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Grapevine bZIP transcription
factor bZIP45 regulates
VvANN1 and confers drought
tolerance in Arabidopsis
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1Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the
Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and
Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life
Sciences, Hebei Normal University, Shijiazhuang, China, 2Grape Breeding, Shijiazhuang Institute of
Pomology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
Drought is a severe environmental condition that restricts the vegetative growth

and reduces the yield of grapevine (Vitis vinifera L.). However, the mechanisms

underlying grapevine response and adaptation to drought stress remain unclear. In

the present study, we characterized an ANNEXIN gene, VvANN1, which plays a

positive role in the drought stress response. The results indicated that VvANN1 was

significantly induced by osmotic stress. Expression of VvANN1 in Arabidopsis

thaliana enhanced osmotic and drought tolerance through modulating the level

of MDA, H2O2, and O2
·- at the seedling stage, implying that VvANN1 might be

involved in the process of ROS homeostasis under drought or osmotic stress

conditions. Moreover, we used yeast one-hybridization and chromatin

immunoprecipitation assays to show that VvbZIP45 could regulate VvANN1

expression by directly binding to the promoter region of VvANN1 in response to

drought stress. We also generated transgenic Arabidopsis that constitutively

expressed the VvbZIP45 gene (35S::VvbZIP45) and further produced

VvANN1Pro::GUS/35S::VvbZIP45 Arabidopsis plants via crossing. The genetic

analysis results subsequently indicated that VvbZIP45 could enhance GUS

expression in vivo under drought stress. Our findings suggest that VvbZIP45 may

modulate VvANN1 expression in response to drought stress and reduce the impact

of drought on fruit quality and yield.
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Introduction

Drought stress is a major abiotic stress that reduces the yield and

quality of plants during plant growth and development (Zhu, 2016).

The expression of drought-related genes increased under drought

stress, promoting a series of physiological, biochemical, and

molecular reactions (Kooyers, 2015). Grapevine (Vitis vinifera L.) is

an important fruit crop worldwide. Its fruit is used to produce wine,

grape juice, and other foods (Ali et al., 2010; Liu et al., 2021a).

However, the development of the grape industry and global climate

change have led to grapevine cultivation lands being constantly

subjected to drought, high temperature, cold, salt, and other abiotic

stresses. Drought stress is a major constraint on grapevine

productivity and quality (Hou et al., 2020; Li et al., 2021).

Grapevines have evolved various mechanisms at the morphological,

physiological, biochemical, and molecular levels in response to

drought stress (Lovisolo et al., 2010; Romero et al., 2012).

Moreover, several drought-related genes have been identified in

grapevine. The expression of VaNAC17 was induced by drought

stress and substantially enhanced drought tolerance in transgenic

Arabidopsis thaliana (Su et al., 2020). Heterologous expressing of

VaNAC26 in Arabidopsis improved drought tolerance by up-

regulating drought stress-related genes and jasmonic acid (JA)

signaling genes (Fang et al., 2016). Ectopic expression of VaCIPK02

in Arabidopsis enhanced drought resistance by regulating abscisic

acid (ABA) signaling and production reactive oxygen species (ROS)

(Xu et al., 2020). Identification and characterization of candidate

genes associated with drought stress can be utilized to enhance

drought stress response in grape varieties, thus improving

grapevine yield.

Drought stress often leads to increased production of ROS,

including hydrogen peroxide (H2O2), superoxide ions (O2
·-), and

hydroxyl radicals (OH•) (Cruz De Carvalho, 2008). High ROS

concentrations could damage cellular compounds such as proteins,

membranes, and cellular RNA and DNA (Apel and Hirt, 2004; Miller

et al., 2010). Therefore, plants have evolved an enzymatic antioxidant

defense system to maintain cellular ROS homeostasis under various

stress conditions. The main plant ROS-scavenging enzymes include

superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase

(CAT), glutathione peroxidase (GPX), and peroxiredoxin (PrxR)

(Mittler et al., 2004). Previous studies have indicated that increased

expression of ROS scavenging-related genes could increase tolerance

to drought stress. For example, overexpression of OsLG3 increased

drought stress tolerance in rice by inducing the expression of ROS

scavenging genes (Xiong et al., 2018). Overexpression of SlbHLH22

improved tomato plant drought stress tolerance by improving ROS

scavenging system (Waseem et al., 2019). VvWRKY13 negatively

modulates plant drought tolerance through regulating the activities

of CAT and SOD (Hou et al., 2020). Therefore, by studying ROS levels

and antioxidant enzyme activities in plants under drought stress, we

can deeply reveal the function of drought stress tolerance

related genes.

Annexins are conserved Ca2+-dependent phospholipid-binding

proteins that exist in plants, animals, and fungi (Rescher and Gerke,

2004; Mortimer et al., 2008). Previous studies have shown that,

besides having peroxidase and ATPase/GTPase activities and
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responding to various abiotic stresses, annexins could mediate

calcium transport in plants (Laohavisit and Davies, 2011; Clark

et al., 2012; Demidchik et al., 2018; Saad et al., 2020). OsANN1 and

OsANN10 conferred tolerance to abiotic stress in rice by modulating

ROS levels (Qiao et al., 2015; Gao et al., 2020). AtANN1 regulated

[Ca2+]cyt elevation in response to salinity stress and also participated

in drought stress tolerance by regulating ROS production (Laohavisit

et al., 2013). OsANN4 activated Ca2+ influx in response to ABA

(Zhang et al., 2021). ZmANN33 and ZmANN35 were up-regulated

and participated in plasma membrane (PM) recovery during seed

germination. In addition, inhibiting the expression of ZmANN33 and

ZmANN35 increased membrane damage under chilling stress (He

et al., 2019). However, a few reports exist on the roles of ANNEXINs

in grapevine under abiotic stresses (Jami et al., 2012; Briz-Cid et al.,

2016). Investigation the role of grapevine ANNEXINs involvment in

stress response will enrich the function of annexin in different species.

