Check for updates

OPEN ACCESS

EDITED BY Jia-He Wu, Institute of Microbiology, Chinese Academy of Sciences (CAS), China

REVIEWED BY Yuxiang Yuan, Henan Academy of Agricultural Sciences (HNAAS), China Xiaochun Wei, Henan Academy of Agricultural Sciences (HNAAS), China

*CORRESPONDENCE Ruiqin Ji Mruiqinji@syau.edu.cn

SPECIALTY SECTION This article was submitted to Plant Pathogen Interactions, a section of the journal

Frontiers in Plant Science

RECEIVED 27 December 2022 ACCEPTED 23 February 2023 PUBLISHED 09 March 2023

CITATION

Zhang B, Feng H, Ge W, Wang X, Zhang J and Ji R (2023) *BrUFO* positively regulates the infection of Chinese cabbage by *Plasmodiophora brassicae*. *Front. Plant Sci.* 14:1128515. doi: 10.3389/fpls.2023.1128515

COPYRIGHT

© 2023 Zhang, Feng, Ge, Wang, Zhang and Ji. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

BrUFO positively regulates the infection of Chinese cabbage by *Plasmodiophora brassicae*

Bo Zhang, Hui Feng, Wenjie Ge, Xinlei Wang, Jing Zhang and Ruigin Ji*

Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China

Introduction: Chinese cabbage is one of the most important vegetable crops in China. However, the clubroot disease caused by the infection of *Plasmodiophora brassicae (P. brassicae)* has seriously affected the yield and quality of Chinese cabbage. In our previous study, *BrUFO* gene was found to be significantly upregulated in diseased roots of Chinese cabbage after inoculation with *P. brassicae. UFO (UNUSUAL FLORAL ORGANS)* have the properties of substrate recognition during ubiquitin-mediated proteolysis. A variety of plant can activate immunity response through the ubiquitination pathway. Therefore, it is very important to study the function of *UFO* in response to *P. brassicae.*

Methods: In this study, The expression pattern of *BrUFO* Gene was measured by qRT-PCR and *In situ* Hybridization (ISH). The expression location of *BrUFO* in cells was determined by subcellular localization. The function of *BrUFO* was verified by Virus-induced Gene Silencing (VIGS). proteins interacting with BrUFO protein were screened by yeast two-hybrid.

Results: Quantitative real-time polymerase chain reactions (qRT-PCR) and in situ hybridization analysis showed that expression of *BrUFO* gene in the resistant plants was lower than that in susceptible plants. Subcellular localization analysis showed that *BrUFO* gene was expressed in the nucleus. Virus-induced gene silencing (VIGS) analysis showed that silencing of *BrUFO* gene reduced the incidence of clubroot disease. Six proteins interacting with BrUFO protein were screened by Y₂H assay. Two of them (Bra038955, a B-cell receptor-associated 31-like protein and Bra021273, a GDSL-motif esterase/acyltransferase/lipase Enzyme) were confirmed to strongly interact with BrUFO protein.

Discussion: *BrUFO* gene should be a key gene of chinese cabbage against the infection of *P. brassicae. BrUFO* gene silencing improves the resistance of plants to clubroot disease. BrUFO protein may interact with CUS2 to induce ubiquitination in PRR-mediated PTI reaction through GDSL lipases, so as to achieve the effect of Chinese cabbage against the infection of *P. brassicae.*

KEYWORDS

Chinese cabbage, BrUFO, Plasmodiophora brassicae, VIGS, Yeast two-hybrid

1 Introduction

Clubroot disease is a worldwide soil-borne disease caused by *Plasmodiophora brassicae* Woron, which mainly infects Chinese cabbage, pakchoi, cabbage, radish, broccoli, mustard, rape and other cruciferous plants (Dixon, 2009; Wei et al., 2016; Yang et al., 2020). In recent years, clubroot disease has rapidly expanding around the world, leading to a significant decline in the yield and quality of Chinese cabbage, and has become one of a main diseases (Long et al., 2019; Zhang et al., 2020). It is safe, efficient and economical to cultivate resistant varieties by using resistance genes, and it is also one of the important ways to fundamentally solve the problems of clubroot disease (Sun et al., 2005).

