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Grape gray mold disease (Botrytis cinerea) is widespread during grape production

especially in Vitis vinifera and causes enormous losses to the grape industry. In

nature, the grapevine cultivar ‘Beta ‘ (Vitis riparia × Vitis labrusca) showed high

resistance to grape gray mold. Until now, the candidate genes and their

mechanism of gray mold resistance were poorly understood. In this study, we

firstly conducted quantitative trait locus (QTL) mapping for grape gray mold

resistance based on two hybrid offspring populations that showed wide

separation in gray mold resistance. Notably, two stable QTL related to gray mold

resistance were detected and located on linkage groups LG2 and LG7. The

phenotypic variance ranged from 6.86% to 13.70% on LG2 and 4.40% to 11.40%

on LG7. Combined with RNA sequencing (RNA-seq), one structural gene VlEDR2

(Vitvi02g00982) and three transcription factors VlERF039 (Vitvi00g00859),

VlNAC047 (Vitvi08g01843), and VlWRKY51 (Vitvi07g01847) that may be involved

in VlEDR2 expression and grape gray mold resistance were selected. This discovery

of candidate gray mold resistance genes will provide an important theoretical

reference for grape gray mold resistance mechanisms, research, and gray mold-

resistant grape cultivar breeding in the future.
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1 Introduction

Vitis vinifera L. belongs to genus Vitis of the family Vitaceae. As a major table grape

resource, it possesses important social and economic values in the world. While in China, due

to the temperate continental climate, it is easily infected by many fungal diseases among

which the grape gray mold that is caused by Botrytis cinerea Pers. was one of the major

pathogens (Choquer et al., 2007). In most grape production regions, in case of infection by

grape gray mold, the yield would reduce by 20%–60%, and the berry quality would also face
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huge damages (Martıńez-Romero et al., 2007; Dean et al., 2012; Saito

et al., 2019). During the grape production process, antifungal agents

could inhibit the occurrence of diseases to a certain extent, but this is

not recommended due to environmental pollution and food safety. At

present, the breeding of high gray mold resistance grapevine cultivar

became a hot point. In nature, many grapevine resources possess

higher gray mold resistance than V. vinifera L., including Vitis

amurensis Rupr., Vitis quinquangularis Rehd., Vitis piasezkii

Maxim., Vitis riparia Michx, Vitis rupestris Scheele, and Vitis

labrusca L. (Gabler et al., 2003; Wan et al., 2015).

Marker-assisted selection based on genetic linkage map

construction and quantitative trait locus (QTL) mapping has been

widely used to screen high disease resistance grapevine cultivars

through traditional crossbreeding strategies such as ripe rot, downy

mildew, powdery mildew, and white rot (Barba et al., 2014; Teh et al.,

2017; Fu et al., 2019; Sapkota et al., 2019; Tello et al., 2019; Su et al.,

2021) for its high breeding efficiency. Until now, there were no QTL

mapping reports related to grape gray mold resistance, and research

on gray mold resistance transcriptional regulation mechanism was

majorly focused on the transcription factor ERF and MYB families in

Arabidopsis and tomato (Lorenzo et al., 2003; Pre et al., 2008; Zhao

et al., 2012; Liu et al., 2021). In grapevine, there have been some

reports related to gray mold resistance including structure genes

VvSWEE4, VvSWEE15, VvSWEET7, and VvAMP2 and some

transcription factors including VvWRKY52, VqERF072, VqERF112,

VqERF114, VaERF20, VaERF16, and VaMYB306 (Nanni et al., 2014;

Jiao et al., 2015; Wang et al., 2018a; Wang et al., 2018b; Breia et al.,

2019; Zhu et al., 2019; Wang et al., 2020; Zhu et al., 2022). While the

quantitative trait was controlled by many genes, candidate genes

related to gray mold resistance in grapevine still need to be explored.

