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Cytoplasmic regulation
of chloroplast ROS
accumulation during
effector-triggered immunity

Jianbin Su* and Walter Gassmann

Division of Plant Science and Technology, Christopher S. Bond Life Sciences Center, and
Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
Accumulating evidence suggests that chloroplasts are an important battleground

during various microbe-host interactions. Plants have evolved layered strategies to

reprogram chloroplasts to promote de novo biosynthesis of defense-related

phytohormones and the accumulation of reactive oxygen species (ROS). In this

minireview, we will discuss how the host controls chloroplast ROS accumulation

during effector-triggered immunity (ETI) at the level of selective mRNA decay,

translational regulation, and autophagy-dependent formation of Rubisco-

containing bodies (RCBs). We hypothesize that regulation at the level of

cytoplasmic mRNA decay impairs the repair cycle of photosystem II (PSII) and

thus facilitates ROS generation at PSII. Meanwhile, removing Rubisco from

chloroplasts potentially reduces both O2 and NADPH consumption. As a

consequence, an over-reduced stroma would further exacerbate PSII excitation

pressure and enhance ROS production at photosystem I.

KEYWORDS

reactive oxygen species (ROS), effector-triggered immunity (ETI), mRNA decay,
cotranslational mRNA decay, Rubisco-containing body (RCB)
Introduction

Chloroplasts are the energy center where solar energy is converted into chemical energy via

the photosynthetic electron transport chain (PETC). Oxygenic photosynthesis unavoidably

generates a large amount of reactive oxygen species (ROS) in the form of singlet oxygen (1O2),

superoxide (O2
•-), hydroxyl radicals (OH•) and hydrogen peroxide (H2O2) (Foyer and Hanke,

2022; Li and Kim, 2022). Because of the coordination between photosynthetic control and ROS

scavenging systems, chloroplastic ROS (cROS) are maintained at a relatively low level (Foyer and

Hanke, 2022; Li and Kim, 2022). cROS accumulation has been observed in pattern-triggered

immunity (PTI), effector-triggered immunity (ETI) and various types of host-microbe

interactions (Liu et al., 2007; Dong and Chen, 2013; de Torres Zabala et al., 2015; Lu and Yao,

2018; Shang-Guan et al., 2018; Su et al., 2018; Kuźniak and Kopczewski, 2020; Kachroo et al.,

2021; Littlejohn et al., 2021). Based on the observation that ETI triggers cROS accumulation

whereas effectors of a virulent pathogen suppress this response (de Torres Zabala et al., 2015; Su
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et al., 2018), it has been widely accepted that cROS is essential for robust

ETI (Lu and Yao, 2018; Sowden et al., 2018; Kuźniak and Kopczewski,

2020; Kachroo et al., 2021; Littlejohn et al., 2021). It is worth noting that

cROS promotes susceptibility to necrotrophic pathogens (Rossi

et al., 2017).

In most cases known to date, ETI is initiated by the activation of

intracellular nucleotide-binding leucine-rich repeat receptors (NLRs).