In our previous study, a gene was found significantly upregulated expressed on infected Chinese cabbage roots by *P. brassicae*, with a more than 5 times different expression between inoculated and uninoculated roots. Bioinformatics analysis showed that it has 91.26% sequence homology with *Arabidopsis UFO* (*Unusual Floral Organs*), so we named it *BrUFO*. UFO, as a part of the ubiquitin E3 complex, specifically degrades proteins negatively regulated by AP3 (APETALA 3) and those proteins that control normal growth in flower primordia (Lee et al., 1997). *UFO* genes are involved in regulating floral meristem and floral organ characteristics during flower development (Lee et al., 1997). In addition, *UFOs* may also play a role in early petal formation (Durfee et al., 2003). Therefore, UFO regulates multiple stages of flower development in the SCF complex.

UFO is an F-box protein containing F-box motifs and have the properties of substrate recognition during ubiquitin-mediated proteolysis. These proteins play an important role in many physiological processes such as cell time-phase conversion, signal transduction and development (Hershko, 1996). F-box proteins are SCF (SKP-Cullin-F-box) E3 ubiquitin ligase complexes that mediate ubiquitination and subsequent proteasome degradation of the target protein. Ubiquitination is one of the biochemical reactions that regulate the degradation of egg white matter in plants, and its functions are related to plant growth, development, biological stress and abiotic stress. Plants defend themselves against pathogen infections through a variety of mechanisms (Wielkopolan and Obrepalska-Steplowska, 2016). In recent years, scientists have found that several key ubiquitination enzymes (E1, E2, E3) are involved in plant disease resistance (Kravtsova-Ivantsiv and Ciechanover, 2011). A variety of plant can activate PTI (pamp to trigger immunity) response through ubiquitination pathway to inhibit pathogen infection (Sandra and Birgit, 2009). Many studies have shown that ubiquitination plays an important role in the PRR (People Recombinant Protein)-mediated PTI response. Ubiquitin-dependent protein degradation pathway is an effective regulatory mechanism for protein degradation in all organisms. It has been found that the infection of some twin viruses can interfere with the activity of E3 ubiquitin ligase through JA and GA pathways, thus providing favorable conditions for infection of the pathogen (Lozano-Durán et al., 2011; Ji et al., 2017; Jia et al., 2016; Kushwaha et al., 2017; Li et al., 2019). In addition, GDSL protein family plays an important role in jasmonic acid (JA) antagonistic SA signaling pathway. Many studies have proved that some GDSL proteins can enhance plant resistance to some pathogens through the SA resistance pathway (Hong et al., 2008; Kwon et al., 2009; Kim et al., 2014; Gao et al., 2017). But there are no reports about the direct relationship between *UFO* and disease resistance. Therefore, it is very important to study the function of *UFO* in response to *P. brassicae*.

In this study, the function and possible regulatory mechanism of Chinese cabbage *BrUFO* in response to the infection of *P. brassicae* was analyzed. These results provide a theoretical basis for using *BrUFO* gene to improve the resistance of Chinese cabbage to *P. brassicae*.

2 Materials and methods

2.1 Material

Plant materials used in this project were susceptible variety 'SN742' and resistant variety 'SN205' of Chinese cabbage. The pathogen used in this study was physiological race NO.4 of *P. brassicae* isolated in previous work (Lv et al., 2021). The plants were cultured at 23°C with illumination for 12 h per day and 60% humidity. Roots samples were collected on the 14th day after inoculation with *P. brassicae* (when zoospores of *P. brassicae* can be observe d in the root hairs under the ordinary light microscope), and on the 40th day after inoculation with *P. brassicae* (when obvious club symptoms are appear on roots), and then stored at -80°C after flash-freezing in liquid nitrogen.

