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Precisely discerning disease types and vulnerable areas is crucial in implementing

effective monitoring of crop production. This forms the basis for generating

targeted plant protection recommendations and automatic, precise

applications. In this study, we constructed a dataset comprising six types of field

maize leaf images and developed a framework for classifying and localizing maize

leaf diseases. Our approach involved integrating lightweight convolutional neural

networks with interpretable AI algorithms, which resulted in high classification

accuracy and fast detection speeds. To evaluate the performance of our

framework, we tested the mean Intersection over Union (mIoU) of localized

disease spot coverage and actual disease spot coverage when relying solely on

image-level annotations. The results showed that our framework achieved amIoU

of up to 55.302%, indicating the feasibility of using weakly supervised semantic

segmentation based on class activation mapping techniques for identifying

disease spots in crop disease detection. This approach, which combines deep

learning models with visualization techniques, improves the interpretability of the

deep learning models and achieves successful localization of infected areas of

maize leaves through weakly supervised learning. The framework allows for smart

monitoring of crop diseases and plant protection operations usingmobile phones,

smart farm machines, and other devices. Furthermore, it offers a reference for

deep learning research on crop diseases.

KEYWORDS

deep learning, crop diseases, interpretable AI, image classification, weakly
supervised learning
1 Introduction

Maize, a crucial food and industrial crop, is vulnerable to various diseases, including

corn brown spot, corn southern leaf blight and common rust. These diseases can have a

significant impact on the quality and yield of maize during its growth (Rosenzweig et al.,

2001). Crop production monitoring involves the identification of disease types and the
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localization of susceptible areas. This is essential in creating plant

protection prescriptions and ensuring automatic and precise

applications. Currently, the detection and identification of maize

diseases through artificial intelligence techniques is a hot topic of

research. The use of this technology can play a significant role in

accurately identifying disease types and their location, therefore

improving crop production monitoring.

Automated disease identification, made possible by a

computerized control system, allows for early detection and

monitoring of diseases. This system provides a reference for

agricultural workers, which helps to manage and mitigate the

damage caused by these diseases in a timely manner (Singh et al.,

2020). Initially, researchers commonly employed machine learning

(ML) models, specifically support vector machines (SVM)

(Elangovan and Nalini, 2017), decision trees (DT) (Rokach and

Maimon, 2005), random forests (RF) (Ramesh et al., 2018), and k-

nearest neighbors (KNN) (Liao and Vemuri, 2002), to detect and

classify crop diseases. However, the increasing prevalence of deep

learning (DL) technology (Shivam and Kumar, ; Kohli et al., 2022)

contributed to its utilization within the field of agriculture. DL has

proven to be highly versatile and has been adeptly utilized to achieve

significant breakthroughs in the realm of agriculture.

Among the deep learning tools, the most commonly used is the

convolutional neural network (CNN) (Verma et al., 2021), which

requires fewer artificial neurons than traditional feed-forward

neural networks, has good performance in classification and

recognition, and is widely used in disease identification. For

example, Singh et al (Singh et al., 2015) demonstrated the

application of an SVM classifier to differentiate between healthy

and diseased rice plants, achieving an accuracy of 82%. However,

ML-based crop disease identification systems have limitations

despite their ability to classify with small amounts of training

data. This is because these systems depend heavily on pre-

processing and feature selection methods that rely heavily on the

agricultural knowledge of experts. Furthermore, selecting a large

number of features leads to computational difficulties, while a

smaller feature set results in suboptimal classification. Thus, the

performance of ML-based crop disease identification systems is

inherently limited. Dwivedi et al. introduced a framework, region-

based CNN (RCNN), for locating and classifying grapevine plant

diseases. Initially, ResNet18 was used to compute depth features

that were later classified by the RCNN classifier and produced an

improved result of 99.93% for classifying several diseases of

grapevine plants, with the disadvantage of poor performance in

the real world (Dwivedi et al., 2021). Akshai et al. introduced several

DL-based frameworks, namely VGG, ResNet, and DenseNet

methods, for computing deep features and classifying plant

diseases from the input samples. The method obtained the best

performance of the DenseNet framework with 98.27% accuracy, but

at the cost of increased computational complexity (Akshai and

Anitha, 2021). Batool et al. proposed a method to locate several

tomato leaf-influenced regions. The AlexNet model was applied to

compute the depth features from the input image for training the

KNN classifier. The results proved that this method had an accuracy

of 76.1%. However, the KNN method is a tedious and time-

consuming algorithm (Batool et al., 2020). Although good
Frontiers in Plant Science 02
progress has been made in all of the above studies, in practical

applications, given the equipment and time constraints, on top of

first ensuring the generalization robustness and recognition

accuracy of the disease classifier. We need efficient models with

less computational effort and faster inference (Yang et al., 2023). To

our knowledge, few studies have explored the applicability of state-

of-the-art lightweight deep-learning classification models in the

field of maize leaf disease identification.