In this study, we selected three gray mold resistance grapevine

cultivars, ‘Zhuosexiang’ (‘ZSX’) (V. vinifera × V. labrusca), ‘Venus

seedless’ (‘VS’) (V. vinifera × V. labrusca), and ‘Beta’ (“BT”) (V. riparia

× V. labrusca), and two susceptible cultivars, ‘Red Globe’ (‘RG’) and

‘Victoria’ (‘VT’), which belong to V. vinifera. Among these grapevine

cultivars, ‘RG’ was identified as one of the highly susceptible grape

cultivars to B. cinerea (Wan et al., 2015), and ‘BT’ was usually used as

rootstock for its high cold and disease resistance character. Based on

the hybrid population and high-density genetic linkagemap (Zhu et al.,

2018; Su et al., 2021), which was created through interspecific crossing

of ‘ZSX’ × ‘VT’ and ‘RG’ × ‘VS,’ we firstly conducted QTLmapping for

gray mold resistance, and then transcriptome analysis was conducted

for ‘RG’ and ‘BT’ at different infection stages on account of their most

distinct resistance level of grapevine gray mold. Finally, candidate

genes related to grapevine gray mold resistance were screened by QTL

mapping and RNA sequencing (RNA-seq).
2 Materials and methods

2.1 Plant material and gray mold
resistance identification

Grape cultivars ‘RG’ (V. vinifera L.), ‘VT’ (V. vinifera L.), ‘ZSX’

(V. vinifera × V. labrusca), ‘VS’ (V. vinifera × V. labrusca), and ‘Beta’

(‘BT’) (V. riparia × V. labrusca) and two hybrid populations were

cultivated in the Grape Experimental Garden of Shenyang
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Agricultural University (23°24’N, 41°50’E), China. Interspecific

hybridization of ‘RG’ × ‘VS’ was conducted in May 2009; ‘RG’ was

used as the female parent, and ‘VS’ was used as the male parent. ‘ZSX’

× ‘VT’ was conducted in May 2014; ‘ZSX’ was used as the female

parent, and ‘VT’ was used as the male parent. A total of 177 and 176

individuals from ‘RG’ × ‘VS’ and ‘ZSX’ × ‘VT’ were used for the gray

mold resistance identification in 2019 and 2020. The third-to-fourth

leaf from the tip of an annual branch was selected (three leaves per

individual). The collected leaves were rinsed with 70% ethanol for

1 min, followed by 10% sodium hypochlorite for 1 min, and rinsed

three times with ultrapure water. Next, the leaves were placed in

plastic culture dishes and punctured in the left, middle, and right

regions. Ten microliters of 107/ml gray mold spore suspension was

then dripped on the wound points to induce gray mold infection.

Leaves with gray mold spores were incubated in a moist chamber at

28°C with 95% relative humidity. The lesion area of the infected

region of each leaf was measured with a YMJ-C smart leaf area meter

(Tuopu Instrument, Guangdong, China) (Su et al., 2021). Leaf

samples of ‘RG’ and ‘BT’ that showed distinct resistance to gray

mold at 0, 72, and 120 h after infection were collected for RNA-seq.

Three biological replicates were collected at different infection periods

of each cultivar with at least three leaves per replicate.
2.2 Gray mold resistance quantitative trait
locus mapping

The lesion area (mean value of three replicates) of each genotype

collected in 2019 and 2020 was used for QTL mapping. The integrated

genetic linkagemaps of ‘RG’ × ‘VS’ and ‘ZSX’× ‘VT’ used in this research

were constructed by using Restriction-site Associated DNA (RAD)-

Sequencing, including 6,249 and 70,061 single nucleotide polymorphism

(SNP) markers (Zhu et al., 2018; Su et al., 2021). A multiple QTL

mapping (MQM)method was used to find significant QTL after a 1,000-

permutation test (a = 0.05) based on the R/qtl package (Broman et al.,

2003), and finally, the Logarithm of odds (LOD) threshold was set to 3.

The max.qtl was set to 10 for forward selection. A 1-LOD confidence

interval corresponding to the 95% confidence interval was calculated by

using the “lodint” function. The explained phenotypic variation of each

QTL phenotypic variation explained (PVE) was estimated using the

“fitqtl” function. Candidate genes within the confidence interval of each

QTL on the integrated map were selected according to 12X.v2 version of

the Grape Genome database (https://urgi.versailles.inra.fr/Species/Vitis/

Data-Sequences/Genome-sequences).
2.3 Gray mold resistance
transcriptome analysis

RNA integrity was assessed using the RNANano 6000 Assay Kit and

the Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA,

USA). The inputmaterial for the RNA sample preparationwas 1-mgRNA
per sample. Sequencing libraries were generated using the NEBNext®

