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Uncovering the genetic basis for
quality traits in the Mediterranean
old wheat germplasm and
phenotypic and genomic
prediction assessment by
cross-validation test

Venkata Rami Reddy Yannam1, Marta Lopes1, Carlos Guzman2

and Jose Miguel Soriano1*

1Sustainable Field Crops Program, Institute for Food and Agricultural Research and Technology (IRTA),
Lleida, Spain, 2Departamento de Genética, Escuela Técnica Superior de Ingenierı́a Agronómica y de
Montes, Universidad de Córdoba, Córdoba, Spain
The release of new wheat varieties is based on two main characteristics, grain yield

and quality, to meet the consumer’s demand. Identifying the genetic architecture

for yield and key quality traits has wide attention for genetic improvement to meet

the global requirement. In this sense, the use of landraces represents an impressive

source of natural allelic variation. In this study, a genome-wide association analysis

(GWAS) with PCA and kinship matrix was performed to detect QTLs in bread wheat

for fifteen quality and agronomic traits using 170 diverse landraces from 24

Mediterranean countries in two years of field trials. A total of 53 QTL hotspots

containing 165 significant marker-trait associations (MTAs) were located across the

genome for quality and agronomical traits except for chromosome 2D. The major

specificQTL hotspots for quality traits were QTL_3B.3 (13 MTAs with amean PVE of

8.2%) and QTL_4A.3 (15 MTAs, mean PVE of 11.0%), and for yield-related traits were

QTL_2B.1 (8 MTAs, mean PVE of 7.4%) andQTL_4B.2 (5 MTAs, mean PVE of 10.0%).

A search for candidate genes (CG) identified 807 gene models within the QTL

hotspots. Ten of these CGs were expressed specifically in grain supporting the role

of identified QTLs in Landraces, associated to bread wheat quality traits and grain

formation. A cross-validation approach within the collection was performed to

calculate the accuracies of genomic prediction for quality and agronomical traits,

ranging from -0.03 to 0.64 for quality and 0.46 to 0.65 for agronomic traits. In

addition, five prediction equations using the phenotypic data were developed to

predict bread loaf volume in landraces. The prediction ability varied from 0.67 to

0.82 depending on the complexity of the traits considered to predict loaf volume.

KEYWORDS

Triticum aestivum, genome-wide association study, loaf volume prediction, quantitative
trait locus, candidate genes, wheat quality
Abbreviations: FP, Flour Protein; FS, Flour sedimentation; FY, Flour yield; GFD, Grain filling duration; GFR,

Grain filling rate; GH, Grain hardness; GP, Grain protein; GY, Grain yield; LV, Loaf volume; MT, Mixing time;

P, Peak; P/L, Tenacity/extensibility ration; TKW, Thousand kernel weight; TW, Test weight; W, Strength.
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Introduction

Wheat (Triticum aestivum L.) is one of the globally essential

cereals cultivated in a wide range of latitudes and is usually consumed

in baked products. Moreover, wheat contributes 18% of the daily

intake of calories and 20% of protein. To ensure global food security

in the future, overall wheat production needs to increase but

producing high nutritional value food as society demands

(Battenfield et al., 2016). Assessing the grain quality traits is a

bottleneck for the grain value chain in the current scenario.

Additionally, increasing yield without a negative effect on grain

quality is a puzzle for breeders because an increase in yield typically

leads to a decrease in protein content, which often reduces processing

and end-use quality attributes. Identifying the genetic architecture for

quality traits and maintaining high yields is vital for the breeders to

develop new varieties depending on end-use products. The bread

wheat is classified by the end-use baked products. The different

products obtained from bread wheat, like noodles, cookies, pastries,

and leavened and unleavened bread, require specific characteristics

such as flour quality, protein concentration, grain hardness, and

gluten strength (Pena, 2002; Guzmán et al., 2015).

The properties considered by the millers are mainly kernel weight,

hardness, colour, grain protein, and test weight (weight per volume)

which are related to grain yield and quality with varying heritability

(Aydin et al., 2010; Guzmán et al., 2016; Irfan Ullah et al., 2021).

Grain hardness is another essential characteristic for millers. This trait

can be explained based on how strongly the starch granules are linked

to the protein matrix. The harder the grain is, the more energy is

required during the milling process, resulting in more starch damage

than soft grain (Giroux and Morris, 1997). The water absorption by

dough is higher in the hard grain due to the higher intensity of starch

damage which is not preferable for pastries and cookies. In addition to

the absorption of water, the higher starch damage leads to the

hydrolysis of starch into fermented sugars leading to higher loaf

volume (Pomeranz and Williams, 1990). Among the quality

parameters, protein content (in grain and flour) is the primary

conventional indicator of nutritional value (Zhao et al., 2010).

Among the different types of proteins in the grain, gliadins and

glutenins are the main storage proteins and components. Their

compositions and proportions are responsible for the baking

quality, dough strength, and wheat’s viscoelastic properties (Torbica

et al., 2007). The dough’s rheological and physiochemical properties

consist of viscosity or stiffness, tenacity (P) (maximum energy spent

to deform the dough), strength (alveograph, W) is the persistence of

viscosity upon extension, extensibility (L) which is expressed as the

distance of the dough extends without breaking, tenacity/extensibility

(P/L), and dough mixing time (MT) of the dough decide the end-use

product (Pena, 2002).

During its domestication, wheat was selected mainly for

adaptation to the local environment by considering traits like

flowering time, biotic and abiotic stress resistance, yield parameters,

and plant height (Royo et al., 2017). Selection intensity during the

green revolution was especially for yield by selecting the semi-dwarf

plants. However, landraces are an important source of maintaining

biodiversity, and although their low yield in comparison with the
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modern improved cultivars, nowadays, the interest in landraces by

many breeders and farmers is increasing because of their nutritional

values and sensory properties (Casañas et al., 2017). Usually, the

landraces have higher grain protein with poor rheological properties

compared to modern cultivars (Guzman et al., 2019). Knowing the

desired untapped gene pool and allelic variation in landraces to

improve the quality traits in bread wheat is a vital strategy to

overcome the challenges faced by breeders to meet the global

requirements of nutritional food in consideration of climatic change

and the rapid growth of the human population in addition to meet the

requirements of the millers and industrial bakers in manufacturing

baking products (Lopes et al., 2015). Quantitative trait loci (QTL)

have been mapped in Iranian and Spanish bread wheat landraces for

end-use quality traits using genome-wide association studies (GWAS)

(Abdipour et al., 2016; López-Fernández et al., 2021; PU et al., 2022;

Rabieyan et al., 2022). Additionally, it has been documented that the

Mediterranean durum wheat landraces exhibit a broad genetic

variation for quality and yield traits (Moragues et al., 2006; Nazco

et al., 2014; Lopes et al., 2015; Roselló et al., 2018; Roselló et al., 2019).

Therefore, association studies in Mediterranean bread wheat

landraces give a new non-improved allelic source and allow

targeted introduction into elite material.