In terms of data acquisition, most of the images used in current

studies are captured in a controlled environment (Subramanian

et al., 2022), with monotonous backgrounds and images acquired in

a destructive manner. For example, when Mohanty et al. applied a

model trained using the PlantVillage database to images from an

online resource, the accuracy rate quickly dropped to below 50%

(Mohanty et al., 2016). Thus, when DL classifiers are used in natural

environments, there are many uncontrollable factors that affect

them. The potential use of these studies is limited by the

environment in which they are taken, which is why most results

in many of the relevant studies show high accuracy, while

recognition accuracy decreases when faced with truly complex

natural environments. Existing open source disease datasets, such

as PlantVillage and CVPR 2020-FGVC7, are not appropriate for

real field environments. Thus, there is a need to create a dataset for

detecting maize leaf disease in a natural field setting.

Benefiting from the advanced CNN architecture, fully

supervised semantic segmentation methods have achieved

remarkable performance (Gao et al., 2019). However, these

segmentation methods rely heavily on large-scale training samples

with pixel-level annotations. Building pixel-level accurate

segmentation datasets is very expensive (Jiang et al., 2021a). On

the other hand, deep learning classifiers lack interpretability, giving

good results but without any explanation or details about the

classification mechanism. Especially for crop disease classification,

the user also needs to know how these classification results are

achieved and what symptoms the disease has. The use of

visualization techniques to explore the working mechanisms of

deep learning has become a hot topic of research in recent years.

Due to the accessibility of image-level labels and the desire to save

time and manpower, weakly supervised learning is utilized to

achieve semantic segmentation. By employing weakly supervised

learning algorithms, classifier designers can enhance their

classifiers’ performance. Meanwhile, visualization algorithms can

aid users in identifying symptoms and infected areas to achieve a

better comprehension of plant diseases. DeChant et al. developed a

novel approach for quantifying the likelihood of specific disease

types in plants, which involved utilizing various combinations of

convolutional neural networks (CNNs) and generating heatmaps as

input to images of diseased plants. This methodology offers a

valuable tool for non-specialist farmers who can learn about plant

diseases via deep learning classifier visualizations. Additionally,

classifier designers and agricultural experts can study the behavior

of classifiers through visualizations generated by the CNNs

(Dechant et al., 2017). Brahimi et al. developed a saliency map to

visualize plant disease symptoms and identified 13 types of plant

diseases. They used multiple filters to pinpoint the location of

disease spots (Brahimi et al., 2018). Lu et al. employed a CNN to
frontiersin.org
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detect disease spots on rice plants by generating feature maps (Lu

et al., 2017). Mohanty et al. compared the performance of AlexNet

and GoogleNet by using the publicly available PlantVillage dataset

and evaluating performance metrics in 3 scenes (color, greyscale,

and segmented) and using visual activation to display disease

patches (Mohanty et al., 2016). Therefore, how to make use of the

rich semantic information contained in the image-level annotated

data and to achieve a weakly supervised semantic segmentation that

is close to the semantic segmentation effect by relying only on

image-level annotation is a hot topic of research in recent years in

the direction related to semantic segmentation, and there are few

studies to quantitatively evaluate the applicability of weakly

supervised learning in the field of crop disease detection.

To address the issues arising from the above study, we

constructed a dataset of field images of maize leaf spot disease for

use in natural environments. The deep learning classification

models trained on this dataset are more suitable for the

identification and detection of maize leaf spot disease in the field.

A combination of four lightweight networks and four advanced

CAM methods were selected to test the performance of the

networks and CAM on the validation set. Also, migration

learning was employed to enhance the learning ability of the

models during their training. The main contributions of this

study can be summarized as follows:
Fron
1. We constructed a maize leaf spot field image dataset by

combining a smartphone captured maize leaf spot image

dataset from maize growing areas in Dezhou City,

Shandong Province, and Hebi City, Henan Province, and

some open source maize leaf part image datasets. A total of

9401 images were included, and with the help of experts in

related fields, image-level annotation was applied to these

images, which included five types of maize leaf spot disease

(large spot, small spot, curvular leaf spot, brown spot and

rust) and one healthy type.

2. We investigated the applicability of four state-of-the-art

lightweight networks in the field of crop disease detection

and proposed a method combining a disease classifier with

CAM visualization for localizing infected areas on maize

leaves relying only on image-level annotation. A

comprehensive evaluation of the ability of four advanced

CAM methods (LayerCAM, XGradCAM, AblationCAM,

ScoreCAM) to localize infected areas of disease spots is also

presented.

3. We investigated whether class activation mapping maps

can be used for disease localization in the field of plant pests

and diseases. Analysis of the mIoU of different classification

models under different conditions (different combinations

of CAM methods and different operational thresholds for

generating image boundaries from the score map). our

study shows the feasibility of coarse localization of infected

areas in maize leaves by means of a combination of

lightweight classification models and CAM.
The remainder of the paper is organized as follows: in Section 2,

the process of data collection and enhancement is described. Section
tiers in Plant Science 03
3 describes the methods used to classify and localize maize leaf spot

disease and the performance evaluation metrics. Experimental

details and results are given in section 4. Section 5 presents the

conclusions drawn from this study.
2 Dataset

2.1 A dataset of maize foliar
diseases collected from the field’s
natural environment

Data for this experiment were collected in a non-destructive

manner via iPhone 12 and Samsung Galaxy S21 at experimental

fields in Hebi, Henan Province, and Dezhou, Shandong Province.

