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Trait-based approaches have been widely used to evaluate the effects of variable

environments on submerged macrophytes communities. However, little

research focused on the response of submerged macrophytes to variable

environmental factors in impounded lakes and channel rivers of water transfer

project, especially from a whole plant trait network (PTN) perspective. Here, we

conducted a field survey designed to clarify the characteristic of PTN topology

among impounded lakes and channel rivers of the East Route of South-to-North

Water Transfer Project (ERSNWTP) and to unravel the effects of determining

factors on the PTN topology structure. Overall, our results showed that leaf-

related traits and organ mass allocation traits were the hub traits of PTNs in

impounded lakes and channel rivers of the ERSNWTP, which traits with high

variability were more likely to be the hub traits. Moreover, PTNs showed different

structures among impounded lakes and channel rivers, and PTNs topologies

were related to the mean functional variation coefficients of lakes and channel

rivers. Specially, higher mean functional variation coefficients represented tight

PTN, and lower mean functional variation coefficients indicated loose PTN. The

PTN structure was significantly affected by water total phosphorus and dissolved

oxygen. Edge density increased, while average path length decreased with

increasing total phosphorus. Edge density and average clustering coefficient

showed significant decreases with increasing dissolved oxygen, while average

path length and modularity exhibited significant increases with increasing

dissolved oxygen. This study explores the changing patterns and determinants

of trait networks along environmental gradients to improve our understanding of

ecological rules regulating trait correlations.
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1 Introduction

Plant functional traits are measurable properties which

determine plant survival, growth and reproduction (Dıáz et al.,

1999; Westoby and Wright, 2006; Violle et al., 2007; Wright et al.,

2010). Plant traits reflect a comprehensive process of evolutionary

signal, species specificity, physiological function and environmental

constraints (Palma et al., 2021; Guo et al., 2022; Laine et al., 2022).

In natural lakes, submerged macrophytes traits variations caused by

environment are nearly three times higher than that caused by

ontogeny, and environmental filtering processes can sort

individuals within species with traits values adaptive to

environmental changes (Kraft et al., 2008; Fu et al., 2013).

Submerged macrophytes can change the morphology and

biomass allocation of leaves, stems, and roots to support the

survival of the species in response to different environmental

changes (Fu et al., 2020; Wang et al., 2021). In the past decades,

many studies mainly focused on the response of single or several

submerged macrophytes traits to environmental gradients. For

instance, Potamogeton crispus showed an increase in leaf length,

leaf area and plant height and a decrease in leaf thickness and stem

diameter along water depth from 0.4 m to 1.6m (Wang et al., 2021).

Vallisneria natans displayed a decrease in ramets number, ramet

biomass, root/shoot ratio and ramet/total biomass ratio with

underwater light weakened (Yang et al., 2022).

For plants, many functional traits are dependent and

intercorrelated, traits coordination is generally defined by negative

and/or positive correlations, representing co-optimization, trade-offs,

and allometries based on physiological, morphological, and

evolutional requirements in response to surrounding environments

(Wright et al., 2004; Kemppinen et al., 2021; Pothasin et al., 2022).

Previous studies have shown that plant functional traits and their

interactions and coordination are keys to understanding ecosystem

processes and functions (Kleyer et al., 2019; Palma et al., 2021; Laine

et al., 2022).

Recently, plant trait network (PTN) has been proved to be an

effective approach to reveal complex correlations among plant

traits, detect hub traits from suites of functional traits, and

calculate the parameters of overall topology of traits combination

(Proulx et al., 2005; Poorter et al., 2014; Kleyer et al., 2019; He et al.,

2020; Li et al., 2021). For instance, contemporary studies on the

impacts of climate on leaf trait networks (LTNs) pointed that LTNs

changed from a complex and tight topology in tropical forest to a

simple and loose structure in cold-temperate forest, and leaf

thickness and leaf economic traits were hub traits in LTNs (Li

et al., 2022). Currently, Rao et al. (2022) proposed that water total

phosphorus concentration (TP) could alter the overall PTNs

topology of submerged macrophyte and PTNs were loose in TP-

deficiency and TP-repletion water but tight in TP-moderation

water. Wang et al. (2022) pointed that submerged macrophyte

PTNs structure was more dispersed under low or high nutrient

levels than that found at moderate nutrient levels. Yuan et al. (2023)