Ultra™ RNA Library Prep Kit (New England Biolabs, Ipswich, MA,

USA) and then sequenced on an IlluminaNovaseq platform. Finally, 150-

bp paired-end reads were generated. Clean reads were obtained by

removing reads containing adapter, ploy-N, and low-quality reads from
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the raw data. The high-quality and paired-end clean reads were aligned to

the reference genome (https://urgi.versailles.inra.fr/Species/Vitis/Data-

Sequences/Genome-sequences) using HISAT 2v2.0.5 software, and the

mapped reads of each sample were assembled by StringTie. The

fragments per kilobase per million (FPKM) value of each gene was

calculated based on the length of the gene and the number of reads

mapped to this gene. Differential expression analysis was performed using

the DESeq2 R package (1.20.0), and genes with an adjusted P-value <0.05

found by DESeq2 were assigned as differentially expressed. Gene

Ontology (GO) enrichment analysis of differentially expressed genes

(DEGs) was implemented by the clusterProfiler R package.
2.4 qRT-PCR validation of candidate genes

Infected leaves of grape cultivars ‘RG’ and ‘BT’ at 0, 72, and 120 h

after gray mold infection were collected, and then these samples were

used for total RNA extraction according to the manufacturer’s

instructions of Plant Total RNA Isolation Kit (SK8631; Sangon

Biotech, Shanghai, China). The PrimeScript™ RT-PCR Kit (RR047A;

TaKaRa Bio, Kusatsu, Japan) was used to conduct cDNA synthesis, and

the cDNAwas diluted five times.Quantitative real-time PCR (qRT-PCR)

was conducted in ABI QuantStudio™ 6 Flex System (Applied

Biosystems). The relative expression level of selected genes was

normalized to grapevine b-actin (Fujimori et al., 2016) and calculated

using the 2-DDCT method. All reactions were performed using three

biological replicates. The primers used in this study are listed in Table S1.
3 Results

3.1 Identification of grapevine gray mold
resistance

Graymold resistance identification offive grape cultivars, ‘RG,’ ‘VT,’

‘ZSX,’ ‘VS,’ and ‘BT,’ at different infection stages was evaluated based on

the lesion area (Figure 1A). Among these five cultivars, ‘BT’ showed the
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highest resistance to gray mold infection, and ‘ZSX’ also showed higher

resistance compared with the other three cultivars. Furthermore, 176

hybrid progenies of ‘RG’ × ‘VS’ and 177 hybrid progenies of ‘ZSX’ × ‘VT’

were identified for gray mold resistance in 2019 and 2020; the results of

these two hybrid progenies showed continuous variation (Figure 1B;

Table S2). These results indicated that gray mold resistance in grapevine

was a typical quantitative trait controlled by multiple genes.
3.2 Gene function annotation and
differential expression analysis

To identify candidate genes involved in grape gray mold resistance,

we conductedRNA-seq for grapevine cultivars ‘RG’ and ‘BT’ at 0, 72, and

120 h after infection. After removing low-quality reads and adapters, a

total of 124.20 Gb Clean Data were harvested and retained for further

analysis. The average clean data of each sample were 6.17 Gb and have

been uploaded to NCBI Sequence Read Archive (SRA) with the

Accession Number PRJNA788159. The clean data were assembled

using StringTie software. In total, 50,817 annotated transcripts from

42,416 gene loci were obtained through aligning with Swiss-Prot, GO,

Kyoto Encyclopedia of Genes and Genomes (KEGG), and Pfam

databases by using BLAST and HMMER software (Tables S3, S4). The

FPKM value that was calculated by the comparison of sequenced reads

with obtained RNA-seq database represents the expression of each

transcript (Table S4). To confirm the reliability and rationality of the

experiment, we calculated the Pearson’s correlation coefficients for all

gene expression levels between each sample and reflected these

coefficients in the form of a correlation matrix map (Figure 2A). A

total of 5,407 genes were differentially expressed in RG0 vs. BT0 {|[log2

(fold change)]| >1 and adjusted P < 0.05} after differential expression

analysis, among which 2,838 were upregulated and 2,569 were

downregulated; 7,642 genes were differentially expressed in RG72 vs.

BT72, among which 3,693 were upregulated and 3,949 were

downregulated; 6,529 genes were differentially expressed in RG120 vs.