According to their biological functions, NLRs are classified into sensor

NLRs and helper NLRs (Adachi et al., 2019; Feehan et al., 2020). Upon

activation, the majority of sensor NLRs further activate helper NLRs to

execute ETI. Activated helper NLRs oligomerize at the plasmamembrane

to form Ca2+ channels, leading to cytoplasmic Ca2+ influx (Jacob et al.,

2021.; Contreras et al., 2022). In the case of the ancient sensor NLR

ZAR1, which is functionally conserved across plant species, it is the

sensor NLR itself that oligomerizes to form Ca2+ channels (Bi et al.,

2021). Cytoplasmic Ca2+ influx triggers multiple downstream immune

responses, including activation of calcium-dependent protein kinases

(CPKs) and mitogen-activated protein kinases (MPKs), ROS

accumulation both at the plasma membrane and in chloroplasts, and

reprogramming of the cell at transcriptional, translational, and metabolic

levels (Ngou et al., 2022). Rapid chloroplast Ca2+ transients were

observed during PTI. Activation of pattern recognition receptors in

PTI also leads to cytoplasmic Ca2+ influx, in this case mediated by

plasma membrane-resident Ca2+ channels of the cyclic nucleotide-gated

channel (CNGC), the glutamate receptor-like (GLR) channel, and the

reduced hyperosmolality induced Ca2+ increase (OSCA) channel families

(Kim et al., 2022). This cytoplasmic Ca2+ influx in turn is sensed by the

chloroplast-localized calcium-sensing receptor (CAS) (Nomura et al.,

2012). Because cas mutants showed an impaired ETI-induced

hypersensitive response (HR), it is highly possible that cytoplasmic Ca2

+ influx could also alter chloroplast Ca2+ dynamics during ETI, which

might affect cROS accumulation. This review will discuss how cROS

accumulation might be regulated long-term by cytoplasmic processes

after the initial events of ETI activation. Because we focus our discussion

on events in the cytoplasm, other important contributions to cROS

accumulation, such as the chloroplast internal PSII repair cycle and

chloroplastic Ca2+ dynamics, are not included in this minireview.
Photosynthetic mRNA decay during ETI

The stability of mRNA varies widely, with deduced half-lives

ranging from minutes to more than 24 h (Narsai et al., 2007). The

deduced half-lives for many photosynthesis-related transcripts are

long-lived, such as LHCB4.2 (t1/2 ≈ 4.8 h), PSAD-2 (t1/2 ≈ 5.5 h),

PSBQ-2 (t1/2 ≈ 8.1 h), PSBP-1 (t1/2 ≈ 13.4 h), PSAH-1 (t1/2 ≈ 17.6 h),

and PSAK (t1/2 ≈ 20.3 h). An analysis of early microarray data found

that mRNA levels of photosynthesis-related genes involved in light

reaction, carbon assimilation, and chlorophyll synthesis globally

decrease irrespective of the type of host-microbe interaction,

suggesting that global downregulation of photosynthesis-related

genes is a component of defense responses (Bilgin et al., 2010).

Later, drastic downregulation of photosynthesis-related transcripts

was observed by activation of MPK3 and MPK6 (Su et al., 2018), two

MAP kinases displaying sustained activation during ETI (Tsuda et al.,

2013; Su et al., 2018). Surprisingly, many transcripts encoding

subunits of PSII and PSI as well as PSII activity regulators
Frontiers in Plant Science 02
drastically decreased after long-term MPK3/MPK6 activation or

during ETI (Su et al., 2018; Yoo et al., 2020). Interestingly, genes at

each step of the PSII repair cycle were found to be drastically

decreased by MPK3/MPK6 activation (Su et al., 2018), for example

STN8 kinase required for PSII core protein phosphorylation,

metalloproteases FtsH1/2/5 and Deg family of proteases Deg5/8

involved in the degradation of damaged PSII core protein D1, and

factors such as LQY1, PAM68, PSB28, LBA1, LBA2, and ALB3

involved in de novo synthesis and assembly of D1 into the PSII

core. Thus, the authors proposed that PSII is actively damaged during

ETI, which promotes the accumulation of cROS (Su et al., 2018). The

drastic decrease of these otherwise highly stable transcripts suggests

that photosynthesis-related transcripts are actively degraded during

ETI via mRNA decay mechanisms.

mRNA decay plays an important role in fine-tuning mRNA

abundance. Eukaryotic mRNAs are characterized by a 5’ m7G cap and

a 3’ poly(A) tail. The classical view on mRNA decay was thought to

consist of a step-wise process involving mRNA disassociation from

ribosomes, progressive removal of the poly(A) tail, 5’ decapping, and

exonucleolytic digestion in either the 3’-to-5’ or 5’-to-3’ direction (Abbasi

et al., 2013; Łabno et al., 2016; Zhang and Guo, 2017; Li et al., 2018)

(Figure 1). Specifically, mRNA catabolism is typically initiated with 3’

poly(A) deadenylation by the 3’-5’ poly(A)-specific ribonuclease (PRAN)

complex and the carbon catabolite repression 4-negative on TATA-less

(CCR4-NOT) complex. Then, deadenylated mRNA undergoes either 3’-

to-5’ decay by the RNA exosome, a multi-subunit exonuclease complex,

or 5’-to-3’ decay mediated by the XRN family of exoribonucleases. The

5’-to-3’ decay can only occur after the removal of the 5’m7G cap, which is

catalyzed by the decapping enzyme Decapping 2 (DCP2).