showed that ammonium pulses enhanced trait connectivity in

submerged macrophyte PTNs, and the highly connected traits

were plant biomass, stem ratio, leaf ratio and ramet number in
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PTNs, which were related to biomass allocation. Thus, PTNs can

provide an integrative information about submerged macrophytes

response to environmental changes in impounded lakes and

channel rivers of water transfer project.

Here, we presented a field survey designed to examine variation

of hub traits and PTNs topologies among channel rivers and

impounded lakes of ERSNWTP and test the effects of

determining factors on the PTNs topologies. We tested three

questions: (1) How do functional traits vary among impounded

lakes and channel rivers? (2) How do the hub traits and submerged

macrophytes PTNs topologies vary among channel rivers and

impounded lakes? (3) What are the key environmental factors

that determine PTNs topologies?
2 Materials and methods

2.1 Study area

China’s South to North Water Transfer Project (SNWTP) is a

world-famous hydraulic project, which aims to transfer water

resource from southern part of China to the north and northwest

regions. It involves water redistribution among different basins and

may cause a series of changes in ecological conditions of impounded

lakes and channel rivers ecosystems (Zeng et al., 2015; Guo et al.,

2020; Sun et al., 2021). SNWTP consists of ERSNWTP, Central

Route of South-to-North Water Transfer Project (CRSNWTP), and

West Route of South-to-North Water Transfer Project

(WRSNWTP). ERSNWTP pumps water from the Yangtze River

in Yangzhou, Jiangsu Province, employs Lake Gaoyou, Hongze,

Luoma, Nansi and Dongping for water impoundment, utilizes the

Grand Canal and its parallel rivers to transfer water from south to

north (http://nsbd.mwr.gov.cn). Nansi Lake was divided into upper

and lower region by an artificial dam since 1960s, the water is first

transported into the lower region and then is lifted and moved to

upper region during water diversion. The morphometrical and

limnological characteristics of these impounded lakes were

detailed in Table S1.
2.2 Field survey and sampling

P. crispus is dominant and constructive species of submerged

macrophyte community in the impounded lakes and channel rivers

of ERSNWTP in China during winter and spring (Zhu et al., 2022).

P. crispus population were sampled in five impounded lakes and

Grand Canal from 10 April to 12 May 2018 when the biomass of P.

crispus reached its peak in these lakes. 74 sites were surveyed in P.

crispus-dominated region using site-quadrat method. The number

of sampling sites in impounded lakes and Grand Canal were

determined based on the distribution area of P. crispus, 3

sampling sites were selected in every Grand Canal section

between each two impounded lakes (Figure 1). P. crispus

population were sampled using a rotatable reaping hook covering

0.2 m2, three replicated quadrats at each site. At each quadrat, the
frontiersin.org
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collected macrophytes were rinsed in lake water and then one

healthy P. crispus individual was randomly selected for subsequent

functional traits measurement. Prior to plant sampling, water and

sediment samples were sampled from 0.5 m below the water surface

using a Schindler sampler and the top layers of sediment using a

Peterson sampler, respectively. These samples were kept in a

container with ice bags and taken back to the laboratory for

subsequent analysis.