The fundamental focus of this study is to study the genetic

architecture and candidate genes associated with the quality and

grain yield traits in a collection of 170 Mediterranean bread wheat

landraces through a GWAS approach. In addition to detecting the

QTLs associated with the targeted characteristics, we also evaluate the

genomic selection prediction accuracies and prediction of loaf volume

with different quality parameters, which serve as the pipeline for

breeders to select the individuals in the early stages and allow the

breeders to evaluate a large population.
Material and methods

Plant material

The plant material consisted of 170 bread wheat (Triticum

aestivum L.) landraces from 24 Mediterranean countries derived

from the MED6WHEAT IRTA panel (Rufo et al., 2019)

(Supplementary Table 1) and is structured into three genetic sub-

populations (SPs) (Rufo et al., 2019): SP1, west Mediterranean

landraces (43 accessions); SP2, north Mediterranean landraces (59

accessions); SP3, east Mediterranean landraces (42 accessions); and 26

were considered as admixed genotypes.
Field trials

The panel was evaluated during two growing seasons (2016 and

2017) in rainfed conditions at Gimenells, Lleida (Northeast Spain).

The experimental design followed a non-replicated augmented design

using six genotypes, and two replicated checks per line, the cultivars

‘Anza’ and ‘Soissons’. Each experimental plot was 3m x 1.2m with 250

germinable seeds per m-2.
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Grain yield (GY, t/ha-1) was determined by mechanically

harvesting the plots at ripening and is expressed at a 12% moisture

level. Thousand kernel weight (TKW, g) was determined by counting

the grains in 10 g drawn randomly from harvested grains of each plot.

Duration of grain filling (GFD, days) was calculated as the number of

days from flowering to physiological maturity. The grain filling rate

(GFR, mg day-1) was estimated as the ratio between grain weight

and GFD.

Grain quality analyses were performed at the Quality Laboratory

of the International Maize and Wheat Improvement Centre

(CIMMYT, Mexico). Test weight (TW, kg hL-1) was estimated by

the AACC method 55-10. The single kernel character system (SKCS)

4100 equipment (Perten Instruments, Sweden) was used to quantify

the grain hardness index (GH). Grain protein content (GP, % at

12.5%moisture basis) was determined using a NIR Systems 6500

machine (Foss, Denmark) with a calibration validated using the

Kjeldahl method AACC 46–11A (AACC 2010) and the Dumas

method (Leco equipment FP828, Leco Instruments, USA). Before

milling, the grain samples were tempered with water according to

their hardness and the official AACC method 26-95. The samples

were milled into refined flour using a Brabender Quadrumat Senior

mill (C.W. Brabender OHG, Germany). Flour yield (FY,%) was

measured. In the flour samples, protein (FP, % at 14% moisture

basis) was determined by a DA7200 NIR machine (Perten

Instruments, Sweden). Overall gluten quality (FS, mL) was

determined with the SDS-sedimentation test performed according

to (Pena et al., 1990). Dough rheological properties were tested in the

mixograph (National Mfg. Co.) to obtain optimum dough mixing

time (MT, min) and torque (P, %Torque× min) according to the

AACC method 54-40A. Additionally, 60 g flour samples were used in

the alveograph (Chopin, France) to measure the tenacity/extensibility

ratio (P/L) and elasticity or strength (W, J x 10-4) according to the

manufacturer’s instructions and the AACC method 54-30A. Finally,

bread-making quality was assessed using a direct dough method with

100 g of flour (AACC method 10-09). A volume meter measured the

bread loaf volume (LV, mL) by rapeseed displacement. The dough

water absorption levels used to run the mixograph, alveograph, and

baking tests were calculated according to (Guzmán et al., 2015).
Statistical analysis

Restricted maximum likelihood (REML) was used to estimate the

variance components and to produce the best linear unbiased

predictors (BLUPs) for the agronomic and grain quality phenotypic

data. The MIXED procedure of the SAS-STAT statistical package

(SAS Institute Inc, Cary, NC, USA) was used with year and genotype.

The analysis of variance, box plot, and normal distribution plots

was calculated using the mean phenotypic values of three years with

PROC MIXED and PROC UNIVARIATE PLOTS procedures with

the SAS-STAT statistical package (SAS Institute Inc, Cary, NC, USA)

). The phenotypic and genotypic correlations analysis were performed

with two years of phenotypic data in Meta-R software (Alvarado et al.,

2019; Balduzzi et al., 2019). Heritability was estimated from variance

components as follows:
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Where s2
g is the variance of genotypes, s 2

geis the interaction of

genotype and year variance, e is the number of years, se is the residual
variance, and r is the number of replicates per year (geometric

mean r=1).
Prediction equations for loaf volume

To develop an effective predictive model for a complex

phenotyping trait (LV) by simple traits, a multiple linear regression

model procedure was applied with the BLUPs for two years. This

procedure was performed in R software with the lm package using the

basic structure “response variable ~ explanatory variable(s)”. The

predicted models were validated with 50% of individuals randomly

selected as training and 50% as a testing population with

150 iterations.
GWAS analysis

The landraces were genotyped with 13177 SNPs using the

Illumina Infinium 15K Wheat SNP Array at Trait Genetics GmbH

(Gatersleben, Germany). After excluding SNPs with more than 20%

missing data and minor allele frequency (MAF) less than 0.05, a total

of 10090 SNPs distributed throughout the genome remained.

Genome-wide association analyses (GWAS) were performed using

the TASSEL V5.2.25 software (Bradbury et al., 2007) following a

mixed linear model (MLM) (Yu et al., 2006):

y = Xb + Zu + e

Where y is the vector of BLUPs, b is a vector of SNP marker fixed-

effects parameters, u is a vector of random additive effects of inbred

lines, X and Z represent matrix, and e is a vector of random residuals.

The random genotype effect was estimated as Var(u)=PCA+K s2
a,

Where PCA is the principal component analysis matrix with three

principal components as a fixed effect and K is n x n matrix of

pairwise kinship coefficient as a fixed effect, and s2
a   is the estimated

additive genetic variance (PCA+K model) (Yu et al., 2006). Restricted

maximum likelihood estimates of variance components were

obtained using the optimum compression level (compressed mixed

linear model) and population parameters previously determined

(P3D) in TASSEL.

A frequently used threshold was established at –log10 P > 3, as

previously reported in the literature (Condorelli et al., 2018; Mangini

et al., 2018; Sukumaran et al., 2018; Rufo et al., 2021; Wang et al.,

2021a). Confidence intervals (CI) for marker-trait associations

(MTA) were estimated for each chromosome according to the LD

decay reported by (Rufo et al., 2019) using the formula reported by

(Chardon et al., 2004).

S2i =
CI
3:92

� �2
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Where CI corresponded with the LD decay for each chromosome.

To simplify the MTA information, the associations were grouped into

QTL hotspots, defined the density of MTAs along the chromosome

and calculated as the QTL overview index (Chardon et al., 2004) for

each cM of the genetic map (Wang et al., 2014):

U =
nbQTL
nbE

Total length of  map

where nbQTL is the number of QTLs and nbE is the total number

of experiments.