The collection time was mid to late September 2022 and in addition,

these maize diseases were all naturally occurring. When

photographing, different angles and distances are used, and it is

important to ensure that the images cover as many complex

backgrounds as possible, such as sky, soil, and weeds. Healthy

maize leaves were obtained from the publicly available maize

dataset on the Kaggle website and the maize maculates dataset

was provided by T Wiesner-Hanks (Wiesner-Hanks et al., 2018),

both of which were screened and collated to form the maize leaf

disease dataset to be used in this study. Figure 1 displays six types:

1474 corn brown spot, 1242 corn southern leaf blight, 2407 maize

curvularia leaf spot, 615 common rust, 1253 corn northern leaf

blight, and 2410 healthy types.
2.2 Image pre-processing

Deep learning often relies on large datasets, but in the real

world, it is very difficult to collect training data and requires experts

in the field to perform the labeling task. In addition, class imbalance

and insufficient amount of data are key factors that lead to poor

recognition (Öztürk et al., 2021). To address this issue, in this study

we use traditional data augmentation to expand the number of

samples. The data augmentation mainly involves flipping, color

changing, panning, rotating, and resampling the training samples,

which is done to enhance the generalization ability of the model and

prevent overfitting. First we divide the data into a training set and a

validation set in the ratio of 7:3, and then augmented the training set

with data. The details are shown in Table 1.
3 Methods

3.1 Classification model of maize
leaf disease

The well-established CNN architectures in computer vision,

such as AlexNet, GoogleNet, VGGNet, and ResNet, are the most

popular deep-learning models in image recognition. And they are

widely used in the field of plant disease classification. Although they

have a good performance in image classification, they also generally
frontiersin.org
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have the problem of high memory requirements and high

computing power. This makes them almost unusable in some

remote areas where internet speeds are very slow. There is

therefore a need for lightweight and relatively high-accuracy

networks that can be deployed to run on mobile and embedded

devices to identify maize leaf spots. In CNNmodels, there is a trade-

off between classification accuracy and model size, and the advent of

lightweight networks has greatly improved the efficiency and

accuracy of the models. In this study, we selected four advanced

lightweight CNNs for this study, and provide a description of each

one below.
Frontiers in Plant Science 04
3.1.1 MobileNetV3
MobileNetV3 was issued in 2019 and proposed by the Google team

(Howard et al., 2019), with excellent performance and speed thanks to

the accumulation of the first two generations of V1 and V2.

MobileNetV1 consists of a stack of depth-separable convolution

modules, which is a decomposition of the standard convolution into

a depthwise convolution and a 1×1 pointwise convolution, greatly

reducing the computational effort of the network (Howard et al., 2017).

MobileNetV2 introduces a linear bottleneck and reverse residual

structure (shown in Figure 2) in order to produce a more efficient

layer structure by exploiting the low-rank nature of the problem
TABLE 1 Enhanced dataset.

Disease category Original Train Augmented train Val

Corn Brown Spot 1474 1032 2064 442

Corn Southern Leaf Blight 1242 870 2040 372

Maize Curvularia Leaf Spot 2407 1685 2066 722

Common Rust 615 431 2155 184

Corn Northern Leaf Blight 1253 878 1998 375

Healthy 2410 1687 2097 723

Total 9401 6583 12420 2818
frontiers
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FIGURE 1

Data set of maize foliar diseases: (A) corn brown spot, (B) maize curvularia leaf spot, (C) corn southern leaf blight, (D) corn northern leaf blight,
(E) common rust, (F) healthy.
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(Sandler et al., 2018). When the inputs and outputs have the same

number of channels, the inputs and outputs are connected to the

residual connections. This structure is extended internally to higher

dimensional feature spaces to increase the expressiveness of the non-

linear multi-channel transform. The main improvements of

MobileNetV3 are as follows: 1) inherited the deeply separable

convolution of V1. 2) inherited the residual structure with linear

bottlenecks of V2. 3) introduced the SE channel attention structure.

4) used the NetAdapt algorithm to obtain the optimal number of

convolution kernels and channels. 5) used a new activation function

Hard-Swish instead of ReLu6. In summary, MobileNetV3 incorporates
Frontiers in Plant Science 05
the structures of the previous two and uses NAS (Neural Architecture

Search) to search for the configuration and parameters of the network.

Two versions are available, which can be defined as

MobileNetV3_small and MobileNetV3_large, with different

architectural complexity, depending on the demand for resources.

Figure 3 shows the network structure of MobileNetV3_small.

3.1.2 ShuffleNetV2
ShuffleNetV2 is a new lightweight neural network proposed in

2018 (Ma et al., 2018), which is an upgraded version of

ShuffleNetV1 based on channel shuffling and four efficient
FIGURE 2

Inverted Residual Linear Bottleneck.
FIGURE 3

Network structure diagram of MobileNetV3_small. NSE and SE indicate the presence of squeeze and excite layers in the block, HS indicates that the
activation function is Hard-Swish, RE indicates that the activation function is ReLU, s indicates the step size, k indicates the convolutional kernel size,
and NBN indicates that there is no BN layer.
frontiersin.org
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network design criteria (G1. Same channel width minimizes MAC.

G2. Too much group convolution increases MAC. G3. Internal

network fragmentation operations reduce parallelism. G4.

Element-wise operations cannot be ignored). Accuracy

outperforms other lightweight models at the same complexity.