BT120, among which 2,887 were upregulated and 3,642 were

downregulated (Figure 2B).
A B

FIGURE 1

Grapevine gray mold resistance identification of five grape cultivars and two hybrid populations. (A) Gray mold lesion area identification of five grape
cultivars. ‘BT,’ ‘RG,’ ‘VS,’ ‘ZSX,’ and ‘VT’ represent grape cultivars ‘Beta,’ ‘Red Globe,’ ‘Venus seedless,’ ‘Zhuosexiang,’ and’Victoria,’ respectively. (B) Gray
mold lesion area distribution of two hybrid populations in 2019 and 2020.
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3.3 Gray mold resistance gene discovery
based on QTL mapping

Based on the gray mold identification of hybrid offspring in 2019

and 2020 and our constructed genetic linkage maps, we conducted

QTL mapping to further discover the candidate genes related to grape

gray mold resistance (Figure 3; Table 1). Eight potential QTL related
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to grape gray mold resistance were identified on LG2, LG7, LG9,

LG12, and LG14 in the integrated map of ‘ZSX’ × ‘VT’ (Figure 3A),

and the phenotypic variation they explained ranged from 6.70% to

16.50%. Seven potential QTL were identified on LG2, LG7, LG8,

LG13, and LG16 in the integrated map of ‘RG’ × ‘VS’ (Figure 3B), and

the phenotypic variation they explained ranged from 4.40% to

15.10%. Interestingly, four potential QTL on LG2 were detected
A B

FIGURE 2

Transcriptome and differentially expressed gene analysis. (A) Pearson’s correlation coefficient analysis for gene expression levels between each sample.
(B) Differentially expressed gene statistics in RG0 vs. BT0d, RG72 vs. BT72, and RG120 vs. BT120.
A B

DC

FIGURE 3

Candidate gray mold resistance gene discovery based on QTL mapping. (A, B) Gray mold resistance QTL mapping based on the hybrid population ‘ZSX’ ×
‘VT’ and ‘RG’ × ‘VS’. (C) Cluster heat map of gene expression involved in the common interval of stable QTL. (D) qRT-PCR analysis of candidate gray
mold resistance gene VlEDR2 at different infection periods. Light-gray bars represent cultivar ‘RG,’ and dark-gray bars represent cultivar ‘BT.’ Error bars
represent the standard deviation of three biological replicates. Lowercase letters on the bar chart represent significant differences between the two
cultivars and different developmental stages according to Duncan’s multiple range test at P < 0.05.
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stable in the two integrated maps in 2019 and 2020, and these stable

QTL accounted for 6.86%–13.70% of the phenotypic variation in the

gray mold resistance. Two potential QTL on LG7 were detected stable

in the integrated map of ‘RG’ × ‘VS’ in 2019 and 2020. These stable

QTL accounted for 4.40%–11.40% of the phenotypic variation in the

gray mold resistance.

According to the QTL mapping, the common physical intervals of

stable QTLwere 13598944-13740048 in chromosome 2 and 20767619-

20873218 in chromosome 7. In this study, we majorly focused on the

candidate genes that were involved in the common intervals, and

finally, 17 genes were discovered (Table S5). After analyzing the

differential expression of the selected genes in different comparison

groups (RG0 vs. BT0, RG120 vs. BT120, RG0 vs. RG120, and BT0 vs.

BT120) with |[log2FC]| >1 and adjusted P < 0.05 (Figure 4A; Table S3),

we finally screened the candidate gene Vitvi02g00982 that annotated as

enhanced disease resistance 2 (VlEDR2) for further analysis

(Figure 3C). The results showed that the expression of VlEDR2 in

‘RG’ was significantly upregulated after gray mold infection, and the

expression level in ‘BT’was significantly downregulated; the expression

level ofVlEDR2 in ‘RG’was significantly higher than that in ‘BT’ at 72 h

(P < 0.05). After that, the expression level of VlEDR2 in grapevine

cultivars ‘VT,’ ‘ZSX,’ and ‘VS’ was also identified (Figure 3D). The

result showed that the expression of VlEDR2 in sensitive cultivars was

significantly higher than that in resistant cultivars (Figure 3D). The

Kruskal–Wallis test was employed to analyze the relationships between

the phenotypic values and genotypes of the markers on LG2 and LG7,

which showed a significant correlation at P < 0.05. Markers

chr2_12269488 and chr2_13516138 were most significantly linked to

gray mold resistance in the population of ‘ZSX’ × ‘VT’ and ‘RG’ × ‘VS’

according to the Kruskal–Wallis test (Figure 5). These two markers

were located at 12,269,488 bp and 13,516,138 bp on chromosome 2.