The physical positions of SNPs were provided according to wheat

genome version 2.1 (IWGSC RefSeq v2.1), available at https://wheat-

urgi.versailles.inra.fr/ (Alaux et al., 2018). QTL overview index plot

was generated by ClicO software (Cheong et al., 2015). Circular

Manhattan plots were generated by the CMplot package in R

Software (Yin et al., 2021).
In silico analysis of candidate genes

Identification of candidate genes (CGs) was carried out within the

window of ±500 kb of the MTAs within the QTL hotspot peaks. The

annotation and function of the candidate genes were performed using the

wheat genome browser version 1.0 at https://wheat-urgi.versailles.inra.fr/

Seq-Repository/Annotations, and positions of CGs in version 2.1 (IWGSC

RefSeq v1.0, v2.1) by integrating the different versions of genome sequence

following (Alaux et al., 2018). MTAs with different physical and genetic

chromosomes were not considered for the CG search.
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Evaluation of genomic prediction

A cross-validation strategy was used to evaluate the genomic

prediction within the landrace collection. Ridge regression best linear

unbiased prediction (RR BLUP) (Whittaker et al., 2000; Meuwissen

et al., 2001) was used to estimate marker effects and develop the

prediction equations for genomic selection. We have performed a

cross-validation method to calculate the accuracies of the model using

80% of the population as training and 20% of the population as testing

with 150 iterations. The analyses were done in R software using the

rrBLUP Package (Endelman, 2011).
Results

Phenotypic performance

Table 1 shows a summary of statistics of the genetic variation of

the traits for the two years of phenotyping. Most of the variance of

quality and agronomic traits were associated with genotypes. The

percentage of variability explained by genotype was the highest for W

(82%), whereas the lowest for TW (14%). The maximum variability

explained by the GxE interaction and genotype was for FP and GP

with 30% and 50%, respectively, whereas for MT and P, GxE had no

effect. In the case of LV, 63% variance was explained by genotype and

21% by GxE interaction with no environmental variance, similar to

MT, P/L. The influence of the environment was around 20% for GP

and FP, GH-3%.
TABLE 1 Trait performance across environments.

Trait VG VGE VE Mean SD CV h2 GS accuracies

GY 0.87 0.22 1.19 5 0.87 17.40 0.56 0.52

TW 0.52 0.05 3.25 77.86 1.28 1.64 0.24 -0.03

TKW 7.26 6.25 10.93 43.73 3.89 8.91 0.46 0.46

GH 73.03 64.12 156.95 42.47 13.83 32.57 0.40 0.16

FY 6.91 0.46 2.83 63.92 1.79 2.80 0.81 0.33

GP 0.68 0.42 0.30 12.88 0.70 5.46 0.66 0.55

FP 0.60 0.36 0.24 10.55 0.67 6.30 0.67 0.53

FS 4.21 0.94 0.51 10.02 2.02 20.15 0.85 0.48

MT 0.39 0.00 0.34 1.94 0.50 25.64 0.70 0.59

P 605.47 5.51 499.08 75.12 19.91 26.50 0.71 0.58

W 6290.46 78.19 1316.66 144.55 46.57 32.21 0.90 0.64

P/L 0.45 0.04 0.31 1.3 0.44 33.45 0.72 0.29

LV 4619.28 1538.95 1157.60 644.01 65.06 10.10 0.78 0.43

GFD 6.30 0.67 5.73 32.47 3.00 9.25 0.67 0.65

GFR 0.03 0.0020 0.06 1.2 0.23 19.38 0.44 0.62
VG, Variance of genotype; VGE, the interaction of genotype and environment variance; VE, variance of residual; SE, Standard error; SD, Standard Deviation; CV, Coefficient of Variation; h2

heritability of trait; Trait:, GY, Grain yield (t ha-1); TW, Test weight (kg hL-1); TKW, Thousand kernel weight (g); GH, Grain hardness; FY, Flour Yield (%); GP, Grain protein (%); FP, Flour Protein
(%); FS, Sedimentation test (mL); MT, Mixing time of dough (min); P, Torque peak (%Torque*min); W, Elasticity or strength (J*10-4); P/L:, alveograph tenacity/extensibility ratio (P/L); LV, Loaf
Volume(mL); GFD, Duration of grain filling (days); GFR, Rate of grain filling (mg day-1).
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The coefficient of variation (cv) ranged from 33.5% for P/L to

2.8% for FY, with an average of 16.8%. Most traits showed moderate

to high heritability (0.66-0.90) except for TW (0.24). The traits with

the highest heritability were W (0.90), FS (0.85), and FY (0.81). In

contrast, GY, TKW, GFR, GH and TW showed the lowest values

below 0.60.

To identify Mediterranean landraces as a source for improving

grain quality in breeding programs, the genotypes were grouped

based on the three quality parameters used nowadays (Pena, 2002)

(Figure 1). The protein content in grains was classified into Group 1-

≥13%, Group 2- ≥12%, Group 3- ≥11, and Group 4->10. As is shown

in Figure 1, for the rheological properties, most of the landraces with

higher protein concentrations also have high P/L (a non-desired trait)

but low gluten strength or W. Some exemptions can be observed, for

instance, the landraces of protein group 1 (in red) at the top of the
Frontiers in Plant Science 05
plot have a medium-high W and moderate P/L. For instance,

accession T-317 showed medium gluten strength (W=208) and

medium-low GP, indicating this accession’s high intrinsic

gluten quality.

The checks ‘Anza’ and ‘Soissons’ have been included in the plot to

show their position in relation to the landraces. They were included in

protein content group 3, thus lower than most landraces. For the

gluten properties, both checks showed medium tenacity/extensibility

ratio (P/L) (2.02 and 2.08 for Anza and Soissons, respectively), being

Soissons one of the genotypes with higher gluten strength (W=346),

only below the landrace ‘Bistra’ (W=451).

The genetic correlations among traits were calculated (Figure 2),

showing highly significant coefficients between grain and flour

protein (1.00). These traits showed, as expected, a moderate but

negative correlation with grain yield (-0.55 and -0.58, respectively)
FIGURE 1

Comparison of grain protein concentration with alveograph traits. Grain protein (GP) is coloured based on the quality levels (Group 1≥13%, Group 2≥12%,
group 3≥11% group 4>10%), P/L, alveograph tenacity/extensibility ratio (P/L), W Elasticity or strength (J*10-4); NA, not assigned.
FIGURE 2

Correlations between bread wheat quality traits measured in a population of Landraces (average of two cropping seasons). Significant Pearson
correlation coefficients at p ≤ 0.05 are highlighted with *.Traits, P/L,alveograph tenacity/extensibility ratio; W, Elasticity or strength (J*10-4); GFD,
Duration of grain filling (days); FP Flour Protein (%); FS, Sedimentation test (mL); FYL, Flour Yield(%); GH, Grain hardness; GP, Grain protein (%); LV, Loaf
Volume(mL); MT, Mixing time of dough (min), P, Torque peak (%Torque*min); GFR, Rate of grain filling (mg day-1); TKW, Thousand kernel weight (g); TW,
Test weight (kg hL-1); GY, Grain yield (t ha-1)).
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and TKW (not significant) and were poorly correlated with FS (0.31),

GH (0.15 and 0.13), and TW (0.2 and 0.15). The sedimentation test

(FS) positively correlates with the dough’s mixing time, strength, and

viscosity. All the rheological properties were highly correlated,

excluding alveograph (P/L); the correlation between W, MT, and P

was highly significant, as expected, because of the influence of gluten

on viscosity properties. As predicted, the GH is also positively

correlated with the FY (0.46), MT (0.45), P (0.56), W (0.61), and P/

L (0.64). LV correlated significantly with rheological properties (W,

0.74; MT, 0.77; FS, 0.79; P, 0.8). Grain filling duration was negatively

correlated with protein concentrations, whereas the grain filling rate

(GFR) had a positive and poor correlation. GY, TKW, GFD, and TW

were positively correlated. TW and GFD were negatively correlated

with the GFR (-0.32 and -0.52, respectively). TKW was negatively

correlated with GH (-0.57), FS (-0.35), P (-0.46), MT (0.41), W (-0.52)

and LV (-0.37).