For all sites, water pH, dissolved oxygen (DO), conductivity

(Cond), total dissolved solid (TDS), turbidity (Tur), Secchi depth

(SD) and underwater photosynthetic active radiation (PAR) were

recorded in situ. T, DO, pH, Cond, TDS and Tur were measured

with a YSI EXO2 (Yellow Springs Instruments, USA). SD was

measured by Secchi disk (30 cm diameter). Underwater PAR was

recorded at intervals of 0.25 m from water surface to 1.0 m by an

underwater radiation sensor (UWQ 10250) coupled with a LI-COR

data logger (Li-1500, Li-Cor Company, USA). The light extinction

coefficient (K) was computed based on the equation: K =(1/d) ln (I0/

Id), where Id and I0 are PAR value at the water depth d and water

surface (Krause-Jensen and Sand-Jensen, 1998).
2.3 Laboratory analysis and
traits measurement

Water samples were used to measure total nitrogen (TN), total

phosphorus (TP), ammonium nitrogen (NH4
+-N), nitrate nitrogen

(NO3
–N), orthophosphate (PO4

3+-P), permanganate index

(CODMn), and chlorophyll a (Chl a) in the laboratory according

to the standard methods (Huang et al., 1999).

Sediment samples were used to analyze water content (SW),

organic matter content (SO), total carbon content (SC), total

nitrogen content (SN) and total phosphorous (SP). SW and SO
were determined using the methods detailed by Jin and Tu
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(1990). Sediment samples were air dried to constant weight and

then ground into fine powder for elemental determination. SC and

SN were measured by an element analyzer (Multi N/C 2100, Jena

Instruments, German). For SP measurement, sediment samples

were digested with sulfuric acid/perchloric acid and then

measured with the ammonium molybdate ascorbic acid method

(Huang et al., 1999).

Eighteen functional traits of 222 P. crispus individuals sampled

in five impounded lakes and Grand Canal were measured during

the study period: plant height (H), stem branch (SB), internodes

number (NN), internode length (NL), internode diameter (ND),

relative stem length (RSL), relative leaf area (RLA), leaf width (LW),

leaf area (LA), leaf number (LN), leaf thickness (LT), leaf length

(LL), dry plant weight (DPW), dry leaf weight (DLW), dry stem

weight (DSW), ratio of stem weight to leaf weight (SLR), leaf dry

mass fraction (LMF) and stem dry mass fraction (SMF). Details of

the functional traits and determination methods were described

in Table 1.
2.4 Plant trait network analysis

Submerged macrophytes PTNs were constructed to reveal the

difference in trait associations among impounded lakes and Grand

Canal. In PTN, plant traits are nodes, and trait-trait connections are

edges. First, a matrix of trait-trait coefficients was computed using

Pearson’s correlation coefficients (Poorter et al., 2014; Kleyer et al.,

2019). To avoid spurious relationships among traits, trait-trait

coefficients were assigned as 1 if significant at P<0.05 level and

regarded as 0 if insignificant. Then, an adjacency matrix A = [ai,j]

with ai,j ∈ [0,1] was yielded. Thus, PTN only showed the presence

and absence of correlations among traits. Next, PTNs were

constructed and network parameters were calculated using the R

package “igraph”. Finally, PTNs were visualized in Cytoscape 3.8.0
FIGURE 1

Sampling sites of impounded lakes and Grand Canal of the East Route of South-to-North Water Transfer Project.
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using the Prefuse Force Directed OpenCL layout (Shannon

et al., 2003).

Three node parameters were selected to describe the properties

of functional traits within PTNs. Degree (k) is calculated as the sum

of the edges over all neighbors of the focal trait in the network. Plant

traits with high k values can be regard as “hub traits”. Closeness (C)

is the reciprocal of the mean shortest path between a focal trait and

all other traits. Traits with high C values are closely associated with

other traits. The betweenness (B) of a focal trait is determined as the

number of shortest paths between pairs of traits that contain the

focal trait. Traits that have a high k are generally considered as

mediators in the PTNs (Figure 2).

Four metrics were used to show the overall topology of PTNs.