The dynamic balance between plant growth regulation and stress

adaptive response is implicated by many regulatory proteins, among

which transcription factors (TFs) are key components that modulate

stress adaptation pathways in plant stress responses. The basic leucine

zipper (bZIP) TFs belong to one of the largest transcription factor

families and are characterized by a basic DNA-binding region with a

specific motif (N-X7-R/K) at the N-terminus and leucine zipper

region at the C-terminus. They play pivotal and diverse roles in

plants under high-temperature, salt, and drought stress conditions

(Corrêa et al., 2008; Nijhawan et al., 2008). OsbZIP62V significantly

enhanced tolerance to drought and oxidative stress, and the osbzip62

mutants displayed reduced drought stress tolerance (Yang

et al., 2019). Zea mays bZIP60 mediated the unfolded protein

response during heat stress (Li et al., 2020). The wilting degree was

noticeably lower in TabZIP15 overexpressing plants than in KN199

plants under salt treatment (Bi et al., 2021). HvbZIP21 play a key role

in drought stress tolerance through modulating ROS scavenging

(Pan et al., 2022). The bZIP TFs can bind to the core sequence

(-ACGT-) in the promoter of downstream genes (e.g., the G-box, C-

box, and A-box), thereby participating in the transcriptional

regulation of plant responses to stress (Nijhawan et al., 2008). The

maize bZIP TF bZIP68 acts as a negative regulator of cold tolerance

and directly binds to the A-box/G-box in the DREB1.7 promoter,

inhibiting the expression of the DREB1 gene (Li et al., 2022). To date,

55 bZIP genes have been identified in grapevines, of which 32 VvbZIP

genes are widely involved in responding to drought stress (Liu et al.,

2014). VvbZIP45, also named VvGRIP55 or VvABF2, could bind to

the ABA-responsive element and play a positive role in response to

drought stress (Nicolas et al., 2014; Liu et al., 2019).

In the present study, we aimed to isolate and characterize a

grapevine putative annexin gene, VvANN1 (Vv18g03470). Our results

showed that heterologous expression of grapevine VvANN1 improved

drought stress tolerance in Arabidopsis via reducing malondialdehyde

(MDA) and increasing the activities of SOD, POD, and CAT in leaves

under drought conditions. In addition, we found that drought-

responsive TF VvbZIP45 regulated the expression of VvANN1, thus

improving drought resistance in grapevine. We reveal a working

mechanism of VvbZIP45-mediated VvANN1 in response to drought

stress that may reduce the impact of drought on fruit quality

and yield.
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Materials and methods

Plant materials and growth conditions

Grapevine (V. vinifera L. cv. ‘Summer Black’ and ‘Venus’) was

used in this study. Plantlets were grown on solid Murashige and

Skoog (MS) medium under a 16-h light/8-h dark cycle and 70%

relative humidity at 25°C in the greenhouse.

All transgenic lines of VvANN1 were developed in the A. thaliana

Columbia (Col-0) background. Col-0 plants were used as the wild

type in the present study. Arabidopsis thaliana seedings were

germinated on MS for 6 days and transferred to soil pots (7cm×7

cm). The seedlings were grown in a light incubator (22°C, 16-h day/8-

h night cycle and 70% relative humidity).
Phenotypic analysis

Five-week-old plantlets were transferred to liquid MS medium for 2

days and then planted in a fresh liquid MS medium with 10% (w/v)

PEG6000 (NO. A610432, Sangon Biotech, Shanghai, China) to evaluate

osmotic stress tolerance. Stemapex sampleswere collected for quantitative

real-time polymerase chain reaction (RT-qPCR) analysis.

Six-day-oldVvANN1 transgenic andCol-0 seedlingswere germinated

onMSmedium, transferred tosoilpots (7cm×7cm)for9dayswith regular

water. These were dried for 7 days and then allowed a 3-day recovery. The

survival rates were recorded and the seedings were photographed.
Vector construction

The total cDNA of VvANN1 and a 1,538-bp fragment of the

VvANN1 promoter were cloned from five-week-old grapevine

‘Summer Black’ plantlets. The VvANN1 coding region sequence

(cDNA) was digested and ligated with pCAMBIA1301-HA,

modified pMDC83, and pET32a vectors to obtain Ubi::VvANN1-

HA, 35S::VvANN1-GFP, and VvANN1-His constructs, respectively.

The promoter region (1,538 bp) upstream of the VvANN1 start

codon was amplified and cloned into the vector to produce transgenic

VvANN1Pro::GUS lines. Genomic fragments (285 bp) upstream of

VvANN1 were amplified and cloned into pAbAi and pGreenII 0800-

LUC vectors to generate pAbAi-VvANN1Pro and pGreenII 0800-

LUC-VvANN1Pro, respectively.

VvbZIP45 cDNA was amplified and cloned into pCAMBIA1301-

HA, pGreenII 62-SK, pGADT7 and pMDC83 vectors to generate

Ubi::VvbZIP45-HA, pGreenII 62-SK-VvbZIP45, AD-VvbZIP45 and

35S::VvbZIP45-GFP, respectively.