When correlations were calculated independently for the different

genetic subpopulations (Supplementary Table 2) lower number of

significant correlations were observed. It is remarkable the difference

for TW and FY significant correlations between SP1 and the whole

collection, TW and protein content (GP and FP) between SP2 and the

whole collection, and finally GY, TW, FY and protein content (GP

and FP) between SP3 and the whole collection (Figure 2 and

Supplementary Table 2). Differences in significance were observed

for different traits between subpopulations. For example GFR was

highly correlated with FS, MT, P, W, P/L and LV in SP1 but not in

SP2 and SP3. GFR correlated negatively with protein content in SP3,

but positively in SP1 and SP2. The opposite situation was between P

and W, that were positively correlated in SP3, but negatively in SP1

and SP2.
Prediction equations for loaf volume

The complexity of the analyses of some quality traits is a

bottleneck in screening large germplasm collections. Multiple linear

regression equations were developed to predict a complex trait such as

loaf volume using a maximum of three simpler traits (Table 2). Seven

quality parameters were selected from simple to complex

phenotyping methods (GP<GH<FY<FS<MT<W<P/L). Initially, the

LV was predicted by simple traits (GP+FS+GH) with a multiple

regression R2 of 0.67 (Equation 1). In equation 2, the prediction

ability was increased from 0.67 to 0.73 by replacing GH with MT (a

time-consuming measurement of bread wheat quality) (Table 2). The
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multiple regression (Equation 3), including flour mixing time (MT),

flour yield (FY), and sedimentation (FS) (R2 = 0.72), was also

significant. The combination of simple traits (FS) and complex

traits (W+P/L) in the model resulted in the best predictive model

with an R2 of 0.82. Moreover, including complex traits in the model

(Equation 5) did not result in the highest predicting ability compared

to Equations 2 and 3. The five models were tested for cross-validation

to check the correlation between predicted and observed, and the

correlations ranged from 0.74 to 90% (Table 2).
Identification of marker-trait associations
and QTL hotspots

A summary of marker traits associations (MTA) for the mean

values of the traits across two years is shown in Supplementary

Table 3 and Figures 3A, B. Using a false discovery rate (FDR)

approach for detecting spurious associations, only 2 MTAs showed

a -log P>4.8 at P<0.05. Thus, a standard threshold previously reported

in several studies in the last years in wheat (Condorelli et al., 2018;

Mangini et al., 2018; Sukumaran et al., 2018; Rufo et al., 2021; Wang

et al., 2021a) at -log P≥3.0 was used. A total of 165 significant MTAs

were detected throughout the genome, excluding chromosome 2D

(Figure 3, Supplementary Table 3). The proportion of phenotypic

variance of MTAs (R2) ranged from 6.66% to 13.02%, with a mean of

8.44% across all the traits (Supplementary Table 3). The highest

average R2 was identified for P (10.17%) and the least for GFR

(7.24%). The number of MTAs detected was 71, 78, and 16 for A,

B, and D genomes. The highest number of associations were detected

on chromosomes 4A (27), 3B (24), 5B (15), and 1A (14). In contrast,

chromosomes 1D, 5D, and 6A reported only one MTA. Among 165

MTAs, 25 MTAs were significant for more than one trait, referred to

as multi-trait MTAs, and the remaining 140 were trait-specific MTAs.

The trait with the highest number of MTAs detected was dough

strength (W), with 20 MTAs, showing an allelic effect ranging from

60.52 j×10-4 to 68.3 j×10-4. In contrast, only 3 trait-specific MTA were

detected for P/L and TW. Eleven and fifteen markers were

significantly associated with grain and flour protein concentration,

respectively, with allelic effects from -0.76% to 0.84%. Among them,

nine SNPs were significant for both traits. Thirteen MTAs for MT (R2

from7.93% to 11.27%, allelic effect=-0.52 to 0.53 min) and 14 MTAs

for PEAK (R2 from 7.63% to 12.16%, allelic effect=-21.51 to 25.80%

Torque×min) were identified; among them, 11 were in common for

both traits, and only 2 were trait-specific for MT, and 3 for P. Flour
TABLE 2 Prediction equations for loaf volume.

Equation Multiple R-squared Adjusted R-squared Residual standard error P-Value r2

1) LV=GP+FS+GH 0.67 0.66 38.33 < 2.2e-16 0.74

2) LV=GP+FS+MT 0.73 0.73 34.58 < 2.2e-16 0.85

3) LV=MT+FYL+FS 0.72 0.71 34.82 < 2.2e-16 0.84

4) LV=FS+W+P/L 0.82 0.81 28.02 < 2.2e-16 0.90

5) LV=MT+W+P/L 0.75 0.74 32.56 < 2.2e-11 0.80
frontiers
P/L:, alveograph tenacity/extensibility ratio (P/L); W, Elasticity or strength (J*10-4); FS, Sedimentation test (mL); FY, Flour Yield(%); GH, Grain hardness; GP, Grain protein (%); LV, Loaf Volume
(mL); MT, Mixing time of dough (min).
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sedimentation test reported 10 MTAs (6 trait-specific MTAs) and for

loaf volume 4 MTAs (3 trait-specific MTAs). Ten and thirteen trait-

specific MTAs were identified for FY (R2 from 7.27% to 11.35% and

allelic effect from -2.45% to 1.85%) and GH (R2 from 6.78% to 9.01%

and allelic effect from -16.85% to 18.81%) respectively. The allelic

effect for all multi-trait MTAs was in the same direction except 3

SNPs (GENE-1350_36, Ra_c22880_760, Ra_c71628_188) on

chromosome 2A, which were significant for protein concentration

and test weight with an opposite allelic effect between protein

concentration and test weight.
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For agronomical traits, we identified 14, 12, 10, and 8 MTAs for

yield, GFD, TKW, and GFR, respectively. Among them, two markers

associated with yield were also associated with MT and GFD. The rest

of the MTAs were trait specific. The mean of phenotypic variation

explained by marker (PVE) of GY MTAs (8.33%) was similar to the

reported by the quality traits, which ranged from 10.17% for P and

7.41% for TW (mean of 8.5% for all of the quality traits). Whereas,

GFD and GFR showed lower PVE of 7.74 and 7.24, respectively.