Edge density (ED) represents the density of the connected edges

among nodes in a network, that is, the proportion of actual

correlations among traits out of all possible correlations. Average

path length (AL) is the mean shortest path between all traits in the

network. PTNs that have higher AL indicate greater overall

independence among traits. Average clustering coefficient (AC) is

the mean of the clustering coefficients of all node traits in PTNs.

PTNs with higher AC are less easily separated into several different

modules. Modules are defined as sets of traits that present

covariation among themselves. Modularity (Q) measures how well

a network is divided into modules. The trait network with higher

modularity may give macrophytes more flexibility to adjust its

functioning to changing environments (Figure 2). More details on

network parameters were presented by He et al. (2020) and Kleyer

et al. (2019).
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2.5 Data analysis

To describe the importance of traits within PTNs, k and C were

used to determine “the connectedness” of each trait, B was used to

signify the “centrality” of each trait. Traits that have high k and high

C were “hub traits”, and high B were “mediator traits”.

To describe the overall topology of PTNs, ED and AL were used

to represent the “connectivity” of the PTN, AC and Q were used to

characterize the “complexity” of the PTN. PTNs with low ED and

high AL are “looser”, that is, they have an overall low level of

covariation among traits. A high AC indicates fewer modules, and a

lower PTN complexity. The Q of the PTN describes the degree of

separation among modules.

One-way ANOVA with Duncan’s test (at the 0.05 significance

level) was used to evaluate the difference of functional traits and also

the environmental parameters among impounded lakes and Grand

Canal. All data were tested for normality and homogeneity, when

necessary, data were log10 and sqrt transformed to meet

assumptions before statistical analysis. Linear regression was used

to examine the relationships between traits variations and three

node parameters and four topological metrics. To explore the

determining environmental factors of PTNs, Pearson’s correlation

was performed to detect the significant environmental factors

related to parameters of PTNs, then one or multiple variable

linear regression was computed using PTN topology metrics (i.e.

ED, AL, AC, Q) as the dependent variable, and the significant

environmental factors detected by Pearson’s correlation as the

independent variables.
TABLE 1 Plant traits and their units, abbreviations, and determination methods.

Functional traits Unit Abbreviation Determination method

Plant height cm H Ruler measurement

Stem branch – SB Continuous counting

Internodes number – NN Continuous counting

Internode length cm NL Ruler measure

Internode diameter mm ND Vernier caliper measurement

Relative stem length cm g-1 RSL Plant height/Dry stem weight

Leaf number – LN Continuous counting

Leaf thickness mm LT Vernier caliper measurement

Leaf length cm LL Leaf area analyzer (CI-202)

Leaf width cm LW Leaf area analyzer (CI-202)

Leaf area cm2 LA Leaf area analyzer (CI-202)

Relative leaf area cm2 g-1 RLA Leaf area/Dry leaf weight

Dry plant weight g DPW Electronic balances measurement

Dry stem weight g DSW Electronic balances measurement

Dry leaf weight g DLW Electronic balances measurement

Ratio of stem weight to leaf weight – SLR Dry stem weight/Dry leaf weight

Stem dry mass fraction – SMF Dry stem weight/Fresh stem weight

Leaf dry mass fraction – LMF Dry leaf weight/Fresh leaf weight
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3 Results

3.1 Characteristic of environmental factors
among different lakes

Cond, pH, DO, TDS, Tur, SD, K, Chl a, TN, NO3-N, NH4-N, TP,

PO4-P, Sw, So, SC and SN differed significantly among impounded

lakes and Grand Canal except CODMn and SP (Table S2).
3.2 Variation of functional traits among
different lakes

All 18 functional traits were significantly different among

impounded lakes and Grand Canal (Table S3). In terms of the

mean coefficient of variation (CV) of traits from high to low, the

order of 18 functional traits was stem branch, dry leaf weight,

relative leaf area, dry plant weight, leaf number, dry stem weight,

internodes number, leaf thickness, ratio of stem weight to leaf

weight, relative stem length, internodes length, plant height, leaf

area, leaf dry mass fraction, stem dry mass fraction, leaf length,

internode diameter, leaf width (Table S4). The results showed that

leaf-related traits and organ mass allocation traits were sensitive

traits that varying with various environment.
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3.3 Identification of connected and central
traits within PTNs