Related constructs were introduced into Agrobacterium

tumefaciens cells (GV3101) and grown at 28°C for 3 days before

being transformed into Col-0. The primers used to produce the

constructs are listed in Supplemental Table S1.
RNA isolation and RT-qPCR analysis

Total RNAwas extracted from grapevine stem apices andArabidopsis

leaves using TRIzol reagent (NO. B511311, Sangon Biotech, Shanghai,
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China).RNase-freeDNase I (EN0521,ThermoFisherScientific,Waltham,

MA, USA) was used to remove genomic DNA. RT-qPCR was performed

using the ChamQ Universal SYBR® qPCR Master Mix Kit (Q711-02,

Vazyme, Nanjing, China) using the QuantStudio Q5 thermal cycler

(Thermo Fisher Scientific, Waltham, MA, USA). The experiment was

performed using three biological replicates. Relative quantitative results

were calculated by normalization to AtACTIN2 and VvACTIN7, the

internal controls in Arabidopsis and grapevine, respectively. All primer

sequences are listed in Supplemental Table S1.
Histochemical b-glucuronidase (GUS) assay

GUS activity was detected via histochemical staining of tissues as

previously described (Zhang et al., 2018a) but with slight

modifications. All transgenic Arabidopsis tissues were incubated in

GUS staining solution at 37°C with the corresponding time under

dark conditions. All stained samples were washed with 70% ethanol to

remove the residual dye and chlorophyll. Images were captured using

a DVM6a 3D microscope (Leica, Wetzlar, Germany).
Subcellular localization of VvANN1

Transient expression assays were performed in grape protoplasts

to determine the subcellular localization of VvANN1. Grape

protoplasts were prepared, and transient expression assays were

performed as described previously (Lee and Wetzstein, 1988; Wang

et al., 2015). The recombinant plasmid 35S::VvANN1-GFP was

introduced into grape protoplasts, followed by incubation at 28°C

for 12 h. Fluorescence signals were observed using a Zeiss LSM710

laser scanning confocal microscope (Zeiss, Jena, Germany).
Recombinant VvANN1-His protein
purification and Ca2+-binding activity

The Ca2+-binding assay was conducted by detecting fluorescence

measurements of VvANN1 according to a method described previously

(Qiao et al., 2015). The recombinant plasmid VvANN1-His was

introduced into Escherichia coli (E. coli) strain BL21. Total VvANN1-

His protein was induced by isopropyl b-D-thiogalactoside (IPTG; NO.
A100487, Sangon Biotech, Shanghai, China) at 28°C for 12 h. E. coli cells

were lysed via ultra-sonication, and the obtained samples were ultra-

centrifuged at 12,000 ×g at 4°C for 15 min. The supernatant was collected

andpurified via affinity chromatographyonNi-agarose columns (Cat.No.

30210, Qiagen, Duesseldorf Germany). The assay media contained 2 mM
VvANN1-His protein and 0 mM or 2 mM Ca2+. Fluorescence

spectroscopy was carried out using a fluorescence spectrophotometer (F-

4600; Hitachi, Tokyo, Japan).
Yeast one-hybrid assay

The pAbAi-VvANN1Pro (containing 285 bp partial promoter

sequences with the ABRE element) vector was transformed into the

yeast strain Y1HGold as bait. Positive yeast strains were diluted and
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spread onto selection medium (SD; Code No:630411, Clontech,

Mountain View, CA, USA) lacking Ura containing various

concentrations of Aureobasidin A (AbA; Code No.630466,

Clontech, Mountain View, CA, USA) to screen for an appropriate

concentration to eliminate self‐activation. AD-VvbZIP45 was

transformed into Y1HGold with pAbAi-VvANN1Pro, and the

pGADT7 plasmid was used as a negative control. Different

experimental groups were cultured on SD/-Leu medium with or

without 80 ng/mL AbA at 30°C for 3 days.
Luciferase reporter assays

A dual-luciferase reporter assay was conducted to test the

transcriptional repression activity of VvbZIP45 in tobacco (Nicotiana

tabacum) leaves. The pGreenII 62-SK and pGreenII 62-SK-VvbZIP45

were used as effector plasmids, and pGreenII 0800-LUC-VvANN1Prowas

used as the reporter plasmid. The plasmids were mixed and expressed in

tobacco leaves via A. tumefaciens GV3101 strain injection. After 2 days,

total protein was extracted from infiltrated tobacco leaves, and the LUC/

REN activity ratio was measured using the dual luciferase reporter assay

system (E1960, Promega, Madison, WI, USA).
Chromatin Immunoprecipitation-
qPCR assays

Approximately 1 g of plant tissue was harvested from two-week-old

transgenic hybrid progeny seedlings that were germinated onMSplates in

a light incubator. Samples were prepared according to previous reports

(Yamaguchi et al., 2014; Zhao et al., 2022). ChIP experiments were

performed using Abcam ChIP Kit - Plants (ab117137, Abcam,

Cambridge, MA, USA) according to the manufacturer’s instructions.