Raw sequencing data related to these markers were analyzed, and the
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nucleotides were A/A in ‘VT,’ G/A in ‘ZSX,’ A/A in ‘VS,’ and G/A in

‘RG.’ Progeny carrying A/A in the population of ‘ZSX’ × ‘VT’ generally

showed susceptible phenotypes, and the average lesion area of A/A

individuals in 2019 and 2020 was 554.7 mm2 and 530.2 mm2,

respectively; whereas G/A individuals generally showed resistance,

and the average lesion area of G/A individuals in 2019 and 2020 was

517.6 mm2 and 467.7 mm2, respectively. Progeny carrying G/G in the

population of ‘RG’ × ‘VS’ generally showed susceptible phenotypes,

and the average lesion area of G/G individuals in 2019 and 2020 was

624.1 mm2 and 525.3 mm2, respectively; whereas A/A individuals

generally showed resistance, and the average lesion area of A/A

individuals in 2019 and 2020 was 470.9 mm2 and 484.9

mm2, respectively.
3.4 Transcription factor discovery related to
VlEDR2 regulation

In our study, we selected a candidate grape gray mold-sensitive

gene VlEDR2 based on QTL mapping (Figure 3). To further identify

transcription factors involved in VlEDR2 regulation, we conducted

GO enrichment analysis for these DEGs in the group of RG0 vs. BT0,

RG72 vs. BT72, and RG120 vs. BT120. A total of 122, 217, and 169

genes in “Transcription regulator activity” cataloged under

“Molecular function” were discovered, respectively (Figure 4B).

Finally, 35 DEGs were selected for their significantly different

expression in RG0 vs. BT0, RG72 vs. BT72, and RG120 vs. BT120

(Figures 4A–C; Table S6), among which 21 annotated genes were

from ERF, MYB, MAD-box, NAC, and WRKY families, and we

majorly focused on these 21 transcription factors.

To further select relevant transcription factors related to VlEDR2

expression, the FPKM values of these 21 transcription factors and
TABLE 1 Gray mold resistance QTL mapping based on the hybrid offspring of ‘ZSX’ × ‘VT’ and ‘RG’ × ‘VS’.

Population Year LG LOD threshold Peak LOD Peak location PEV (%) Confidence Interval (CI)

‘ZSX’ × ‘VT’

2019

2 3 3.95 123 6.86 9733811-14339399

7 3 3.65 85.6 16.50 11039523-11495736

9 3 4.93 64.6 12.80 9405408-14429438

2020

2 3 3.29 121 7.00 12217468-14339399

7 3 4 134 6.70 16739137-18634132

9 3 4.13 68.7 12.84 15860950-17484187

12 3 3.04 109.1 9.70 20219297-21021838

14 3 3.14 131.6 7.30 23813814-26365608

‘RG’ × ‘VS’

2019

2 3 4.01 128.67 12.9 13598944-13740048

7 3 3.17 130 11.40 20767619-20873218

16 3 3.01 146 15.10 19131784-19424306

2020

2 3 3.3 127.9 13.70 13516138-13852989

7 3 3.74 125.3 4.40 19689906-21022368

8 3 3.57 47.3 7.00 8143755-8403936

13 3 4.92 46.3 6.33 6414748-7273900
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VlEDR2 at 0 and 72 h were used to conduct the correlation analysis

(Figure 6A). Finally, three candidate transcription factors, VlERF039

(Vitvi00g00859), VlNAC047 (Vitvi08g01843), and VlWRKY51

(Vitvi07g01847), from ERF, NAC, and WRKY families that showed

a significant correlation (P < 0.05) with the expression of VvEDR2

were selected. The qRT-PCR verification showed that VlERF039 was

repressed in ‘RG’ and ‘BT’ after gray mold infection, and the

expression level in ‘BT’ was significantly higher than that in ‘RG.’