To identify the genomic regions most involved in trait variation,

excluding spurious associations, QTL hotspots were considered, and
B

C

A

FIGURE 3

QTL detection for quality and agronomic traits. (A) From inside out, GWAS for P/L, W, FP, FS, GP, LV, MT, P. (B) From inside out, GWAS for GFD, FY, GFR,
TKW, TW, GY, GH. The colour bar indicates the density of SNP markers along the chromosomes. Red dots indicate significant MTAs (-log P>3). (C) QTL
overview index. The index values (peaks) are represented along chromosomes as a red line. Green dashed tiles represent the significant MTAs below the
QTL overview index.
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MTAs were grouped following the QTL overview index developed by

(Chardon et al., 2004) as previously reported by (Rufo et al., 2021)

(Figure 3C). A total of 64 peaks were identified using as a threshold

the mean of the overview index across the 21 chromosomes (0.05). In

contrast, when the high threshold was used (i.e. 5 times the overview

index mean) (0.23), a total of 62 peaks were detected. From these last

peaks, a total of 53 hotspots were identified (Table 3). The highest

number of MTAs were detected in QTL_4A.3 (15), including 7 MTAs
Frontiers in Plant Science 08
for MT and P and 1 for LV, followed by QTL_3B.3(13), including 5

MTAs for GP and 8 MTAs for FP.

The two major QTL hotspots for yield-related traits were

QTL_2B.1 with 8 trait-specific MTAs, 5 for TKW and 3 for GFD,

QTL_4B.2 with five MTAs for TKW and QTL_5B.3 with 3 MTAs for

GY. QTL hotspots, including quality and agronomical traits, were

QTL_1A.2, QTL_2A.1, QTL_4A.1, QTL_4A.2, QTL_5A.1,

and QTL_7A.2.
TABLE 3 Summary of QTL hotspots for quality and agronomic traits.

QTL Hotspot CI (cM) MTAs N traits Traits

QTL_1A.1 24-26 2 1 GFR

QTL_1A.2 68-72 7 3 FY, P, GFR

QTL_1A.3 78-79 1 1 FY

QTL_1A.4 84-89 3 2 FS, FY

QTL_1A.5 95-96 1 1 GH

QTL_1B.1 9-10 1 1 LV

QTL_1B.2 64-66 2 1 GH

QTL_1B.3 78-81 3 2 GH, W

QTL_1B.4 90-91 1 1 GFR

QTL_1B.5 111-112 1 1 FY

QTL_1B.6 120-121 1 1 FS, FY

QTL_2A.1 103-107 8 4 FP, GFD,GP,TW

QTL_2A.2 143-144 1 1 FS

QTL_2B.1 81-85 8 2 GFD, TKW

QTL_3A.1 66-67 1 1 FS

QTL_3B.1 20-21 1 1 GFR

QTL_3B.2 56-58 4 2 FY, GH

QTL_3B.3 65-67 13 2 FP,GP

QTL_3B.4 74-75 1 1 GH

QTL_3B.5 89-92 3 1 W

QTL_3D.1 129-131 3 1 W

QTL_4A.1 49-53 7 4 GFD, GH, GY, LV

QTL_4A.2 56-59 4 2 GY, MT

QTL_4A.3 136-139 15 3 LV, MT, P

QTL_4B.1 5-6 1 1 GH

QTL_4B.2 14-18 5 1 TKW

QTL_4B.3 60-65 6 3 FS, P, W

QTL_4B.4 74-77 2 2 GFD, GY

QTL_4B.5 103-106 2 1 GY

QTL_4D.1 9-10 1 1 P

QTL_4D.2 170-171 1 1 W

QTL_5A.1 62-65 3 2 GFD, W

(Continued)
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In silico candidate genes identification

The significant MTAs within the hotspots were considered for

candidate genes (CG) screening. In order to delimitate a short region

for searching candidate genes, a window of ±500kb was defined for

the significant marker in the central point of the QTL hotspot. A total

of 807 candidate genes were found across the 52 QTL hotspots

(Supplementary Table 4). The number of CGs detected per hotspot

ranged from 5 in QTL hotspots, QTL_1B.2 (64 – 66 cM) and

QTL_5A.5 (104 – 105 cM) to 54 in QTL_2B.1 (81 – 85 cM).

Search for differentially expressed genes (DEG) was performed

using the public expression database at http://www.wheat-expression.

com/ (Ramıŕez-González et al., 2018). DEGs were identified in four

tissues: roots, leaves/shoots, spikes, and grains. Among the 807 genes,

254 were expressed in grains, but only 10 were grain-specific

(Supplementary Table 4). Twenty-nine of the 254 CGs were up-

regulated, and one hundred and two were down-regulated during the

grain developmental stage (Milk stage< soft dough stage< hard dough

stage< dough stage and finally ripening stage); the remaining CGs did

not show a clear expression pattern (Supplementary Table 3). The ten-

grain specific CGs were compared in two tissues, the starchy

endosperm and aleurone layer, as reported in (Gillies et al., 2012).

Seven CGs were located in hotspots, including quality traits
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TraesCS2A03G1224100, TraesCS3B03G0177500, TraesCS3B03

G1232500, TraesCS4A03G0658300, TraesCS5B03G0662800,

TraesCS6D03G0007800, TraesCS7A03G0412300 and remaining

three (TraesCS1A03G0034100, TraesCS2B03G0319700,

TraesCS2B03G0320000) in hotspots for duration and rate of

grain fill ing (Table 4). The CGs from quality hotspots,

TraesCS2A03G1224100, TraesCS3B03G0177500, TraesCS7

A03G0412300, and TraesCS5B03G0662800, are highly expressed in

starchy endosperm compared to aleurone layer. Whereas CGs

TraesCS3B03G1232500 and TraesCS4A03G0658300 have higher

expression levels in the aleurone layer than in starchy endosperm.

Grain-specific CGs for GFR and GFD hotspots are highly expressed in

the starchy endosperm compared to the aleurone layer.
Evaluation of genomic prediction

Prediction performance was evaluated following a cross-

validation approach using a random selection of 80% of the

landraces as training population and 20% as testing population in

150 iterations. The genomic prediction accuracies corresponding to

the mean of the 150 iterations are shown in Table 1. The results for

agronomical traits were 0.65, 0.62, 0.46, and 0.63 for GFD, GFR,
TABLE 3 Continued