In addition to the classical deadenylation-mediated mRNA decay

pathway, recent advances highlight the importance of cotranslational

mRNA decay, referred to as translation-dependent mRNA decay

(Figure 1) (Zhang and Guo, 2017; Tuck et al., 2020; Biasini et al., 2021;

Mishima et al., 2022). For a long time, ribosome disassociation was

believed to be a prerequisite for mRNA degradation. However, in 2009

Hu and co-workers revealed that mRNA decay could occur on transcripts

associated with translating ribosomes (Hu et al., 2009). Subsequent high-

throughput experiments revealed that cotranslational mRNA decay is

widespread (Pelechano et al., 2015; Yu et al., 2016; Ibrahim et al., 2018).

Cotranslational mRNA decay is carried out by components of the

translation-dependent cytosolic mRNA surveillance pathways, such as

nonsense-mediated decay (NMD), no-go decay (NGD), and no-stop

decay (NSD), which are generally thought to remove aberrant transcripts

with premature stop codons, transcripts with stalled ribosomes, and

transcripts lacking a stop codon, respectively. Nevertheless, a growing

body of evidence suggests an important role for these pathways in

downregulating functional mRNAs in yeast, mammals, and plants

(Łabno et al., 2016; Yu et al., 2016; Simsek et al., 2017; Zhang and Guo,

2017; Heck andWilusz, 2018; Tuck et al., 2020; Biasini et al., 2021; Morris

et al., 2021; Mishima et al., 2022). It is becoming clearer that these

translation-dependent mRNA surveillance pathways do not uniquely

function in mRNA quality control, but also play an important role in

downregulating a large spectrum of functional mRNAs at the

transcriptome level. It remains to be determined how translation-

independent and translation-dependent mRNA decay are coordinated

during development and under stress conditions. In future, it will be

interesting to test how classical and cotranslational mRNA decay
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processes contribute to the degradation of photosynthetic transcripts

during ETI.
Photosynthetic mRNA translation
during ETI

During PTI, translation is globally reprogrammed, resulting in

poor correlation with changes in mRNA levels (Xu et al., 2017). To

date, changes of the translatome during ETI have been less studied

than those of the transcriptome. With TRAP-seq (translating

ribosome affinity purification RNA-seq), one group measured ETI-

induced translatome changes at 2 h post AvrRpm1 induction, which

triggers RPM1-dependent ETI (Meteignier et al., 2017). No global

translational reprogramming was observed during ETI. At the given

time point, only three photosynthesis-related differentially expressed

genes (DEGs) were found to be downregulated, namely PSAD-2,

LHCB2.2 and LHCB4.2. However, differentially translated genes

(DTGs) for photosynthesis were highly represented among the 2591

down-regulated DTGs (Meteignier et al., 2017). Hardly any

photosynthetic genes were found among the upregulated DEGs and

DTGs. Based on this 2 h ETI (early stage) dataset the high number of

DTGs and low number of DEGs among photosynthetic transcripts

suggest that most of the photosynthetic transcripts are disassociated

from polysomes and transferred into RNA-processing bodies for

decapping or for short-term storage. Thus, it is highly possible that

most photosynthetic transcripts undergoing mRNA decay eventually
Frontiers in Plant Science 03
do so in a classical manner, a promising hypothesis worth testing in

the future.