VlNAC047 and VlWRKY51 that showed a positive correlation with

VlEDR2 were also identified. The expression of VlNAC047 and

VlWRKY51 was induced in ‘BT’ and ‘RG,’ and the expression level

of these two candidate genes in ‘RG’ was significantly higher than that

in ‘BT’ (Figure 6B).
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4 Discussion

4.1 The formation of heterobeltiosis and
lower QTL effect

In this study, some individuals from our two constructed hybrid

offspring showed higher gray mold resistance than their parent cultivar

‘ZSX’ and ‘VS.’ The additive effects of several desired dominant alleles or

the combined effect of different alleles at the same gene locus, or a

combination of both, may have formed heterobeltiosis, and the genetic

differences between parents are the primary cause of it. According to

heterobeltiosis, we can screen for superior parents and predict the

heterosis of parental combinations. In our study, a total of 12
A B

FIGURE 5

Distributions of grape hybrid gray mold lesion area according to the markers chr2_12269488 and chr2_13516138 in the population of ‘ZSX’ × ‘VT’ and
‘RG’ × ‘VS.’ (A) Base information of markers chr2_12269488 and chr2_13516138 in different cultivars and the flanking sequence. (B) Gray mold lesion area
distribution of F1 progeny from the population of ‘ZSX’ × ‘VT’ and ‘RG’ × ‘VS’ in different years.
A B

C

FIGURE 4

Differentially expressed structural gene and transcription factor analyses based on QTL mapping and GO enrichment. Analysis for grape cultivars ‘RG’ and
‘BT’ at different infection periods. (A) Cluster heat map of structural gene and transcription factor expression. (B) Number of differentially expressed
genes in “Molecular function” catalog at different infection periods. (C) Common differentially expressed transcription factor identification in RG0 vs.
BT0d, RG72 vs. BT72, and RG120 vs. BT120.
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individuals that showed higher gray mold resistance than their resistant

parents from the hybrid progenies of ‘RG’ × ‘VS’ and ‘ZSX’ × ‘VT’ were

identified, and transgressive offspring in our study provided important

grape gray mold resistance resources, and they can also be used as

material for underlying genetic andmolecular mechanisms of grape gray

mold resistance.

QTL mapping and candidate gene discovery of grapevine gray

mold resistance are important for grape breeding. In our study, we

discovered two stable QTL related to gray mold resistance that were

located on linkage groups LG2 and LG7.While the phenotypic variance

of these QTL ranged from 6.86% to 13.70% on LG2 and 4.40% to

11.40% on LG7, the smaller QTL effect may be due to the quantitative

nature of the host resistance, and according to the Beavis effect, when

the sample size was small, the QTL effect would be greatly inflated, and

the larger the sample size, the smaller the QTL effect and the closer to

the true value (Beavis, 1994; Göring et al., 2001; Slate, 2013).
4.2 Discovery of structural genes related to
gray mold resistance

Structural genes related to gray mold resistance were majorly

involved in the pattern recognition receptor (PRR)-triggered immunity

(PTI) that could mediate gray mold resistance through recognizing

pathogen-associated molecular patterns (PAMPs) and host damage-

associated molecular patterns (DAMPs), such as chitin elicitor receptor

kinase 1 (CERK1), LysMdomain-containing glycosylphosphate

ethylinositol-anchored protein 2 (LYM2), and wall-associated kinase 1

(WAK1), and polygalacturonidase-inhibiting proteins (PGIPs) Botrytis-

induced kinase 1 (BIK1), MPK2/3/6, PAD3, and Arabidopsis histidine

kinase 5 (AHK5) (Miya et al., 2007; Qiu et al., 2008; Ren et al., 2008; De

Lorenzo et al., 2011; Eckardt, 2011; Galletti et al., 2011; Birkenbihl et al.,

2012; Pham et al., 2012; Faulkner et al., 2013; Zhang et al., 2014; Guan

et al., 2015; Liu et al., 2015). In grapevine, some structural genes related to

gray mold resistance have also been reported (Agüero et al., 2005;

Agudelo-Romero et al., 2015; Jiao et al., 2015; Rubio et al., 2015; Wang

Y. et al., 2017; Wan et al., 2021), but most of these genes were selected
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through either previous research or transcriptome analysis based on two

different graymold resistance cultivars. In our study, wefirstly conducted

grape gray mold resistance QTL mapping supplemented by

transcriptomic analysis, and finally, a new candidate resistance gene

VvEDR2was selected. Based on previous research,EDRplayed a negative

role and the edr mutants display high resistance (HR)-like lesions in

response to a pathogen attack stimulus such as powderymildew in plant

that is involved in the salicylic acid (SA) defense pathway (Frye and

Innes, 1998; Tang et al., 2005a; Tang et al., 2005b; Tang et al., 2006).