The most connected traits (with higher k and/or C) were relative

leaf area, dry stem weight and internodes number in Grand Canal;

relative leaf area, plant height, dry plant weight, stem branch and

dry leaf weight in Gaoyou Lake; dry plant weight, dry stem weight

and internodes number in Hongze Lake; relative leaf area, dry stem

weight and dry leaf weight in Luoma Lake; leaf thickness, dry plant

weight, dry leaf weight, dry stem weight and internode diameter in

lower Nansi Lake; dry plant weight, dry leaf weight, dry stem

weight, internodes number and internode diameter in upper

Nansi Lake; and leaf number, dry plant weight, leaf area and

relative stem length in Dongping Lake (Figures 3, 4). These

results indicated that seven natural P. crispus L. populations

showed different properties of functional traits within PTNs

among impounded lakes and Grand Canal.

The mediator traits (with high B) were relative leaf area and

ratio of stem weight to leaf weight in Grand Canal; plant height,

internode length and relative leaf area in Gaoyou Lake; internode

diameter, dry plant weight and leaf area in Hongze Lake; relative

leaf area, dry stem weight and dry leaf weight in Luoma Lake; leaf

length and stem branch in lower Nansi Lake; internode diameter

and leaf area in upper Nansi Lake; and leaf number and leaf area in
FIGURE 2

Key parameters of Plant Trait Network (Cited from He et al., 2020).
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FIGURE 3

The degree of functional traits in plant trait network of impounded lakes and Grand Canal. GC, GY, HZ, LM, LNS, UNS and DP are abbreviations for
Grand Canal, Gaoyou Lake, Hongze Lake, Luoma Lake, lower Nansi Lake, upper Nansi Lake and Dongping Lake, respectively.
FIGURE 4

The closeness of functional traits in plant trait network of impounded lakes and Grand Canal. GC, GY, HZ, LM, LNS, UNS and DP are abbreviations for
Grand Canal, Gaoyou Lake, Hongze Lake, Luoma Lake, lower Nansi Lake, upper Nansi Lake and Dongping Lake, respectively.
Frontiers in Plant Science frontiersin.org06
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Dongping Lake (Figure 5). Such traits acted as bridges in the PTNs

by connecting other traits belonging to different modules.
3.4 The characteristics of PTNs topologies
among impounded lakes/Grand Canal

PTNs showed different structures among impounded lakes and

Grand Canal (Figure 5). The number of edges within network was

highest in lower Nansi Lake and lowest in Dongping Lake

(Figure 6). A module was a set of plant traits more closely

connected to each other but less connected with traits outside the

module. In our study, different modules with different colors were

observed in the PTNs among impounded lakes and Grand Canal

(Figure 6). Two modules were detected in PTN in lower Nansi Lake,

and three modules were identified for PTNs in others impounded

lakes and Grand Canal.

Traits connections in PTNs differed among impounded lakes

and Grand Canal. PTNs displayed higher edge density in lower

Nansi Lake (0.641) but lower in Dongping Lake (0.275) and Luoma

Lake (0.314). Similarly, average clustering coefficient was higher in

lower Nansi Lake (0.842) but lower in Dongping Lake (0.453) and

Luoma Lake (0.610). Conversely, PTNs exhibited higher average

path length and modularity in Dongping Lake (average path length

= 2.046 and modularity = 0.227, respectively) and Luoma Lake

(average path length = 1.830 and modularity = 0.206, respectively)

but lower in lower Nansi Lake (average path length = 1.380 and

modularity = 0.067, respectively).
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3.5 Correlations between PTNs topologies
and environmental factors

Pearson correlation showed that average path length

significantly related to TP (r=-0.84, p<0.05), PO4
3+-P (r=-0.85,

p<0.05) and DO (r=0.88, p<0.05); edge density was closely

correlated with TP (r=0.87, p<0.05) and DO (r=-0.86, p<0.05);

average clustering coefficient significantly correlated with DO (r=-

0.89, p<0.01); modularity significantly related to DO

(r=0.87, p<0.05).