Chromatin was immunoprecipitated using anti-HA (ab9110, Abcam,

Cambridge, MA, USA). Following immunoprecipitation, samples were

analyzed by RT-qPCR. The specific primers used are listed in

Supplemental Table S1.
Detection of H2O2 and O2
·- in situ

Leaves were collected from VvANN1 transgenic Arabidopsis plants

and Col-0 plants grown under normal conditions for 15 days, then grown

with or without water for 5 days. H2O2 and O2
·- levels were examined via

histochemical staining with 3, 3′‐diaminobenzidine (DAB; CAS No: 91-

95-2, Sigma-Aldrich, St. Louis,MO,USA) or nitro blue tetrazolium (NBT;

CAS No: 298-83-9, Sigma-Aldrich, St. Louis, MO, USA), as previously

described (Zhang et al., 2021). All measurements were determined using

three independent biological replicates.
Measurement of antioxidant enzyme activity
and MDA contents

Leaves were collected from VvANN1 transgenic Arabidopsis

plants and Col-0 plants cultivated under normal conditions for 15

days (control), then without water for 5 days (drought-exposed).
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Samples (each weighing 0.2 g) were homogenized in 1 mL of

sodium phosphate buffer (50 mM phosphate, 1 mM EDTA-Na2, 1%

(w/v) polyvinyl pyrrolidone; pH 7.4). Centrifugation was performed

at 10,000 ×g at 4°C for 20 min, and the supernatant was used to detect

antioxidant enzyme activity. The activities of SOD, POD, and CAT

were determined according to methods described previously

(Zhang et al., 2017).

Samples (each weighing 0.2 g) were homogenized in 2 mL of 10%

thiobarbituric acid (TBA). Following centrifugation at 12,000 ×g at 4°

C for 15 min, the MDA contents were detected according to the

method described by Zhou et al. (2018).
Results

Characterization and expression of VvANN1

There are 14 predicted annexin genes in grapevine (Jami et al., 2012),

however, the function of ANNEXIN family in grapevine remains

unidentified. We isolated a putative grapevine annexin gene from Vitis

vinifera via RT-PCR and named it VvANN1. Based on the results of

bioinformatics analyses, the genomic sequence of VvANN1 is composed

of five exons and four introns and produces a 930-bp coding sequence

transcript encoding a protein of 309 amino acids with a molecular weight

of 35 kDa (Figure 1A). This protein contains four annexin domain

architectures (Figure 1B) with a type-II Ca2+ binding site in the first

annexin conserved repeat domain.

A phylogenetic tree generated using the ANNEXINs of A. thaliana

and V. vinifera suggests that VvANN1 has the maximum homology with

AtANN1 of A. thaliana, so the gene was designated as VvANN1. This

finding implies that VvANN1 proteins may regulate stress response

processes similar to its homologous AtANN1 (Figure 1C).

Transcript levels in different organs of the grapevine ‘Venus’ were

performed via RT-qPCR to analyze the tissue-specific expression of

VvANN1. The expression ofVvANN1was higher in the flower, stem, and

tendril than in the root, fruit, and leaf (Figure 2A). Furthermore, we also

generated Arabidopsis transgenic lines (#1, #4, #7 and #9) containing the

VvANN1Pro::GUS, and detected GUS activities in seedlings, flowers,

which was consistent with the findings shown by RT-qPCR (Figure 2B).

Moreover, important discrepancies were noted when comparing the

GUS staining observed in different VvANN1Pro::GUS transgenic lines,

such as #1 and #9. This result suggested the cassette VvANN1::GUS

might be inserted various sites in different Arabidopsis transgenic lines

and resulted in different GUS expression level based on the position

effect, for example, there might be diverse enhancers near to the

insertion sites.

We transformed the 35S::VvANN1-GFP vector transiently into

grapevine protoplasts to investigate the subcellular localization of

VvANN1. VvANN1-GFP signal could be detected in cytoplasm,

whereas GFP signals were ubiquitously distributed in the grapevine

protoplast (Supplemental Figure S1).

Furthermore, we carried out a VvANN1-His recombinant protein

fluorescence experiment to verify the Ca2+ binding ability of VvANN1.

First, we transformed the VvANN1-His plasmid into E. coli strain BL21.

The VvANN1-His recombinant protein was successfully expressed in

BL21 by adding IPTG, purified via Ni-NTA affinity chromatography,

and further detected via SDS-PAGE (Supplemental Figure S2). Next, a
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UV spectrophotometer was used to measure the fluorescence intensity of

the VvANN1-His recombinant protein when incubated with or without

Ca2+. The highest fluorescence intensity was approximately 300 A.U. at

390 nm. By contrast, fluorescence intensity was reduced to 150 A.U. at

390 nm in the presence of Ca2+ (Supplemental Figure S3), indicating that

VvANN1 might have Ca2+-binding capacity.
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VvANN1 is responsive to osmotic stress and
drought stress

AtANN1 is up-regulated in a Ca2+-dependent manner to regulate

drought stress responses synergistically. Here, we investigated

whether VvANN1 was responsive to drought stress. We performed

RT-qPCR to detect the VvANN1 expression pattern in plantlets (Vitis

spp. cv ‘Summer Black’ and ‘Venus’) treated with or without 10%

PEG6000. The results showed that the expression of VvANN1 in

‘Summer Black’ and ‘Venus’ was significantly induced by PEG

treatment up to 11-fold and 4-fold, respectively, at 24 h

(Supplemental Figure S4A).

GUS staining was performed to determine further the expression

of VvANN1 in six-day-old transgenic VvANN1Pro::GUS plants under

PEG treatment. Histochemical staining revealed that, VvANN1Pro::

GUS signals were mainly expressed in the vascular tissues of roots

under normal conditions. This expression pattern of GUS activity was

increased following treatment with 10% PEG6000 for 12 h

(Supplemental Figure S4B), suggesting that VvANN1 expression

may be induced by PEG treatment.