QTL Hotspot CI (cM) MTAs N traits Traits

QTL_5A.2 70-71 2 2 FP, GP

QTL_5A.3 89-91 2 1 GH

QTL_5A.4 94-95 1 1 GH

QTL_5A.5 104-105 1 1 W

QTL_5B.1 51-53 2 2 MT, P

QTL_5B.2 56-57 1 1 FP

QTL_5B.3 76-79 3 1 GY

QTL_5B.4 82-84 3 1 FY

QTL_5B.5 90-91 1 1 FY

QTL_5B.6 97-100 6 3 FP, FS, GP

QTL_6B.1 70-73 3 3 MT, P, W

QTL_6B.2 105-106 1 1 FS

QTL_6D.1 9-10 1 1 P/L

QTL_6D.2 82-83 1 1 LV

QTL_6D.3 118-119 2 1 GFR

QTL_7A.1 43-44 1 1 MT

QTL_7A.2 125-128 4 3 GFD, MT, P

QTL_7A.3 222-223 1 1 GY

QTL_7B.1 89-90 1 1 W

QTL_7B.2 162-163 1 1 GY

QTL_7D.1 160-163 2 1 GP
P/L:, alveograph tenacity/extensibility ratio (P/L); W, Elasticity or strength (J*10-4); GFD, Duration of grain filling (days); FP Flour Protein (%); FS, Sedimentation test (mL); FYL, Flour Yield(%); GH,
Grain hardness; GP, Grain protein (%); LV, Loaf Volume(mL); MT, Mixing time of dough (min), P, Torque peak (%Torque*min); GFR, Rate of grain filling (mg day-1); TKW, Thousand kernel weight
(g); TW, Test weight (kg hL-1); GY, Grain yield (t ha-1).
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TKW, and GY, respectively (Table 1). The accuracies for agronomic

and quality traits were moderate to high, ranging from 0.65 for GFD

to 0.43 for LV. Traits with lower prediction accuracies were FY (0.33),

GH (0.16) and TW (-0.03). QQ plots for the accuracies of the

iterations followed the normal distribution (Supplementary Figure 1).

Figure 4 shows the comparison of cross validation accuracies

between the mean data across years with both years analysed

separately and joint data of the two years using the year as

environmental factor in the model. Using the mean of the data

from the two years resulted in the highest prediction accuracies for

most of the traits. Joint data of different years did not increase the

power of the prediction.
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Discussion

The chemical composition of grains makes wheat the preferable

crop for baked end products. However, to meet the industry

requirements, improving the quality traits without reducing grain

yield is necessary. Due to the green revolution at the end of the 1960s,

breeding was focused on increasing grain yield, which originated in a

reduction in the quality parameters of the new cultivars, particularly

protein content, which is considered a significant limitation for the

baking industry (Goryńska-Goldmann et al., 2021). To enhance the

quality characteristics by increasing genetic diversity, the use of wild

relatives and landraces is a valuable approach in pre-breeding
TABLE 4 List of genes differentially expressed in the grain.

Hotspots CI Trait Gene ID (v2.1) Description tpm starchy endo-
sperm

tpm aleurone
layer

QTL_1A.1 24-26 GFR TraesCS1A03G0034100 Defensin 6.46 2.96

QTL_2A.2 143-
144

FS TraesCS2A03G1224100 Antimicrobial peptide 10.63 3.40

QTL_2B.1 81-85 GFD TraesCS2B03G0319700 Aspartic proteinase nepenthesin 6.21 1.70

QTL_2B.1 81-85 GFD TraesCS2B03G0320000 Universal stress protein 0.21 0.32

QTL_3B.2 56-58 GH TraesCS3B03G0177500 Cysteine proteinase inhibitor 7.49 2.84

QTL_3B.5 89-92 W TraesCS3B03G1232500 COX3 mRNA-specific translational activator
PET494

0.00 6.79

QTL_4A.1 49-53 GH TraesCS4A03G0658300 Dehydrin 1.51 4.57

QTL_5B.1 51-53 MT,
P

TraesCS5B03G0662800 Subtilisin-like protease 4.31 0.09

QTL_6D.1 9-10 P/L TraesCS6D03G0007800 SKP1-like protein 1.73 0.00

QTL_7A.2 125-
128

MT,
P

TraesCS7A03G0412300 Protein curvature thylakoid chloroplastic-like 8.46 5.74
tpm, (transcript per million); P/L:, alveograph tenacity/extensibility ratio (P/L); W, Elasticity or strength (J*10-4); GFD, Duration of grain filling (days); FS, Sedimentation test (mL); GH, Grain
hardness; MT, Mixing time of dough (min), P, Torque peak (%Torque*min); GFR, Rate of grain filling (mg day-1).
FIGURE 4

Genomic prediction accuracies using cross validation during 2016, 2017, joint 2016 and 2017 data, and mean across years. CV- Cross Validation; GY-
Grain yield (t ha-1); TW, Test weight (kg hL,1); TKW, Thousand kernel weight (g); GH, Grain hardness; FY, Flour Yield (%); GP, Grain protein (%); FP, Flour
Protein (%); FS, Sedimentation test (mL); MT, Mixing time of dough (min); P, Torque peak (%Torque*min); W, Elasticity or strength (J*10,4); P/L:,
alveograph tenacity/extensibility ratio (P/L); LV, Loaf Volume(mL); GFD, Duration of grain filling (days); GFR, Rate of grain filling (mg day-1).
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activities. Landraces are considered a natural reservoir of genetic

variation within the species and an invaluable source of new alleles to

widen the genetic variability in breeding populations as they were

selected during their migration process and are well adapted to their

regions of origin (Lopes et al., 2015; Royo et al., 2022). In previous

studies with the plant material used in this work, Rufo et al. (2019)

and Royo et al. (2022) found a considerable variation in their genetic

background and environmental adaptation and herein, analysis of

bread wheat quality properties in landraces are explored.
Exploring genetic diversity and wide
phenotypic variation of bread wheat
quality properties in landraces

Bread wheat varieties have different and specific quality properties

for adaptation to various baking processes, dough handling

properties, and many more (Pena, 2002; Guzmán et al., 2016;

Guzman et al., 2019). The classification of end-use product

properties considers the quality parameters and the selection of

cultivars for each purpose. Overall, the landraces studied herein

have shown high protein contents and lower W compared to the

check line “Soissons”, which confirms previous results obtained by

(Sanchez-Garcia et al., 2015), with Spanish landraces producing low-

strength flours. Moreover, a wide range of variation was observed for

most of the bread wheat quality parameters tested in this important

collection of wheat landraces, as shown by the high proportion of

variation explained by ‘genotype’ in the analysis of variance. Although

environmental factors influenced the quality parameters of bread

wheat, the genotype variance stood higher in the landraces compared

to the genotype by the environment interaction (Graybosch et al.,

1996; Huebner et al., 1997; Zhu and Khan, 2001).

Moreover, the ratio of the variance components of genotype and

genotype × environment of protein concentrations and grain

hardness compared to milling, mixing time, baking, and rheological

traits were low. Therefore, the influence of the genotype by the

environment interaction was strong in grain hardness and protein

concentration compared to other quality traits. This agrees with Royo

et al. (2022), suggesting that human selection to adapt grain quality

traits to local preference had more influence than the environment in

selecting quality traits.

The landrace population has shown a wide range of variations in

kernel hardness. Hard kernels require more energy to crush, and a

high amount of water is absorbed due to their coarse texture and high

amount of starch damage that is useful for bread making. In contrast,

soft kernels require less energy during milling, resulting in a fine flour

that is complicated to handle because of less moisture absorption

while baking and is used for cakes, cookies, and pastries (Jolly et al.,

1993; Pena, 2002; Ikeda et al., 2005). Similarly, grain hardness was

significantly correlated with flour yield and rheological properties in

this study using landraces. However, the protein and sedimentation

tests showed lower Pearson correlation coefficients with grain

hardness, which was also observed by Miller et al. (1978).