To examine the effects of three significant factors on PTNs

average path length, a backward multiple regression analysis was

computed. This regression result showed that average path length

was negatively correlated to TP, but positively to DO.

AL =  1:22  −  24:30TP  +  0:15DO (R2  = 0:91; F = 19:368;P

< 0:01) (1)

To explore the relative role of the two significant factors in

explaining the edge density, a backward multiple regression analysis

was computed. The result indicated that edge density increases with

increasing TP and with reducing DO.

ED =  0:62  +  14:59 TP  −  0:07 DO (R2  = 0:91; F = 21:308;P

< 0:01) (2)

To reveal the relationships between average clustering

coefficient and modularity and DO, a univariate linear regression
FIGURE 5

The betweenness of functional traits in plant trait network of impounded lakes and Grand Canal. GC, GY, HZ, LM, LNS, UNS and DP are abbreviations
for Grand Canal, Gaoyou Lake, Hongze Lake, Luoma Lake, lower Nansi Lake, upper Nansi Lake and Dongping Lake, respectively.
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analysis was performed. The results suggested that DO increases

with increasing modularity and with reducing average clustering

coefficient.

AC =  1:62  − 0:122 DO (R2  = 0:80; F = 20:12; P < 0:01) (3)

Q =   − 0:23 + 0:05 DO (R2  = 0:75; F = 14:98; P < 0:05) (4)
4 Discussion

In this study, we applied a network analysis to identify the hub

traits within PTNs, examined the variation of PTNs topologies, and
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tested the effects of determining factors on the PTNs topologies in

impounded lakes and channel river of ERSNWTP. First, we

revealed that functional traits significantly differ among

impounded lakes and Grand Canal. Next, our results

demonstrated that leaf-related traits and organ allocation traits

were the hub traits of PTNs in impounded lakes and Grand Canal

overall. Furthermore, we identified variability in trait network

structures among impounded lakes and Grand Canal. Specifically,

tight assemblages of two modules in lower Nansi Lake indicated

high-efficiency traits cooperation and resource acquisition. Finally,

we clarified the effects of environmental factors on the PTNs.

Notably, submerged macrophytes PTNs topologies were

determined by TP and DO.
FIGURE 6

Plant trait network of submerged macrophytes in impounded lakes and Grand Canal. H, Plant height; SB, Stem branch; NN, Internodes number; NL,
Internode length; ND, Internode diameter; RSL, Relative stem length; LN, Leaf number; LT, Leaf thickness; LL, Leaf length; LW, Leaf width; LA, Leaf
area; RLA, Relative leaf area; DPW, Dry plant weight; DSW, Dry stem weight; DLW, Dry leaf weight; SLR, Ratio of stem weight to leaf weight; SMF,
Stem dry mass fraction; LMF, Leaf dry mass fraction.
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4.1 The consistency of the hub traits and
sensitive traits

The coefficient of variation of traits showed that stem branch, dry

leaf weight, relative leaf area, dry plant weight, leaf number and dry

stem weight were more sensitive to varying environment than others

traits (Siefert et al., 2015; Yang et al., 2020; Westerband et al., 2021).

Noteworthily, these sensitive traits were the hub traits of most PTNs,

which indicated that traits with high variability were more likely to be

the hub traits of PTNs among impounded lakes and Grand Canal

overall. These results can be explained by the finding that functional

traits degree displayed significant increase with increasing variation

of functional traits (Figure 7). Traits with higher degree plays a central

role that affects the whole-plant phenotype (Kleyer et al., 2019; He

et al., 2020; Li et al., 2021), thus high variability of hub traits makes

the trait network more responsive to diverse environments, which

may be the reason why the PTNs can be used as an effective approach

to clarify functional adaptation of submerged macrophytes to

changing environmental conditions.