To further determine the role of VvANN1 in modulating plant

osmotic stress, we further generated 3 independent transgenic

Arabidopsis lines driven by the CaMV35S promoter (L2, L3 and

L4) and 3 independent transgenic Arabidopsis lines driven by the Ubi

promoter (L5, L6 and L7). The transcript level of VvANN1 was

analyzed with RT-qPCR and three homozygous transgenic

Arabidopsis lines (L2, L3 and L6) were used in subsequent

experiments (Supplemental Figure S5). VvANN1 transgenic and

Col-0 seedlings were cultivated on MS medium with 0 mM, 250

mM or 300 mMmannitol. The germination rates showed no apparent

difference between VvANN1 transgenic and Col-0 seedlings in MS

medium after 84 h. Conversely, all VvANN1 transgenic seedlings

showed higher germinating rates than Col-0 in the presence of

mannitol (Figures 3A, B), suggesting that, during the germination

stage, VvANN1 transgenic seedlings were less sensitive to osmotic

stress than Col-0 seedlings. Based on these results, we concluded that

VvANN1 might positively regulate osmotic stress in Arabidopsis.

Fifteen-day-old transgenic Arabidopsis and Col-0 plants were

subjected to a drought treatment to evaluate the function of

VvANN1 in drought tolerance. Once watering was stopped for 7

days, VvANN1 transgenic plants exhibited less wilting than Col-0

plants (Figure 4A). After rewatering, VvANN1 transgenic plants had

higher survival rates (58%, 54% and 60% for L2, L3 and L6,

respectively) than Col-0 plants (36%) (Figure 4B), indicating that

VvANN1 transgenic plants significantly improved drought tolerance

in Arabidopsis.
VvbZIP45 binds to the promoter of VvANN1
and activates its expression

We analyzed the VvANN1 promoter using the PlantCARE

database (http://bioinformatics.psb.ugent.be/webtools/plantcare) to

gain further insights into the regulatory mechanism of VvANN1

and found several stress-responsive cis-elements (e.g., MYC, MYB

and ABRE). Among these are two ABRE cis-elements in the 0- to 300-

bp region of the VvANN1 promoter. Studies have shown that
A

B

C

FIGURE 1

Characterization of VvANN1. (A, B) Schematic diagram showing the gene
structure and protein domain of VvANN1. Exons are indicated by black
boxes, introns are indicated by black lines between black boxes, non-
translational regions are indicated by white boxes, and annexin domains
are indicated by orange boxes. (C) Phylogenic tree of VvANNs and the
Arabidopsis ortholog AtANNs. The phylogenetic trees were constructed
with Mega X using the Neighbor-Joining method. Eight ANNEXINs family
members from A thaliana including At1g35720 (AtANN1), At5g65020,
At2g38760, At2g38750, At1g68090, At5g10220, At5g10230, At5g12380;
fourteen ANNEXINs family members from V. vinifera including:
Vv18g03470 (LOC100266093, VvANN1), Vv00g00650 (LOC100260243),
Vv00g00660 (LOC100258538), Vv00g00710 (LOC100244780),
Vv00g00720 (LOC100853064), Vv00g00750 (LOC100244780),
Vv00g00760(LOC100256827), Vv00g00800 (LOC100260252),
Vv00g25060 (LOC100256917), Vv00g25070 (LOC100253408),
Vv01g05380 (LOC100250931), Vv03g02080 (LOC100243369),
Vv06g10680(LOC100263694), Vv08g00710(LOC100240986), VvANN1 is
marked with a red dot. The sequences of AtANNs are derived from NCBI,
and the sequences of VvANNs are derived from Jami et al (2012).
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VvbZIP45 can bind to the ABRE element in the promoter region of

the target gene and enhance drought stress tolerance in Arabidopsis

(Liu et al., 2014; Nicolas et al., 2014; Liu et al., 2019). Thus, we

hypothesized that VvbZIP45 could bind to the promoter region of

VvANN1 and regulate its expression.

We performed a Y1H assay, where the VvANN1 promoter

sequence (from -1 to -285 bp) containing two ABRE motifs was

first constructed into the pAbAi vector (pAbAi-VvANN1Pro). Next,

this bait plasmid was transformed into yeast strain Y1HGold. Finally,

the pGADT7-VvbZIP45 and pGADT7 vectors were transformed into

the yeast Y1HGold carrying the bait plasmid. The results showed that

Y1HGold carrying pAbAi-VvANN1Pro and transformed with the

pGADT7-VvbZIP45 plasmid grew on SD/-Leu medium containing 80

ng/mL AbA, whereas yeast cells carrying the pGADT7 vector did not

(Figure 5A). This result showed that VvbZIP45 could bind to the

promoter region of VvANN1.

We performed a ChIP-qPCR assay to investigate whether VvbZIP45

could bind directly to the ABRE cis-element in the promoter region of
Frontiers in Plant Science 06
VvANN1. Ubi::VvbZIP45-HA transgenic Arabidopsis plants were crossed

with VvANN1Pro::GUS transgenic plant, and hybrid transgenic A.

thaliana seedlings were verified via PCR. Four fragments spanning

different regions of the VvANN1 promoter with or without the ABRE

motif were selected for qPCR analysis (Figure 5B). Figure 5C shows that 1,

3 and 4 fragments of the VvANN1 promoter were markedly enriched in

ChIP-qPCR assay with anti-HA compared with anti-IgG.

We used a luciferase reporting system to determine whether

VvbZIP45 could activate VvANN1 expression in vivo (Figures 5D, E). A

pGreenII 0800 vector harboring a dual-luciferase reporter gene driven by

the VvANN1 promoter was co-transformed into tobacco leaves with

pGreenII 62-SK or pGreenII 62-SK-VvbZIP45. The results showed that

tobacco plants expressing pGreenII 62-SK-VvbZIP45 exhibited

significantly higher LUC/REN activity than control plants.