Using Ribo-seq, a protocol entailing polysome enrichment, RNase I

digestion, and cDNA library construction to recover ribosome-

protected mRNA fragments for further analysis, the work by Yoo

et al. measured the ETI-induced traslatome at 8 h post inoculation with

Pseudomonas syringae pv. maculicola expressing AvrRpt2, which

triggers RPS2-dependent ETI. In this study, 983 upregulated DEGs,

203 downregulated DEGs, 926 upregulated DTGs and 156

downregulated DTGs were discovered (Yoo et al., 2020). At the time

point after treatment in this study (8 h post inoculation, approximately

middle stage of ETI), ETI-induced changes in transcription and

translation are highly correlated (r = 0.92). Consistent with results at

2 h of AvrRpm1-triggered ETI (Meteignier et al., 2017), DEGs and

DTGs for both LHCB2.2 and LHCB2.4 were also downregulated (Yoo

et al., 2020). Interestingly, photosynthetic transcripts showed varied

translation efficiency, with some displaying increased and some

decreased efficiency at 8 h after AvrRps2-triggered ETI, though both

their DEGs and DTGs were downregulated. For example, the reduction

for LHCB2.2 was 2.8-fold by RNA-seq, while it was 2.1-fold by Ribo-

seq. This means that polysome-bound LHCB2.2 mRNA decreased less

compared to the total decrease of LHCB2.2 mRNA, i.e. polysome-

bound LHCB2.2 transcript contributed less to mRNA decay than

unbound transcripts or those bound to free 40S or 80S ribosomes.

Conversely, the reduction for LHCA6 was 1.5-fold by RNA-seq, while it

was 1.9-fold based on Ribo-seq, suggesting that polysome-bound

LHCA6 mRNA contributed more to mRNA decay, indicating that
FIGURE 1

Schematic representations of possible cytoplasmic regulatory mechanisms of cROS accumulation during ETI. ETI activation might trigger both
translation-dependent and -independent mRNA decay to actively degrade photosynthetic transcripts. 1) Translation-independent mRNA decay is initiated
with CCR4-NOT complex-mediated deadenylation. After 5’ decapping, further degradation is carried out by either 5’-3’ or 3’-5’ decay mediated by XRN
or exosome, respectively. 2) Translation-dependent mRNA decay can only occur through XRN-mediated 5’-3’ decay. Bulk mRNA decay of
photosynthetic transcripts impairs the repair or turnover cycle of photosynthetic complexes, mainly PSII, resulting in 1O2 and OH• production from
damaged PSII, indicated by a red x. 3) NLR activation triggers autophagy-dependent formation of Rubisco-containing body (RCB) through which Rubisco
as well as other stroma proteins are delivered into the vacuole for degradation. Removal of Rubisco may cause stroma overreduction and/or reduce O2

consumption, which facilitates electron leakage from PSI as well as cytochrome b6f complex (Cyt b6f) to O2, resulting in O2
•- formation at both stroma

side and inside thylakoid lumen. Other cytoplasmic mechanisms might also contribute to cROS accumulation during ETI.
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translation-dependent decay of LHCA6 mRNA occurs. The varying

translation efficiency suggests that translation-dependent and

-independent mRNA decay contribute differently to the regulation of

different photosynthetic transcripts.

Twomajor caveats in these considerations are that we are comparing

translatome datasets from two different groups, which were generated

with different materials, and even with different translatome analysis

methods, and that these datasets were derived from single, and different,

time points after ETI induction with two different effectors. For a

comprehensive understanding of ETI-induced translatome changes,

more time points across the whole ETI process are required.
Formation of Rubisco-containing
bodies during ETI

Rubisco (Ribulose-1,5-biphosphate carboxylase-oxygenase), the

most abundant protein on earth, accounts for 12%-30% of total leaf

protein in C3 plants (Andersson and Backlund, 2008). Rubisco-

containing bodies (RCB), small spherical bodies localized both in

the cytoplasm and vacuole, were first observed in naturally senescing

wheat leaves by immunolocalization of the large subunit of Rubisco

(Chiba et al., 2003). Later, RCBs were confirmed to be a type of

autophagic body that transfers Rubisco and other stromal proteins to

the vacuole for degradation (Chiba et al., 2003; Ishida et al., 2008;

Wada et al., 2009). The formation of RCBs is always associated with

carbon starvation or senescence, so it is considered to be an efficient

nutrient recycling mechanism while maintaining some basal

functions of chloroplasts (Izumi et al., 2010; Yoshitake et al., 2021).

