detected in maize roots (Pou et al., 2022).
Conclusion

To our knowledge, this is the first comparative transcriptomic

study of two NUE-contrasting genotypes providing deep

information on the early responses to NO3
- deficiency in

tomato. The experimental setup allowed us to uncover some

mechanisms underlying low NO3
- regulation in the high-NUE

genotype, Regina Ostuni (RO). The comparative analysis revealed

that most transcriptomic changes induced by N-stress occurred

in the root and shoot, suggesting coordinated regulation of

multiple genes and pathways between both tissues. In the root,

the upregulation of the “phenylpropanoid and flavonoid

biosynthesis” pathways in Regina Ostuni suggested its higher

ability to enhance NO3
- deficiency tolerance compared to UC82.

In the shoot, plant hormones and protein kinases signaling

seemed to be involved in high NUE, providing novel insights in

their interactions with NO3
-, until now unexplored in tomatoes.

Interestingly, several NO3
- transporters differentially expressed

between genotypes were also identified in the N-use efficient

genotype RO, confirming its higher ability to transport nitrate

from root to shoot (long-distance) by higher NRT2.3 and NPF8.3

expressions. Finally, WGCNA decoded the dynamic regulatory

network related to low N resupply, highlighting the key role

played by cytokinins and ROS balancing in NO3
- deficiency

regulation mechanisms adopted by the high-NUE genotype

Regina Ostuni. The results obtained in this study represent new

insights into the comprehensive understanding of genotypic

differences in NO3
- regulation, utilization, and deficiency

in tomatoes.
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