To further assure the regulation of VvbZIP45 in VvANN1

expression in vivo, we also generated transgenic Arabidopsis that

constitutively expressed the VvbZIP45 gene (35S::VvbZIP45) and

further produced VvANN1Pro::GUS/35S::VvbZIP45 Arabidopsis
A

B

FIGURE 2

Tissue expression pattern analysis of VvANN1. (A) Expression analysis of VvANN1 in different tissues of Vitis spp. cv ‘Venus’ via RT-qPCR. VvACTIN7 was
used as an internal control and compared to expression in root. Data are presented as mean ± SD (n = 3). Statistical significance was determined via
one-way ANOVA; P < 0.05. (B) GUS histochemical staining of different tissues of VvANN1Pro::GUS transgenic Arabidopsis lines. Scale bars are 1 mm for
six-day-old seedling, flower, silique, and stem images and 1 cm for 21-day-old seedling images.
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A

B

FIGURE 4

Heterologous expression of VvANN1 increases resistance to drought stress in Arabidopsis. (A) Performance of VvANN1 transgenic plants and Col-0 plants
subjected to soil drought stress without watering for 7 days, followed by recovery for 3 days. (B) Survival rates of VvANN1 transgenic plants and Col-0
plants after rewatering for 3 days. Values represent the means ± SD from three independent repeats (n = 48), and different letters indicate significant
differences (one-way ANOVA, P < 0.05).
A B

FIGURE 3

VvANN1 positively regulates osmotic stress at germination in Arabidopsis. (A) Seedings of Col-0 and VvANN1 transgenic Arabidopsis were stratified at 4°C
for 2 days and plated on MS medium supplemented with 0 mM, 250 mM or 300 mM mannitol. Photographs were captured at 60 h and 84 h after
germination. (B) Germination rates of seedings were determined with respect to radicle emergence when supplemented with 0 mM, 250 mM or 300
mM mannitol at the 84-h time point.
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plants via crossing. The lower GUS expression level VvANN1Pro::

GUS lines #1 and #4 (as shown in Figure 2C) were used as the male

parents, 35S::VvbZIP45 Arabidopsis as female parent. The results of

histochemical GUS assays showed that staining intensity was

significantly higher in hybrid plants (VvANN1Pro::GUS/VvbZIP45)

than in VvANN1Pro : :GUS transgenic plants (Figure 5F).

Interestingly, 10% PEG6000 treatment could be resulted in much

more strong GUS staining in VvANN1Pro::GUS/35S::VvbZIP45

hybrid Arabidopsis plants comparing to VvANN1Pro::GUS

transgenic plants itself (Figure 6). These results indicated that

VvbZIP45 could act as a transcription factor to promote VvANN1

expression under normal or drought stress conditions.

Further examination of the expression level of VvbZIP45 in five-

week-old grapevine plantlets under osmotic stress showed that
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VvbZIP45 expression was rapidly activated by PEG treatment and

reached the highest level at 12 h (Supplemental Figure S6). This result

suggests that VvbZIP45 could be up-regulated under drought stress.

VvANN1 improved the ROS scavenging
ability of transgenic Arabidopsis under
drought stress

In plants, ROS serve as signal molecules at low levels but can

cause cell damage at extreme doses. Drought stress could lead to ROS

accumulation. Here, H2O2 accumulation was detected via DAB

staining. The results showed no difference in DAB staining of

VvANN1 transgenic plants and Col-0 plants under normal

conditions. However, after 5 days of drought treatment, weaker
DA

B E

F

C

FIGURE 5

VvbZIP45 positively regulates the transcription of VvANN1 by binding to its promoter. (A) Y1H assay showing the interaction between VvbZIP45 and the
VvANN1 promoter. (B, C) ChIP-qPCR assays showing the binding of VvbZIP45 to the promoter of VvANN1 in vivo. ChIP-qPCR analysis using VvANN1Pro::
GUS/UBI::VvbZIP45-HA and Col-0 plants with anti-HA and anti-IgG, respectively. Immunoprecipitated DNA samples were quantified by qPCR using
primers specific to regions within the VvANN1 promoter (1-4). Relative enrichment is represented as input (%). Values represent the means ± SD from
three independent repeats, and different letters indicate significant differences (one-way ANOVA, P < 0.05). (D) Reporter and effector used in the dual-
luciferase reporter assay. (E) Activation of the VvANN1 promoter by VvbZIP45. The 35S promoter was used as a negative control (Student’s t-test, ***P <
0.001). (F) Tissue expression patterns of VvANN1 in the presence of VvbZIP45 using VvbZIP45 as the effector and VvANN1Pro::GUS as the reporter. GUS
expression was visualized in different tissues of Arabidopsis transformed with effector and reporter constructs. Scale bars are 1 mm for six-day-old
seedling, flower, and silique images and 1cm for 21-day-old seedling images.
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staining was observed in VvANN1 transgenic leaves than in Col-0

leaves (Figure 7A). The accumulation of O2
.- detected via NBT

staining showed similar results under drought stress treatment

(Figure 7B). These results indicated that less H2O2 and O2
.- were

produced in VvANN1 transgenic plants than in Col-0 plants under

drought stress.

Previous studies have shown that ROS accumulation affects

intracellular environment stability and severely damages the plant

cell membrane (Zhang et al., 2018b). The level of MDA is an

important indicators of cell membrane damage (Gao et al., 2020).