As shown in Figure 4, ShuffleNetV2 divides the inputs of the

feature channels into two branches, one of which reduces network

fragmentation and increases parallel efficiency. The other branch

consists of three convolutions with the same input and output

channels. It allows each convolutional kernel to run only on the

corresponding channel grouping, which minimizes memory

access cost (MAC). The advantages of ShuffleNetV2 are: 1) it is

efficient in each building block, thus utilizing more feature maps

and a larger network capacity. 2) feature reuse, because of channel

splitting, so that half of the features are passed directly to the next

module. The feature reuse information decays exponentially with

the distance between the two modules. That is, the number of

feature maps in layer i + j containing layer i feature maps is rjc,

where c is the number of feature maps in layer i and r is the

parameter of channel splitting. ShuffleNetV2 can set the channel

of each basic unit, e.g. 0.5×, 1×, 1.5×, and thus adjust the

complexity of the model. For this study, a version of

ShuffleNetV2 with 1.0× output channels was chosen.

3.1.3 EfficientNet
EfficientNet is a lightweight convolutional neural network

architecture and scaling method proposed by Google in 2020 that

uniformly scales all dimensions of depth/width/resolution using

a compound coefficient (Tan and Le, 2019). Unlike the traditional

approach of scaling these factors arbitrarily, the EfficientNet

scaling method uses a set of fixed scaling factors to uniformly

scale the network width, depth, and separation rate. If the input
Frontiers in Plant Science 06
image is larger, then the network needs more layers to increase

the field of perception and more channels to capture finer-

grained patterns on a larger image. The underlying network

architecture of the model is designed using neural architecture

search and the user can scale the model to suit their hardware

resources. The core structure of EfficientNet is the mobile

inverted bottleneck convolution (MBConv), which is obtained

by searching through the neural network architecture, first

convolving the input 1×1 point by point and varying the

output channel dimension according to the expansion ratio.

The depthwise convolution of k� k is then performed.

influenced by the Squeeze-and-Excitation Network (SENet)

(Hu et al., 2018), a compression and excitation operation is

performed after the depth convolution, followed by a 1×1

point-by-point convolution ending reverting to the original

channel dimension and performing a drop connect and an

input skip connection, to improve the representational power

of the network by making it possible to perform dynamic channel

feature recalibration. Among other things, the MBConv module

weighs network depth, width, and input image resolution by

using simple and efficient composite coefficients. It allows the

model to have a random depth, cutting short the time spent on

training and inference. Figure 5 shows the Building blocks

of EfficientNet_b0.

3.1.4 DenseNet
DenseNet is a convolutional neural network that exploits the

potential of the network through feature reuse to produce

condensed models that are easy to train and parameter efficient

(Huang et al., 2017). Compared to ResNet, DenseNet proposes a

more radical dense connectivity mechanism, where dense

connectivity between layers is exploited through dense blocks to
B CA

FIGURE 4

Building blocks of ShuffleNetV2. (A): basic cells; (B): cells used for spatial downsampling; (C): network structure diagram of ShuffleNetV2_1.0×.
DWConv, depthwise convolution.
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connect the feature maps learned by different layers, increasing the

variability of inputs from subsequent layers and improving

efficiency. For DenseNet, each layer is concatenated with all

previous layers in the channel dimension and used as input to the

next layer. CNNs generally go through Pooling or stride>1

convolution to reduce the size of the feature map, whereas the

densely connected approach of DenseNet requires the feature map

size to be consistent. To solve this problem, DenseNet uses the

structure of DenseBlock+Transition, as shown in Figure 6, where

DenseBlock is a module containing many Dense layers, each layer

has the same feature map size, and the layers are densely connected.

The advantages of DenseNet are: (1) Due to the dense connection,

DenseNet improves the backpropagation of the gradient, making

the network easier to train. Since each layer can go straight to the

final error signal, implicit deep supervision is achieved; (2) the

parameters are small and computationally efficient, and feature

reuse is achieved since DenseNet is short-circuited by fusing

features to achieve short-circuited connections. In this study,

DenseNet121 was chosen for training and testing.
Frontiers in Plant Science 07
3.2 CAM-based method for locating
maize leaf spots

Class Activation Mapping (CAM) is a class response map

generated from a classification network. It can roughly localize to

discriminative object regions in an image based on image-level

annotation information (Zhang et al., 2022). It reveals the

distribution of the CNN’s contribution to the prediction output,

with higher scores indicating a higher response and greater

contribution to the network from the corresponding region of the

original image. It has the following 3 advantages: (1) it helps to

understand and analyze how neural networks work and the

decision-making process, which in turn helps us to better select

and design the network, for example, for classification networks, we

need high prediction accuracy on the one hand, and on the other

hand, we also need the network to extract the features we want to

obtain; (2) using the visualization of the network response can guide

the network to learn better, for example, we can use the information

reflected by CAM to enhance the data by cropping, etc.; (3) using
BA

FIGURE 5

Building blocks of EfficientNet_b0. (A):MBConv structure; (B) EfficientNet_b0 structure. swish indicates that the swish activation function is used, SE indicates
that the Squeeze-and-Excitation module is added, and N indicates the multiplicity factor (i.e. The first convolutional layer in MBConv expands the channels
of the input feature matrix by a factor of N), and BN denotes Batch Normalization.
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CAM as a basis for weakly supervised semantic segmentation or

weakly supervised localization. Because CAM can cover the target

object, it is possible to use only classification annotation to complete

the semantic segmentation or target detection task, which greatly

reduces the workload of annotation, but this is more demanding on

CAM. In general, the classification network will only extract the

most discriminative features.