As expected, the protein concentrations in grain and flour are

highly correlated because of the large proportion of protein stored in

wheat endosperm. The protein concentrations are negatively

correlated with LV and MT, whereas FS is highly correlated due to
Frontiers in Plant Science 11
the gluten strength influence on the bread loaf volume (Færgestad

et al., 1999; Uhlen et al., 2004). LV showed a positive correlation with

FS and rheological traits (MT, P, W) but was negatively correlated

with P/L. It is concluded that the gluten extensibility was directly

proportional to the LV in the landraces and these traits respond

similarly to previously reported analysis in wheat modern

improved germplasm.

Differences in the number of significant correlations between the

whole panel of landraces when compared with single subpopulations

could be due to the sample size and the statistical power associated to

a higher number of genotypes in the analysis that makes it more likely

to detect significant differences. However, differences between

subpopulations may be due to the genetic differences among them

that increase the performance of different traits depending on the

environmental conditions. To increase the statistical power of the

analysis and make it more likely to detect significant differences

between the different genetic backgrounds, to increase the sample size

for each subpopulation should be necessary. This could help to reduce

the influence of random variation and make it easier to detect any true

differences in the relationships between the traits.Phenotype-based

selection and prediction of complex traits

Given the ongoing demand of the bakery industry, it is necessary

to widen the selection for different traits to cope with the different

bakery products (Zhygunov et al., 2020). Hence the raw material with

high flour yield, protein content, and strong or weak gluten

is essential.

According to the biplot showing the three traits used for quality

assessment (Figure 1), different landraces can be selected for pre-

breeding activities to introgress those traits in the breeding programs

or to develop new mapping populations for candidate genes

identification. South-western Mediterranean landraces (SP1) were

clearly distinguishable from those from northern and eastern

regions by their lower value for W (W<200 J×10-4), that may be

due to the preference in this region for flat breads, which require less

gluten strength, as previously suggested by Royo et al. (2022).

Accessions Bistra, TRI 8358, TRI 17938, TRI 17006, Pades, and

Gemir - B showed all high levels of gluten strength (W>300 J×10-4)

and could be interesting sources for this trait, although at the same

time, their gluten was not extensible (P/L always higher than 1.5). On

the other hand, accessions Florence 193, TRI 2100, Isla de

Fuerteventura, T-317, Mokhtar, and Candeal were identified as

excellent sources of gluten extensibility (P/L> 0.7). However, in this

case, all of them, except accession T-317, showed inferior gluten

strength. Accession T-317 showed medium gluten strength (W=208

J×10-4) having medium-low GP, which indicates this accession’s high

intrinsic gluten quality. In terms of end-use quality (bread-making in

the case of the current study), accessions Moriborska, Mars Rouge

Sans Barbe, and TRI 7821 were the best performers (LV> 770 ml).

The three of them exhibited medium gluten strength (W= 216-208

J×10-4) combined with balanced gluten (P/L ≤ 1). Of these three

accessions, TRI 7821 is probably the most interesting from the

breeding point of view, as it performed similarly to the other two

accessions but showed almost 1% less protein content, indicating its

superior intrinsic gluten quality.

It is also of special interest the prediction of complex traits by the

most straightforward traits to reduce phenotyping efforts (Lindhauer,

2012). Loaf volume is a key trait in the baking industry. However,
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phenotyping loaf volume is expensive, time-consuming and requires

well-equipped laboratories with specialized technicians to evaluate in

an extensive breeding program population. The dough end-use

quality tests also needed a large quantity of flour. Therefore, the

trend of indirect selection by predicting the baking quality traits

became common practice using obligatory quality indicators like

protein content and alveograph traits that are evaluated in the

selection of wheat varieties (Lindhauer, 2012).

The results of multiple linear regression to predict loaf volume by

multiple traits depending on the complexity of phenotyping

concludes that the prediction ability is increased by using simple

traits to complex traits. Model equation 2 with manageable traits was

intermediate compared to the complexity of traits in equations 3 and

5; equation 4 stood outstanding by using complex traits. Similar

models were previously performed using modern cultivars (Rózylo

and Laskowski, 2011; Gabriel et al., 2017; Laidig et al., 2018), and this

is the first time that these models are also reported in a wheat landrace

population of non-improved germplasm.
Marker trait associations

Dissecting the genetic bases of complex traits in crop breeding is

essential to carry out molecular-based approaches to improve

cultivars. Numerous attempts have been previously done to identify

QTLs and marker–trait associations linked to traits of interest to

achieve marker-assisted selection (MAS) approaches and the

introgression of alleles of commercial interest in improved

genotypes (Pandurangan et al., 2022).

The distribution of the 165 MTAs across genomes is similar to the

reported by (Rufo et al., 2021) using agronomic and vegetation

indices, 43%, 47% and 10% for genomes A, B and D, respectively.

Other studies with similar results (Chao et al., 2010; Wang et al., 2014;

Gao et al., 2015) explained this distribution of MTAs in the 3 genomes

as a consequence of the lower genetic diversity and higher linkage

disequilibrium found in the D genome in comparison with A and

B genomes.

To reduce the complexity of the high number of MTAs found by

the GWAS analysis, QTL hotspots were defined using the QTL

overview index developed to identify the regions of the genome

with a higher density of QTL peaks (Chardon et al., 2004). The

suitability of this approach is reflected in the selected hotspot regions,

as they reported a higher number of MTA density (Figure 3C).

Comparison with other studies mapping quality traits in the last

year showed the presence of common genomic regions among

Mediterranean landraces and other germplasm types. Four regions

co-localized with the study from (Battenfield et al., 2018) using

CIMMYT breeding lines (1A.2, 1B.2, 4B.2, and 7A.2), although

these common QTL regions showed associations for different traits.

Two QTL hotspots (3B.5 and 4B.5) were in similar positions to those

reported by Yang et al. (2019) in a Chinese winter wheat collection,

but they did not share common traits. The study reported by (Hao

et al., 2022) also with a collection of Chinese breeding lines that

shared three regions, 2B.1, 3D.1, and 4B.5, although the last one

reported an association with yield in our study. Finally, when

comparing our results with (Rathan et al., 2022), using a diverse
Frontiers in Plant Science 12
panel including breeding lines, landraces, and synthetic lines, four

common regions were observed: 1A.2, 3B.3, 3B.5, and 5B.1. Only in

the hotspot 3B.3 associations for the same traits were found (protein

content). Identifying common genome regions among different

studies but mapping different traits may indicate the complexity of

the analysed traits, clustering genes controlling different quality traits

or genes showing pleiotropic effect. Identifying them could be of

interest to pyramiding different genes in future breeding programs.