In the present study, the MDA levels in VvANN1 transgenic plants

were similar to Col-0 plants under normal conditions. Following

drought treatment for 5 days, three VvANN1 transgenic plants had

significantly lower MDA content (3.42, 3.80 and 3.51 mmol/g) than

Col-0 (4.54 mmol/g) (Figure 7C). These results suggest that VvANN1

plays a vital role in the reduced accumulation and damage of ROS in

cells under drought stress.

The activities of ROS scavenging enzymes (SOD, POD and CAT)

were examined to analyze the mechanism of VvANN1 function in
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regulating the level of ROS (Figures 7D–F). The activities of SOD,

POD, and CAT were not significantly different in both VvANN1

transgenic plants and Col-0 plants under normal conditions.

However, after drought stress treatment, the enzymatic activities of

SOD, POD, and CAT were significantly higher in VvANN1 transgenic

plants than in Col-0 plants. These results suggested that the

expression of VvANN1 driven by CaMV35S or Ubi promoter in

Arabidopsis could improve the activity of SOD, POD and CAT to

eliminate excess ROS, subsequently assisting in the maintenance of

plasma membrane integrity and improving drought stress tolerance.
Discussion

Over the past few decades, the role of annexin in regulating

abiotic and biotic stresses have been extensively studied in plants,

especially in fruits and vegetables. For instance, FaAnn5s and FaAnn8

were important in regulating plant hormone signaling during the

growth and maturing of strawberry fruit (Chen et al., 2016).

Furthermore, overexpression of RsANN1a in Arabidopsis enhanced

heat tolerance, suggesting a key role in the heat stress response of

radish (Shen et al., 2021). Additionally, BnaANN genes played

important roles in JA signaling and multiple stress responses in

Brassica napus (He et al., 2020). However, the biological functions

and regulatory mechanisms of ANNEXINs in grapevine remain

unclear. This study will shed light on the roles of VvANN1 in

drought stress in grapevine.

In the present study, we identified an annexin gene from V.

vinifera and named it VvANN1. Sequence analysis and phylogenetic

analysis showed that this protein contains four annexin domain

architectures and has close homology with ANN1 in A. thaliana

(Figures 1A–C). Therefore, it is speculated that VvANN1 and

AtANN1 might have similar functions. Furthermore, the different

expression levels of VvANN1 in grapevine tissues and ectopic

expression VvANN1 in Arabidopsis indicate that VvANN1 may

have distinct functions (Figure 2), so we firstly verified the ability of

VvANN1 to response to drought stress. As expected, the expression of

VvANN1 was induced by osmotic stress, and VvANN1 transgenic

plants showed higher germinating rates than Col-0 plants under

osmotic stress (Supplemental Figure S4 and Figure 3). In addition,

overexpression of VvANN1 enhanced drought tolerance in A.

thaliana (Figure 4).

The bZIP TFs are widely distributed across several plant species

and are involved in many responses to abiotic stresses, such as

drought, salt, and low temperature (Wei et al., 2012; Liu et al.,

2014; Li et al., 2015). For example, OsbZIP23 positively regulates

drought and high-salinity stress responses by modulating the

expression of stress-related genes in rice (Xiang et al., 2008).

ANAC096 interacts with AtABF2 and further regulates the

expression of ABA-inducible genes, enhancing dehydration and

osmotic stress tolerance in Arabidopsis (Xu et al., 2013). VvbZIP45

transgenic Arabidopsis plants exhibited more tolerance to osmotic

stress compared to WT (Liu et al., 2019). However, studies on the

function of VvbZIP45 in regulating the expression of grapevine

annexin genes have not been reported. Our results indicated that

VvbZIP45 expression in grapevine ‘Summer Black’ was significantly
FIGURE 6

VvbZIP45 enhanced VvANN1 expression under PEG treatment. GUS
staining of six-day-old VvANN1Pro::GUS/35S::VvbZIP45 and
VvANN1Pro::GUS transgenic Arabidopsis seedlings under normal and
PEG treatment. Scale bars=1 mm.
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induced by PEG treatment (Supplemental Figure S6). Transient

expression assays, Y1H assays, genetics investigations and ChIP-

qPCR assays all showed that VvbZIP45 could bind to the promoter

of VvANN1 and activate its expression (Figures 5A–E).

As shown in Figure 2C, various VvANN1Pro::GUS lines showed

differently level of GUS staining (strong or weak). This result implied

that the cassette VvANN1 Pro::GUS might be inserted in various sites

of chromosomes in Arabidopsis, and resulted in different expression

level of GUS based on the position effect, for example, there might be

diverse enhancers near to the insertion sites of T-DNA, and also

reflected that there might be a certain range of regulation levels of

VvANN1 promoter by TFs in Arabidopsis. Therefore, the

VvANN1Pro::GUS/35S::VvbZIP45 hybrid lines showed more strong
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GUS staining intensity than that of the original VvANN1Pro::GUS

transgenic lines (Figure 5F). In addition, the genetic analysis also

demonstrated that VvbZIP45 could enhance the expression of

VvANN1 under PEG treatment (Figure 6). Taken together, these

results indicated that VvbZIP45 could bind to the promoter of

VvANN1 and further active its expression under drought stress.