On the other hand, the CAM method can project the features

extracted by the network onto the input image, so the image can be

examined to see how the classifier is behaving. If the classifier

behaves correctly, these features may represent the location of the

crop disease, however, if the classifier is extracting features that are

not related to the disease, then problems with the classifier can be

identified in time. This type of approach is important from a

practical point of view as it projects the features extracted from

the network onto the input image and therefore allows the way in

which the classifier behaves to be understood by examining the

image. If the classifier behaves correctly, then these parts may be
Frontiers in Plant Science 08
representative of symptoms or features of the disease. This is the

case if the classifier uses the background or another feature that is

not related to the plant disease as the basis for classification. The

extraction of CAM generally occurs at the convolutional layer, and

in particular at the last layer of convolution. Figure 7 illustrates the

general process of these methods. It is generated by the interaction

between the convolutional layer, the global average pooling layer,

and the CNN classification layer (Jiang et al., 2021b). The CAM for

a given category a is defined asMa, and each spatial element can be

represented by equation (1).

Ma(x, y) =oL
l=1w

a
l fl(x, y) (1)

where fl(x, y) denotes the activation of unit l in the final convolution

layer at spatial location (x, y) of a given feature map, and wa
l denotes

the weight of the unit l associated with class a. Thus, Ma(x, y)

activation at spatial position (x, y) plays a key role, which in turn

classifies the image into class a, and by simply upsampling the CAM
FIGURE 6

Structure of the DenseNet 121 model.
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to the same size as the input image, the image regions most relevant

to a particular category can be identified.

Similar to anchor-base and anchor-free in the field of target

detection, CAM is also divided into gradient-based and gradient-

free, both of which extract target feature layers and perform

weighted fusion to obtain CAM. The difference lies in the

selection of the fusion weights between the feature layers, with

gradient-based using gradients to obtain the weights, while

gradient-free does not require gradient information. This section

presents state-of-the-art CAM methods based on both types.
3.2.1 LayerCAM
Traditional CAM methods, such as GradCAM (Selvaraju et al.,

2017) and GradCAM++, can only generate class activation maps

from deep layers of the convolutional neural network. Due to the

small spatial resolution of the final convolutional layer, the class

activation mapping map can usually only locate a coarse region of

the target. LayerCAM (Jiang et al., 2021b), on the other hand, can

generate reliable class activation mapping maps for different

convolutional layers of a CNN by generating individual weights

for each spatial location in the feature map using backward class-

specific gradients. The strengths of the class activation mapping

maps of the different convolutional layers are complemented to

generate more accurate and complete class-specific target regions.

Furthermore, LayerCAM can be applied directly to CNN-based

deep learning image classifiers without the need to modify the

network architecture and back-propagation methods. The class

activation mapping Mc generated by LayerCAM is shown in

Equations (2), and (3).

yc = f c(I, q) (2)

Mc = ReLU(ok(relu(
∂ yc

∂Ak
ij

) · Ak
ij)) (3)

Where c is the target category, f denotes the image classifier, q
denotes the parameters of the classifier, and I denotes the input

image. yc denotes the prediction score for obtaining the target

category c, A is the output feature map of the final convolutional

layer in the CNN, and Ak
ij denotes the value of the spatial location

(i, j) in the first k feature map in A.
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3.2.2 ScoreCAM
ScoreCAM is a new CAM-based gradient-free visual

interpretation method (Wang et al., 2020). Unlike previous CAM-

based methods, ScoreCAM obtains the weights of each activation

mapping by its positive transfer score on the target class, thus

getting rid of the dependence on gradients, and the final result is

obtained by a linear combination of weights and activation

mappings. It bridges the gap between perturbation-based and

CAM-based methods and dictates the weights of the activation

maps in an intuitive and understandable way. Using the notation in

Section 3.2.1, the class activation mapping map LcScore−CAM generated

by Score-CAM can be defined according to Equation (4), assuming

a convolutional layer l in the image classifier f , given an interest

class c, as

LcScore−CAM = Re LU(o
k

C(Ak
l )A

k
l ) (4)

where C( · ) denotes the Channel-wise Increase of Confidence(CIC)

score of the class activation graph Ak
l .

3.2.3 AblationCAM
AblationCAM is a gradient-free visual interpretation method

for deep convolutional neural networks that avoids the use of

gradients while producing high-quality class-distinct localization

maps (Ramaswamy, 2020). AblationCAM can be a good solution to

the problem of not providing convincing interpretations and

highlighting relatively small incomplete regions of objects in an

image due to gradient saturation. The class activation mapping map

LcAblation−CAM generated by AblationCAM is shown in equation (5):

LcAblation−CAM = RELU o
k

yc − yck
yc

Ak

 !
(5)

Where yc is the class activation score obtained by the model

through forward pass, yck is the score of class c obtained after the kth

channel of the feature map is all set to 0.