Moreover, some studies have also shown the SA-independent phenotype

of EDR2 that is involved in hypersensitivity to ethylene-induced

senescence, implicating EDR2 in the regulation of senescence and

defense signaling (Frye et al., 2001; Tang et al., 2005b). In our study,

we preliminarily identified the potential role of VlEDR2 in negatively

regulated grapevine gray mold resistance, and this discovered resistance

gene will provide new reference for the research on grapevine gray

mold resistance.
4.3 Candidate transcription factors
involved in the regulation mechanism
of gray mold resistance

Many reports have shown the role of ERFs in plant gray mold

resistance, such as RAP2.2, ORA59, ERF1, ERF5, and ERF6 in

Arabidopsis thaliana; overexpression of these genes could enhance

the resistance to gray mold through binding to GCC-box elements of

defense marker gene PDF1.2 and promoting its expression in jasmonic

acid (JA) and ethylene (ET) signaling pathways (Berrocal-Lobo et al.,

2002; Pre et al., 2008; Zarei et al., 2011; Moffat et al., 2012; Zhao et al.,

2012). In tomato, silencing of SlERF.A1, SlERF.A3, SlERF.B4, or

SlERF.C3 resulted in increased susceptibility to B. cinerea (Ouyang

et al., 2016). In grapevine, overexpression of VqERF072, VqERF112,

VqERF114, and VaERF20 in A. thaliana could also enhance the

resistance to B. cinerea in JA and ET signaling pathways (Wang et al.,

2018a; Wang et al., 2020). WRKY TFs could also regulate gray mold

resistance through activating the expression of structural genes
A B

FIGURE 6

Candidate transcription factor filter related to VlEDR2 expression and grapevine gray mold resistance. (A) Correlation analysis of transcription factors
from different families with candidate gray mold resistance gene VlEDR2 at different infection periods. (B) qRT-PCR analysis of candidate gray mold
resistance transcription factors at different infection periods. Light-gray bars represent cultivar ‘RG,’ and dark-gray bars represent cultivar ‘BT.’ Error bars
represent the standard deviation of three biological replicates. Lowercase letters on the bar chart represent significant differences between the two
cultivars and different developmental stages according to Duncan’s multiple range test at P < 0.05.
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involved in SA and JA signaling, such as LrWRKY4, LrWRKY12, and

LrWRKY39 in Lilium (Cui et al., 2018; Fu et al., 2022), SlDRW1 and

SlWRKY46 in tomato (Liu et al., 2014; Shu et al., 2021), RcWRKY41 in

rose (Liu et al., 2019), and VqWRKY52 in grapevine (Wang X. et al.,

2017).Moreover, TFs from theMYB family could also play positive and

negative regulatory roles in gray mold resistance, such as RcMYB84,

RcMYB123, and MYB108 in JA signaling pathway (Mengiste et al.,

2003; Ren et al., 2020; Cui et al., 2022) andMYB72 in induced systemic

resistance signaling pathway (Van der Ent et al., 2008). MYB46

negatively mediated gray mold resistance through repressing the

synthesis of cellulose synthases (Ramirez et al., 2011), and BjMYB1

positively regulated gray mold resistance through activating the

expression of BjCHI1 (Gao and Zhao, 2017). In grapevine, the

interaction of VaERF16 and VaMYB306 could increase the

expression level of VaPDF1.2 and then enhance gray mold resistance

(Zhu et al., 2022). In our study, based on the expression pattern of

VlEDR2, we screened out a new candidate ERF gene VlERF039 and

WRKY gene VlWRKY51, while their potential possibility in regulating

the expression of VlEDR2 and grape gray mold resistance still needs a

deep exploration.Moreover, NAC geneVlNAC047was also discovered,

and until now, there was no report focused on its function in gray mold

resistance; this discovery can provide a new insight on transcriptional

regulation mechanisms of grape gray mold resistance.
5 Conclusion

Based on QTL mapping and transcriptome analysis, we

discovered one structural gene, VlEDR2 (Vitvi02g00982), which

may play a negative role in grapevine resistance to gray mold.

Moreover, three potential transcription factors including VlERF039

(Vitvi00g00859), VlNAC047 (Vitvi08g01843), and VlWRKY51

(Vitvi07g01847) that may influence the expression of VlEDR2 and

grapevine gray mold resistance in positive and negative ways were

also discovered. The candidate genes identified in our study will

provide an important reference for research into grapevine gray mold

resistance mechanisms and breeding in grape species.
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