Although the hub traits of PTNs were different among

impounded lakes and Grand Canal, relative leaf area and leaf

number were the robust hub traits, which was in agreement with

previous study on the forest leaf trait network shifts along latitude

gradients, indicating that leaf thickness and relative leaf area were

hub traits of leaf trait network (Li et al., 2021). Leaf is the primary

organ of submerged macrophytes for light and nutrition resources

acquisition (Wright et al., 2004; Shipley et al., 2006; Donovan et al.,
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2011). Submerged macrophytes tend to increase leaf area, leaf

number and relative leaf area to adapt to underwater light

limitation (Pierce et al., 2012; Fu et al., 2018; Chmara et al., 2019;

Zervas et al., 2019; Liu et al., 2021). Indeed, relative leaf area is a part

of the leaf economic spectrum (LES) and closely correlated with

other traits related to resource acquisition during plant life history

(Price et al., 2014; Reich and Cornelissen, 2014; Dıáz et al., 2016).

Moreover, organ mass allocation traits, including dry plant

weight, dry stem weight and dry leaf weight, were as central as

leaf traits in PTNs. The result was consistent with recent finding that

stem- and leaf- traits (stem ratio and leaf ratio) significantly related

to biomass allocation were the hub traits in submerged macrophyte

PTNs (Yuan et al., 2023). Previous studies revealed that plant height

was closely related to stem height and leaf area (Price et al., 2014;

Dıáz et al., 2016), and the capacity for light and nutrient resource

acquisition depends on the allocation of biomass to leaves and stem

(Hilbert, 1990; Barko et al., 1991). Notably, shifts in biomass

allocation is an important strategy for plants to overcome

environmental heterogeneity (McConnaughay and Coleman, 1998;

Madsen and Cedergreen, 2002). Submerged macrophytes usually

adjust organ mass allocation for optimizing resource capture and

minimizing imbalance in any critical environment. (Barko and

Smart, 1988; Xie et al., 2010). Thus, organ mass allocation traits as

hub traits in our study mainly explained that leaf and stem mass

allocation determined light and nutrient resource capture, and shifts

in plant biomass allocation happen throughout the whole life of

submerged macrophytes (Chambers et al., 1989; Xie et al., 2004).
FIGURE 7

Linear regressions between functional traits variation and degree, closeness and betweenness. Dashed lines indicate that the slope of the linear
regression is nonsignificant.
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Furthermore, we noted that hub traits of PTNs are relative to

the included traits. A morphological trait is more likely to be a hub

if many morphological traits are included in PTNs; likewise, a

physiological trait is more likely to be a hub if many physiological

traits are included. Traits selection could influence the hub traits of

PTNs, to an extent that needs deep study in future work.
4.2 Plant trait network topologies
and its main influencing factors in
impounded lakes

In present study, higher edge density and average clustering

coefficient, whereas lower average path length and modularity of

plant trait network were observed in lower Nansi Lake. The

opposite trend for these network parameters was detected in

Dongping Lake and Luoma Lake. Regarding to the mean CV of

traits of impounded lakes and Grand Canal from high to low, the

order was lower Nansi Lake, Hongze Lake and Grand Canal,

Gaoyou Lake, Dongping Lake, upper Nansi Lake, Luoma Lake

(Table S4). This finding demonstrated that plant trait network

topologies were related to the mean functional trait variations of

lakes, higher mean functional variation coefficients represented

tight plant trait network, lower mean functional variation

coefficients indicated loose plant trait network (Figure 8). These

results resulted from the significantly negative relationship between

mean coefficients of functional variation of lake and modularity of

PTNs (Figure 8). Obviously, higher mean functional variation
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coefficients make smaller separation of trait clusters within the

network and raises the possibility of functional traits connecting to

other traits.