3.2.4 XGradCAM
How weights are determined has always been a key issue in

CAM visualization, and different definitions of weights produce

different CAM methods. In order to provide a basis for the solution
FIGURE 7

The process of class activation mapping methods.
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of the weights, XGradCAM (Fu et al., 2020) introduces two axioms

in the derivation process: Sensitivity and Conservation; the role of

Sensitivity is that when a feature mapping is set to zero, the more

significant the decrease in a score, the more important the feature

mapping should be. Conservation was introduced to ensure that the

category scores are dominated by feature mapping and not by some

other uncontrollable factor. The equations for the MXGrad−CAM
c of

the class activation mapping generated by XGrad-CAM are shown

in (6), and (7).

ak
c =o

x,y

Flk(x, y)

ox,yF
lk(x, y)

·
∂ Sc(F

l)

∂ Flk(x, y)

 !
(6)

MXGrad−CAM
c (x, y) = o

K

k=1

(ak
c F

lk(x, y)) (7)

Where Flk(x, y) denotes the xth row and yth column response of

the kth feature mapping in the lth layer of the network and Sc(F
l) is

the c class score predicted by the CNN. A ReLU correction to

MXGrad−CAM
c is also required in order to highlight those regions that

play a positive role in the classification results. In addition, the

corrected class activation mappings need to be upsampled to the

size of the input image as the deeper feature mapping size is usually

smaller than the size of the input image.

In summary, this study will compare the effectiveness of each of

the above four CAM methods in locating areas infected with maize

leaf spots. The differences between the different methods are shown

in Table 2.
3.3 Performance evaluation indicators

In order to present statistics on accurate and incorrect image

recognition, this study uses F1 scores, FLOPs (floating-point
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operations), and FPS (frames per second) as evaluation metrics,

with F1 scores representing the summed average of Precision and

Recall (Barstugan et al., 2020). The F1 score represents the summed

average of Precision and Recall, where Precision represents the

percentage of predicted positive values that are actually positive,

and Recall represents the percentage of predicted positive values

that are actually positive. FLOPs represent the amount of

computation used to measure the complexity of the model, and

FPS represents how many frames per second the network can

process. The equations for calculating the metrics are shown in

(8), (9), and (10).

P(Precision) =
TP

TP + FP
(8)

R(Recall) =
TP

TP + FN
(9)

F1 Score =
2 ∗P ∗R
P + R

(10)

Where TP(True Positive) indicates the number of positive

instances predicted correctly, FN(False Negative) is the number of

positive instances classified incorrectly; FP(False Positive) is the

number of negative instances classified as a positive category and

TN(True Negative) is the number of negative instances that have

been accurately classified.

In evaluating the performance of the CAM algorithm for

locating the location of image spots, we first perform class

prediction on the disease image, then generate a class activation

mapping map as shown in Figure 8 and convert the generated heat

map to a grey-scale map. Here we design a gradient experiment to

convert the greyscale map into a binary map by setting the

operational thresholds used to generate image boundaries from

the score map to 50%, 60%, and 70% of the maximum pixel value in
TABLE 2 4 state-of-the-art CAM methods.

Type Method Advantages

gradient-based LayerCAM Using element-level weights to generate higher-quality class activation maps

gradient-free ScoreCAM Infiltrate the image by scaling activation and measure how the output drops

gradient-free AblationCAM Zeroing out the activation and measuring the drop in output

gradient-based XGradCAM Scaling gradients by normalizing activation
B CA

FIGURE 8

Image processing process: (A) Heat map, (B) Grayscale map, (C) Binary map.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1128399
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2023.1128399
the greyscale map, respectively, and keeping the pixels with values

above the threshold according to the thresholds we set. The aim was

to extract closer to the actual contours and locations of the lesions

from the class activation mapping map. At the same time, we

manually labeled the real contours of the lesions and calculated the

IoU (Intersection over Union) of the two, with the equation shown

in (11).

IoU =
Area of Overlap
Area of Union

(11)
3.4 Transfer learning

Transfer learning is a machine learning method (Tan et al.,

2018) that works by taking knowledge from one domain (the source

domain) and transferring it to the target domain, enabling the target

domain to achieve better learning results (Özkaya et al., 2020).

Usually, when the source domain has an adequate amount of data

and the target domain has a small amount of data, this situation

lends itself to the use of migration learning. By using migration

learning, the model can have better initialization performance and

accelerate the learning and optimization of the network during the

training process. ImageNet is a large visualization database for

visual object recognition software research (Krizhevsky et al., 2017),

which contains about 1.2 million images and 1000 categories. Many

researchers have used this dataset as a source domain for migration

learning (Diaz-Romero et al., 2021; Relekar and Shanmugam, 2021;

Chen et al., 2022). This migration learning strategy is a frequent

training method when training CNNs using image data. The

migration learning approach requires only exponentially fewer

data to learn specific features of a custom class. The reduced

amount of data required significantly reduces training time and

data collection, making CNNs easier to use for everyday tasks.
4 Experimental analysis and discussion

All processes used in this study were based on Python 3.7 under

Linux and the PyTorch deep learning framework. The server CPU

was an Intel(R) Xeon(R) CPU E5-2678 v3, 64 GB of RAM, and

included two Nvidia RTX 2080 graphics processing units (GPUs).