RCB induction was also observed during AvrRps4-triggered ETI

(Dong and Chen, 2013). The avirulent strain P. syringae pv. tomato

DC3000 expressing AvrRps4 [DC3000(AvrRps4)] induced many small

RCBs but few large bodies. Conversely, the virulent strain DC3000

induced a small number of RCBs but proportionally more large bodies.

The large bodies showed a similar size with chloroplasts, indicating these

are possibly whole-chloroplast autophagic bodies. It seems that ETI

preferentially induces RCB formation rather than whole-chloroplast

autophagy, indicating that RCB formation might play a role during ETI.

The authors found that RCB formation and ETI were abolished in atg5-1,

a mutant defective in autophagy. Surprisingly, DC3000(AvrRps4)-induced

cROS accumulation was also abolished in atg5-1, suggesting that RCB

formation facilitates cROS accumulation. If this assumption is true, one

would expect less cROS accumulation in response to virulent DC3000.

Rubisco catalyzes both carboxylation and oxygenation, two

competing reactions involving CO2 and O2 as substrates, respectively

(Andersson and Backlund, 2008). Carboxylation consumes both NAPDH

and ATP, which are produced by the photosynthetic light reaction.

Because NADP+ is reduced by an electron derived from the

photosynthetic electron transport chain (PETC), Rubisco-mediated

CO2 reduction relieves PSII excitation pressure under normal

conditions, thus minimizing O2
•- production at PSI and Cytochrome

b6f complex (Cyt b6f). On the other hand, Rubisco-mediated oxygenation

consumes O2, and low O2 levels could also minimize cROS production. It

is therefore reasonable to hypothesize that RCB-mediated mobilization of

Rubisco out of chloroplasts not only reduces the PETC electron sink but

also reduces O2 consumption, two processes that synergistically promote
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cROS accumulation. This could partially explain why ETI induces RCBs,

but not whole-chloroplast autophagy. It is worth noting that other

stromal proteins, such as glutamine synthetase (Chiba et al., 2003), a

key enzyme in nitrogen assimilation, were also detected in RCBs. Blocking

chloroplast nitrogen assimilation could also reduce NADPH

consumption (Baslam et al., 2021), and thus enhance cROS accumulation.
Discussion

Under normal conditions, chloroplasts are the center for carbon

fixation and nitrogen assimilation. However, during ETI chloroplasts

must be reprogrammed to be a center for production of ROS, defense-

related hormones, and metabolites (Sowden et al., 2018; Kuźniak and

Kopczewski, 2020; Kachroo et al., 2021; Littlejohn et al., 2021). We

hypothesize that mRNA decay of photosynthetic transcripts, either

translation-dependent or translation-independent, impairs the repair

cycle of PSII and thus facilitates the generation of ROS such as 1O2,

OH• and H2O2 at PSII. It is possible that decay of nuclear-encoded

transcripts alone will lead to an uncoupling of expression of nuclear-

encoded and chloroplast-encoded proteins. However, we think this is

unlikely since all six sigma factors (SIG1-SIG6) for expression of

chloroplast-encoded genes are nuclear-encoded and their transcripts

are also destabilized during ETI (Su et al., 2018; Hwang et al., 2022).

Meanwhile, removing Rubisco and glutamine synthetase from

chloroplasts by RCBs reduces the consumption of both NADPH and

O2, causing stromal overreduction. Correspondingly, a highly reduced

stroma would further exacerbate PSII excitation pressure and enhance

electron leakage at the donor side of PSI or Cyt b6f to O2, resulting in O2
•-

production. Together, these multi-layered reprogramming mechanisms

lead to induction of high cROS accumulation during ETI. In addition to

these events discussed above, other cytoplasmic events connected with

HR development may also contribute to cROS accumulation. For

example, it would be of interest to test whether ETI-induced

cytoplasmic Ca2+ influx directly or indirectly affects chloroplast

dynamics and thereby promotes cROS accumulation. In the future, it

will be interesting to determine the impact of ETI on PSII functioning.
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