Drought stress often results in excessive ROS accumulation

(Mahmood et al., 2019). A low ROS concentration serves as a

signal in regulating plant growth and stress responses; however,

excessive ROS accumulation can destroy cellular compounds. The

antioxidant defense system is a crucial way to balance excess ROS in

plants (You and Chan, 2015; Hussain et al., 2019). Plant annexins

have been shown to exhibit the ability to respond to abiotic stresses by
D
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FIGURE 7

VvANN1 modulates ROS production, lipid peroxidation, and antioxidase activity under drought stress in Arabidopsis. (A, B) DAB and NBT staining of leaves
in VvANN1 transgenic plants and Col-0 plants under normal and drought stress conditions. Scale bars = 1 mm. (C) MDA content in VvANN1 transgenic
plants and Col-0 plants under normal and drought stress conditions. (D–F) Activities of SOD, CAT, and POD in VvANN1 transgenic plants and Col-0
plants under normal and drought stress conditions. Values represent the means ± SD from three independent repeats, and different letters indicate
significant differences (one-way ANOVA, P < 0.05).
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modulating ROS formation. For instance, overexpression of OsANN1

in rice exposed to heat stress conditions enhanced the activities of

SOD and CAT, decreased the content of H2O2, and improved the

plant’s tolerance to heat (Qiao et al., 2015). Treatment with exogenous

ABA showed significantly higher levels of O2
.– and H2O2 in the

mesophyll cells of OsANN4-RNAi lines than in the WT (Zhang et al.,

2021). Our results were broadly in line with those of previous studies;

for example, the contents of O2
.– and H2O2 in VvANN1 transgenic

plants were lower than Col-0 plants under drought stress (Figures 7A,

B). The activities of SOD, POD and CAT in VvANN1 transgenic

plants were significantly higher than in Col-0 (Figures 7C–F).

Therefore, we hypothesize that VvANN1 responds to drought stress,

at least in part by modulating ROS accumulation. In this study, we

have not identified a direct relationship between H2O2 content and

the function of VvANN1. However, our results imply that VvANN1

may play crucial role on regulation the intracellular level of H2O2.

Ca2+ acts as a second messenger in plants and regulates the

activation of a wide range of downstream processes in response to

environmental and developmental stimuli (Xi et al., 2017; Tong et al.,

2021). Ca2+ influx is primarily dependent on ion channels, such as the
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cyclic nucleotide-gated channel (CNGC) or glutamate receptor-like

(GLR). Annexins were shown to function as Ca2+-permeable

transporters based on their Ca2+-binding ability. AtANN1 plays a

positive regulatory role in response to cold stress by mediating cold-

triggered Ca2+ influx; moreover, the [Ca2+]cyt elevation was reduced

in atann1 mutants (Liu et al., 2021b). MYB30 regulates the oxidative

and heat stress responses through AtANN1 and AtANN4 by

mediating Ca2+ signals (Liao et al., 2017). ZmANN33 and

ZmANN35 were involved in Ca2+ signaling transduction processes

under chilling stress (He et al., 2019). Although we found that

VvANN1 was capable of Ca2+-binding activity (Supplemental Figure

S3), the exact mechanism underlying how VvANN1 regulates Ca2+

under drought stress remains to be further explored.

We propose a hypothetical model depicting the role of VvANN1

in response to drought stress based on our findings (Figure 8). The

ABRE binding protein VvbZIP45 directly binds to the promoter

region of VvANN1 and activates its expression, thus further

modulating ROS to alleviate the damage caused by drought stress.

Our study provides insights into the roles of ANNEXINs in regulating

drought responses in grapevine.
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FIGURE 8

A hypothetical working model of VvbZIP45 modulates VvANN1
response to drought stress. Drought stress induces the expression of
VvbZIP45 in grapevine, which then positively regulates the
transcription of VvANN1. VvANN1 enhances the activity of SOD, POD,
and CAT to scavenge excess ROS. VvANN1 may also participate in Ca2
+ signaling transduction in grapevine under drought stress.
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SUPPLEMENTARY FIGURE 1

Subcellular localization of VvANN1-GFP. Subcellular localization of VvANN1-

GFP in grape protoplasts. Protoplasts transformed with 35S::GFP were used as
control. Scale bars=20 mm.

SUPPLEMENTARY FIGURE 2

Affinity purification of VvANN1-His protein. Purification of VvANN1-His

recombinant protein was performed with 0.2 mL elution buffer containing
500 mM imidazole (lane 1), lane 2 shows the molecular weight marker.

SUPPLEMENTARY FIGURE 3

The Ca2+-binding capacity of VvANN1-His. Fluorescence intensity of VvANN1-
His without (black curve) or with (grey curve) the addition of 2 mM CaCl2.
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SUPPLEMENTARY FIGURE 4

Expression patterns of VvANN1 under PEG treatment. (A) RT-qPCR analysis of
VvANN1 expression in the five-week-old Vitis spp. cv ‘Summer Black’ and

‘Venus’ plantlets after 10% PEG6000 treatment. VvACTIN7 was used as an
internal control and compared to expression in 0 h. Values represent the

means ± SD from three independent repeats, and different letters indicate

significant differences (one-way ANOVA, P<0.05). (B) GUS staining of six-day-
old VvANN1Pro::GUS transgenic Arabidopsis seedlings under normal and PEG

treatment. Scale bars=1 mm.

SUPPLEMENTARY FIGURE 5

RT-qPCR analysis of VvANN1 expression in different VvANN1 transgenic

Arabidopsis lines. AtACTIN2 was used as an internal control. Values represent

the means ± SD from three independent repeats.

SUPPLEMENTARY FIGURE 6

VvbZIP45 transcript expression levels under PEG treatment in five-week-old

Vitis spp. cv ‘Venus’. VvACTIN7was used as an internal control and compared to
expression in 0 h. Values represent the means ± SD from three independent

repeats, and different letters indicate significant differences (one-way ANOVA, P

< 0.05).
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