This experiment is divided into 2 parts: (1) the basic models of

maize leaf spot classification were obtained by training

MobileNetV3_small, ShuffleNetV2, EfficientNet_b0, and

DenseNet121 networks with enhanced training sets; (2) the above
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4 networks were combined with LayerCAM. ScoreCAM,

AblationCAM, and XGradCAM, respectively, to obtain the best-

performing maize leaf spot classifier. Among them, Score-CAM and

Ablation-CAM need a large number of forward passes, and we set

the batch size of forward pass to 128. The network parameters of the

classification models are shown in Table 3. In addition, all models

were trained on a data-enhanced training set, and the weights of the

models were pre-trained on ImageNet. Table 4 shows the

hyperparameters of the training process.
4.1 Performance comparison of various
lightweight network classifications

As shown in Figure 9, the losses of the 4 networks were recorded

after each training period, and after 300 iterative training cycles, the

training loss values of all networks stabilized, indicating that all 4

models had converged. After the training was completed, we used 5-

fold cross-validation to evaluate the classification effectiveness of

the 4 networks. Table 5 shows that there is no direct relationship

between the model parameters, computational effort, and the final

classification performance, with the F1 score of EfficientNet_b0

being higher than that of the other three models. In terms of

recognition speed, MobileNetV3 is the fastest of the four

lightweight networks.

As shown in Figure 10, the four networks identified the different

types of maize leaf spots, with all four models achieving good F1

scores for all types of maize leaf spots. Figure 11 shows the

confusion matrix of the predicted results for each model. There

were instances where each model confused MCLS with CBS, as the

two diseases were extremely similar in appearance, with only minor

differences in some locations. There was also a misclassification of

healthy classes into CNLB, possibly because some healthy classes

had tiny spots on the leaves, but not enough to be considered non-

healthy. On the other hand, complex field backgrounds and

different light intensities can also affect feature extraction from

disease images, leading to incorrect individual classification.
4.2 Comparison of the effectiveness of
CAM-based localization of infected areas

To further understand the details about the deep learning

classification mechanism and whether the network extracted the

features we wanted to obtain, we also wanted to know the deviation

of the disease spot locations extracted by CAM from the actual spot
TABLE 3 Network parameters of the classification model.

Network parameters DenseNet EfficientNet MobileNetV3 ShuffleNetV2

Total params 7,978,856 5,288,548 2,542,856 2,278,604

Forward/backward pass size(MB) 172.18 173.65 34.61 47.94

Params size(MB) 30.44 20.17 9.70 8.69

Estimated Total Size(MB) 203.19 194.40 44.88 57.20
frontiersin.org

https://doi.org/10.3389/fpls.2023.1128399
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2023.1128399
locations. We extracted the disease features we wanted to obtain in

four lightweight networks using the 2 CAM methods mentioned in

3.2 and evaluated the effect of class activation mapping. As each

layer in the model extracts different features, in general, deeper

representations in the CNN capture the higher-level visual structure

and the convolutional features retain spatial information, but this

information is lost in the fully connected layers. As shown in

Figure 12, we used the example of GradCAM extracting features

from CBS, and the deep learning classifier did not extract the

features we wanted when using the network layer before the 16th

Bottleneck residual block as the target layer. So in this study, we

randomly selected 453 disease images from the validation set for
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testing the localization of infected areas in maize leaves. These

included 88 CBS, 83 CNLB, 96 CR, 95 CSLB, and 76 MCLS. we

selected the last convolutional layer of each network as the target

layer for class activation mapping and evaluated it, and then set the

boundary thresholds to 50%,60%, and 70% of the maximum pixel

value in the grey-scale map according to Section 3.3, respectively, to

analyze the performance of these CAM methods were analyzed for

their effectiveness in locating infected areas of maize leaf diseases

under different thresholds. We manually annotated the images in

the test set and evaluated the localization effect by calculating the

boundary contours of the class activation mapping map and the IoU

of the manually annotated contours.

As shown in Figure 13, the localization results were generally

lower than 60% and 70% when the threshold value was set to 50%.

When the threshold value was set to 50%, the combination of

EfficientNet_b0+LayerCAM could achieve the highest mIoU of

55.302% for the infected area of maize leaves. When the threshold

was set to 70%, the combination of ShuffleNetV2+ScoreCAM was

the least effective, and ScoreCAM was the least effective of the four

CAM methods in locating infected areas. Table 6 compares the best

spot localization accuracy that each CAMmethod can achieve, from

which it can be seen that the combination of EfficientNet_b0 and

LayerCAM, AblationCAM, and XGradCAM all achieve a mIoU of

more than 54% when relying only on image-level annotation. On

the other hand, the four networks were generally better at locating
TABLE 5 Performance evaluation of different network architectures.

Networks FLOPs Total params R P F1 Score FPS

DenseNet 5.794G 7.979M 95.80% 96.33% 95.983% 62.89

EfficientNet 830.290M 5.289M 95.58% 96.49% 96.049% 132.65

MobileNetV3 124.956M 2.543M 94.97% 95.33% 95.072% 207.41

ShuffleNetV2 305.418M 2.279M 95.56% 95.57% 95.579% 183.57
frontie
TABLE 4 Hyperparameters in the training process.

hyper-parameters Value

Epochs 300

Batch size 32

Optimizer SGD

Momentum 0.9

Weight decay 0

Learning rate decay cos

Learning rate 2e-5~2e-3
FIGURE 9

Loss curves for each network during training.
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CBS and CSLB than the other three infestations. The localization

effect on the infected zone of CNLB was the worst among the five

diseases. On the other hand, ScoreCAM and AblationCAM took

relatively longer because AblationCAM had to traverse each feature

map to ablate it and check for changes in the class activation scores

and check for decreases in the corresponding class activation scores.