Numerous studies proved that submerged macrophytes would

alter multiple functional traits and their relationships in different

environmental conditions (Fu et al., 2018; Liu et al., 2021; Wang

et al., 2021). In our experiment, water total phosphorus had a

significantly positive effect on the edge density and negative effect

on the average path length of PTNs, which indicated that trait

coordination and integration and thus efficient resource

transporting was gradually strong with an increase phosphorus

concentration. Contemporary study focusing on the effects of

phosphorus on the submerged macrophytes trait network

topologies suggested that when water TP was< 0.2 mg/L, edge

density increased with increasing TP concentration. In our study,

the range of water TP was 0.014 mg/L~0.055 mg/L, the mean water

TP was 0.022 mg/L, far less than 0.2 mg/L. Our results were

consistent with previous conclusion (Rao et al., 2022).

Additionally, dissolved oxygen was another influencing factor

determining PTNs topologies. On the contrary, dissolved oxygen

had significantly positive effects on average path length and

modularity, and negative effects on edge density and average

clustering coefficient. Numerous studies demonstrated that

aquatic plant tended to elongate leaf length, reduce leaf thickness

and decrease overground biomass accumulation in anoxic

condition (Kay et al., 2004). Hub traits held the largest

connections to others traits and occupied the centre in PTNs

(Kleyer et al., 2019; He et al., 2020; Li et al., 2021; Li et al., 2022;
FIGURE 8

Linear regressions between mean coefficients of functional traits variation of lake and plant trait network parameters. Dashed lines indicate that the
slope of the linear regression is nonsignificant.
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Rao et al., 2022). Therefore, an environmental factor such as

dissolved oxygen selecting on leaf-related traits and organ mass

allocation traits will affect other traits, thus changing the PTNs

topology. Thus, both the TP and DO together determine the PTNs

topologies in impounded lakes. It should be mentioned that we only

studied the unilateral effects of TP and DO, the interactional impact

on PTNs topologies need further evaluation.

We found that TP was one of two determined factors

influencing the plant trait network of impounded lakes of

ERSNWTP. ERSNWTP pumps water from the Yangtze River in

Yangzhou, utilizes the Grand Canal and its parallel rivers to transfer

water from south to north. For Yangtze river in Jiangsu Province,

water total phosphorus concentration ranged from 0.07 to 0.10 mg/

L (Chen et al., 2020), which is much higher than the impounded

lakes and Grand Canal. Total phosphorus concentration of

impounded lakes will increase with the enduring operation of the

water diversion, which will result in a strong trait coordination and

an efficient resource transporting of submerged macrophytes.

Furthermore, future studies should pay more attention on long-

term effects of total phosphorus change induced by water

transferring on submerged macrophytes PTNs. In addition, more

attention should be pay to total phosphorus reduction before

submerged macrophyte restoration projects in aquatic ecosystems

from PTNs perspective.
5 Conclusion

In this study, we applied a network analysis to identify the hub

traits and tested the variation of PTNs topologies among

impounded lakes and Grand Canal of the ERSNWTP in China.

Then, correlations between traits and PTNs topology were

examined and determining environmental factors of PTNs were

detected using a multivariate statistical analysis. We found that leaf-

related traits and organ mass allocation traits were the hub traits of

PTNs in impounded lakes and Grand Canal of the ERSNWTP

overall. The coefficients variation of functional traits had

significantly positive relationships with traits degree, and traits

with high variability were more likely to be the hub traits in

PTNs. The PTNs exhibited different structures among impounded

lakes and Grand Canal, plant trait network topologies were

significantly related to the mean functional variation coefficients

of lakes. TP and DO were the key factors influencing PTNs

topology. TP was significantly related to edge density and average

path length, and DO was significantly correlated with edge density

and average path length, average clustering coefficient

and modularity.
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