Additionally, using the reference genome makes possible a rapid

identification of common molecular markers among the different

studies that can be used for marker-assisted breeding.
In silico analysis of candidate genes

Using the gene annotation from the ‘Chinese spring’ reference

genome sequence (IWGSC, 2018) led to the identification of 807 gene

models within the 53 QTL hotspots. CG mining was carried out by

searching for grain-specific DEGs in different tissues through in-silico

analysis at http://www.wheat-expression.com.

Our results indicate that 10 candidate genes were specifically

expressed in grain. Among them, those found in the GFR and GFD

hotspots were mainly expressed in starchy endosperm. The CG

TraesCS3B03G0177500 located in the hotspot 3B CI of MTA

significant for GH is also mainly expressed in the starchy

endosperm. This CG encodes a cysteine proteinase inhibitor

protein. This dominant protein plays a crucial role in the

transportation of storage proteins and is also involved in the

hydrolysis of gluten protein responsible for the rheological

properties of dough in wheat (Koehler and Ho, 1990; Capocchi

et al., 2000; Mikola et al., 2001; Mäkinen and Arendt, 2012). As

reported by (Usman et al., 2021), a mutation in the gene encoding

Cysteine proteinase inhibitor protein in rice resulted in a positive

regulation during grain development and increased grain yield

(Usman et al., 2021).

Other CG expressed in different tissues were found by other

authors to be involved in quality traits. The SNP, Ra_c71628_188

within the QTL hotspot, QTL_2A.1 is present within the CG

TraesCS2A03G0724700 encoding for an alpha amylase that is an

important enzyme involved in the degradation of starch (Majzlova

et al., 2013). The overexpression of a known isoform of AMY3

resulted in a high level of alpha-amylase activity in harvested

grains, producing an increase in loaf volume when baking additives

were added in the baking process (Ral et al., 2016). Multi trait MTA

SNP Ra_c22880_760 in QTL_2A.1 is in the coding region of CG

TraesCS2A03G0724000 encoding a potassium transporter. As

reported by (Lu et al., 2014) the higher accumulation of potassium

also significantly increased kernel size and weight and a positive

change in the glutenin/gliadin ratio concentration was observed. The

multi-trait MTA wsnp_Ku_c3185_5949143 is significant for MT, W,

and P and is located in the coding region of TraesCS6B03G0922000

involved in ADP ribosylation. ADP-ribosilation factors (Arf) proteins

are involved in avoiding or clearing the vesicles trafficking that

occurred during the transportation of gluten proteins from the

rough endoplasmic reticulum (ER) to storage vacuoles via the Golgi

complex and vesicles in ER (Wennerberg et al., 2005). Altering this
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gene led to a gluten strength and protein content change. In addition,

the gluten macropolymer and glutenin subunit are affected, resulting

in weak gluten strength and extensibility due to the change in the

vesicle trafficking (Tyler et al., 2015).

The CG TraesCS4A03G1111500 encodes for a phosphoglucan/

water dikinase present in the QTL hotspot QTL_4A.3 involved in MT,

P and LV. The SNP RFL_Contig3841_2409 significant for MT and P

is present within the CG. To catalyze the phosphorylation of starch,

two isoforms of glucan water dikinase are involved; Glucan water

kinase1 (GWD1) and phospoglucan water dikinase (PWD1/GWD3)

(Edner et al., 2007). Transgenic wheat developed by reducing the

expression level specifically in the endosperm, reduced starch

phosphate content and increased grain size, enhancing by 29% the

grain yield and by 26% biomass (Ral et al., 2012). The difference in the

rheological properties and dough preparation in bread wheat differs

by the starch content in the flour (Cao et al., 2019; Gao et al., 2020).

Similarly, TraesCS1B03G0980800 in QTL hotspot QTL_1B.4

encoded an alpha-glucan water dikinase (GWD), also involved in

starch degradation. As reported by (Wang et al., 2021b) the

overexpression of GWD1 in rice enhanced the grain yield and

quality traits

CGs within the QTL hotspots involved in agronomical traits are

mostly related to biotic and abiotic stress resilience, growth regulators,

photosynthesis process, and other metabolic processes. For instance,

eighteen Peroxidase (POD) and two flowering-promoting genes are

detected in the region of QTL_2B.1 responsible for grain filling and

grain weight duration. UDP-Glycosyltransferases have been

correlated in wheat with the increase of grain wheat in

chromosome groups 2 and 7 (Hou et al., 2014). In our study, we

detected UDP-Glycosyltransferase genes in chromosomes 1A, 1B, 2B,

3B, 4B, 5A, and 6D, most of them were detected in hotspots involved

in yield and yield-related traits. The CG TraesCS1A03G0031500

found in QTL_1A.1 encodes a transforming growth factor beta

receptor. The mutation of this gene in rice increased the yield by

15-44% in a greenhouse experiment (Wu et al., 2008). Further

experiments are required to evaluate its effect in wheat.
Genomic prediction within the
landrace collection

Genomic prediction or selection (GS) refers to a marker-based

selection aimed to enhance the genetic gain of quantitative traits in

breeding programs. We used a cross-validation design to evaluate the

accuracy of GS in Mediterranean bread wheat landraces to improve

quality traits.

The quality traits providing the highest prediction accuracies

using mean data of the two years experiments were W, MT and P.

In Moderate prediction, accuracies were found in the landrace panel

(0.33 – 065) except for TW, GH, and P/L, which reported low

accuracies. The low accuracy in TW and GH was expected of its

low heritability. The magnitude of the accuracies of quality traits is

similar to a previous study in wheat using F5-derived F7 lines from the

CIMMYT wheat breeding program (Battenfield et al., 2016). These
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results indicated the potential to use genomic selection not only in

modern wheat family selection but also when using landraces to

increase genetic diversity.

When data of both years of experiments were included in the

prediction equation and including the year as environmental factor,

the cross validation accuracy for the majority of the traits were

relatively high, especially for GY, W, GFD and GFR, which have

accuracy values greater than 0.55. Most of the quality traits with

accuracies from 0.4 were not influenced by the environment and the

mean values showed the highest accuracies. Differences among years

were observed specially for traits as GY, TKW, GH and LV,

indicating the high influence of environmental conditions in

the prediction of these traits. However new experiments under

different conditions would be necessary to improve the accuracy

of predictions.
Conclusions

Traditionally, grain yield in wheat has been negatively linked to

bread quality properties in diverse sets of wheat germplasm,

particularly in modern wheat varieties. However, ideally, farmers

and the industry demand quantity and quality of wheat products, and

selection methods to build allelic preference for high yield together

with high quality are necessary. Herein, genetic variation for wheat

quality traits is explored in a population of landraces and significant

marker-trait associations were identified in most of the chromosomes.

The baking industries prefer rapid and straightforward

procedures for preparing the dough on a large scale. Knowing the

genetic control of grain components compared to agronomical

characteristics can be an elective way to develop a new variety for

commercial purposes. Although the bread wheat quality parameters

are highly polygenic, their high heritability indicates that these traits

can be easily manipulated in the selection process but considering that

their negative correlation with yield can indirectly affect agronomical

traits. The genomic regions proposed are potential targets for

developing a new allelic variation through genome editing. The

landraces used in our study can be useful as a resource for a new

natural variation and can be introduced in the breeding programme

as a parent.
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