So it takes longer to map the activation of the features. And

DenseNet121 is more computationally intensive than the other 3

networks, so it takes longer to generate the class activation mapping
Frontiers in Plant Science 13
maps. layerCAM and XGradCAM require a single backpropagation

to generate the class activation mapping maps, which can be

significantly reduced if they are properly multi-processed.

Figure 14 shows a visual sample of the combination of the four

CAM methods with the best localization performance. It can be

seen that ScoreCAM localizes a much larger range, including areas

unrelated to the lesion, which is responsible for ScoreCAM’s poorer

localization performance than the other three CAMs. As the

weights are derived from the CIC scores corresponding to the
FIGURE 10

F1 scores for each type of disease for different networks.
FIGURE 11

Confusion matrix for the predicted results of each model.
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target class activation maps, ScoreCAM is free from the dependence

on gradients. Since the weight of each activation map is represented

by its score for the target class, each target object predicted by the

model with a high confidence score can be highlighted

independently. Thus, all evidence associated with the target class

can be responded to and assembled by linear combination. On the

other hand, the four methods have relatively low localization

refinement for CNLB, which may be due to the fact that the

CNLB images in the dataset are not as rich, thus leading to the

weakly supervised semantic segmentation based on the CAM

method not being able to generalize the learned features well. In

summary, it is feasible to achieve localization of maize leaf spots by

CAM-based weakly supervised semantic segmentation.

In comparison to the currently available research results, Md.

Ashraful Haque et al. achieved an overall classification accuracy of

95.99% and an average recall of 95.96% on a dataset of 4 types and

5939 maize disease images through the Inception-v3 network

framework (Haque et al., 2022). Although this study also achieved
Frontiers in Plant Science 14
good performance, it was unable to localize infected areas and the

model was not very interpretable. 91.83% accuracy was achieved by

Sun et al. using a CNN model for the identification of maize

maculate spots, but the drawback of this was the small variety

and number of samples and the reliance on more detailed

annotation information (Sun et al., 2020).
5 Conclusion

Based on the constructed dataset of maize leaf spot disease in

the field environment, this study proposes a maize leaf spot

disease recognition model that combines lightweight deep

learning classifiers with visualization techniques for the

identification and localization of leaf spot disease in maize in

the field. We selected four lightweight networks as backbone

networks, used pre-trained models on the ImageNet dataset to

initialize the weights of deep learning classifiers, and combined
FIGURE 12

Presentation of class activation mapping based on MobileNetV2 per layer extraction.
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them with four state-of-the-art interpretable AI algorithms

based on CAM to evaluate the effectiveness of weakly-

supervised learning for locat ing infected zones . The

experimental results demonstrate that a lightweight CNN

architecture based on weakly supervised learning is able to

learn and predict the location of infected zones in maize leaf

disease images, despite being trained from complex field scenes

with only image-level annotations. While the approximate

location of disease spots can be predicted fairly reliably by

weakly supervised learning, the accuracy of the predictions is

not good enough, due to the network’s tendency to focus on

unique regions. We believe that weakly supervised learning has

greater potential for exploitation in the plant pest and disease

domain, as it effectively addresses the over-reliance on manual

labeling in previous related studies. In contrast to traditional

fully supervised learning methods, weakly supervised learning
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requires the manipulation of training data with weak labels to

learn the target model, thus alleviating the cost of annotating

training samples. It can also facilitate the learning process when

the fine-grained annotation is very time-consuming.

On the other hand, although the approximate location of the

disease can be located by CAM methods, it cannot achieve the

same accuracy as in the target detection task. In classification

tasks, the model tends to base its judgment on the most salient

and discriminative regions of the object, so during training, the

classification model will increasingly favor these regions, so that

the classification score of proposals containing these local

regions wil l be higher and higher, and therefore the

classification score of proposals covering only these local

regions will naturally be the highest. So this is why weakly

supervised semantic segmentation often does not cover the

entirety of the target object, as it only shows the local optimal
FIGURE 13

Effectiveness of each CAM method in localizing the infected area.
TABLE 6 Optimal mIoU achieved by different CAM methods.

s

LayerCAM EfficientNet 60% 61.68% 39.7% 54.81% 63.38% 56.94% 55.302% 01:12

ScoreCAM DenseNet 70% 54.54% 28.69% 44.88% 49.07% 49.82% 45.4% 41:04

AblationCAM EfficientNet 60% 61.81% 38.69% 55.86% 62.56% 54.04% 54.592% 26:22

XGradCAM EfficientNet 60% 62.13% 38.6% 55.54% 63% 54.71% 54.796% 01:12
fro
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solution. Also for some users, it is necessary to quantify the

severity of the disease in the maize leaves. Whether this

information can be extracted from the heat map remains to

be investigated.
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