2.2 Method

2.2.1 qRT-PCR analysis of BrUFO

In this study, the expression level of *BrUFO* in the roots of susceptible and resistant materials at different stages after inoculation with *P. brassicae* was quantitatively measured by qRT-PCR. In detail, total RNA was extracted using a Steady Pure Plant RNA Extraction Kit (Ecri Bio, Hunan, China), and RNA was reverse-transcribed into cDNA using HiScript 1st Strand cDNA Synthesis Kit (Vazyme, Nanjing, China). Specific primer P1 was designed according to the coding sequence (CDS) of Chinese cabbage *BrUFO*, and the *BrActin* gene was used as the internal control (the primers of P0 are shown in Table 1). qRT-PCR analysis was performed on the QuantStudioTM 6 Flex Real-Time PCR System (Life TechnologiesTM, China) with ChamQ Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China).

The study was arranged with three replicates for each different treatment. Duncan multi-range test ($\alpha = 0.05$) was used to evaluate the expression levels of *BrUFO*. Data were analyzed by SPSS 11.5 (IBM, Armonk, NY, USA), and OriginPro 7.5 (OriginLab Corp., Northampton, MA, USA) was used to make graphs.

2.2.2 In situ Hybridization analysis of BrUFO

In situ Hybridization (ISH) was performed to verify the results of qRT-PCR. For probes construction: specific primer P2 containing *PstI* and *KpnI* restriction sites were designed according to the CDS sequence of *BrUFO* (Table 1), and a 263 bp sequence was amplified and purified, then digested by *PstI* and *KpnI*. The

TABLE 1 Primer sequences related to BrUFO.

Primer names	Forward/Reverse primers	Primer sequences
DO	<i>BrActin</i> -F	ATCTACGAGGGTTATGCT
PU	BrActin-R	CCACTGAGGACGATGTTT
P1	BrUFO-F	TGAAATCAGATGGTATCGTC
	BrUFO-R	AGCCTTCCTCTGCTCTCTAA
Р2	BrUFO-P-F	<u>ACAAGCTTGCATGCCTGCAG</u> GCTACCTCCTTCGCTTC
	BrUFO-K-R	CGGAATTCGAGCTCGGTACCGTTTGCTCCTCCAC
Р3	BrUFO-GFP-F	CGCCACTAGTGGATCCATGGAAACAAATATGTTCATCAATAAC
	BrUFO-GFP-R	<u>GAGCGGTACCCTCGAG</u> ACAGGCTCCAGGAAATGGAAGTGCTAAC
Р4	pTRV2-BrUFO-F	GGAGGCCAGTGAATTCATGGAAACAAATATGTTCATCAATA
	pTRV2-BrUFO-R	GAGCGGTACCCTCGAGACAGGCTCCAGGAAATGGAAGTGCTAAC
Р5	pGBKT7-BrUFO-F	AGGAGGACCTGCATATGATGGAAACAAATATGTTCATCAATAAC
	pGBKT7-BrUFO-R	TCGACGGATCCCCGGGACAGGCTCCAGGAAATGGAAGTGCTAAC

The underlined part is the restriction site of restriction enzyme.

digested product was ligated to the pSPT18 vector, and the resulting construct transformed, amplified, digested by PstI or KpnI. Probes were constructed using a DIG RNA Labeling Kit (SP6/T7; Roche, Basel, Switzerland) for in vitro transcription. For preparation of paraffin sections of root tissues: the roots of susceptible and resistant materials at different stages after inoculation with P.brassicae were fixed with 4% Paraformaldehyde solution (PFA) (Rnase-free) solution. Uninoculated roots were used as control. Evacuate the samples with a vacuum pump until sanking into the bottom of the fixing solution, and then submerged in paraffin overnight at 4°C (Ji et al., 2017). Fixed the embedded samples on the slicer for slicing (cut at least three slices each treatment), and paraffin sections containing samples were placed in DEPC-H₂O at 42°C to attach to slides, and dried overnight. Paraffin sections were dewaxed in a series of ethanol:xylene mixtures (100% xylene, 1:3 ethanol:xylene, 1:1 ethanol:xylene, 3:1 ethanol:xylene, and 100% ethanol) for 5 minutes in each mixture.

The dewaxed plant sections hybridized with *BrUFO* probe, and then were stained and observed under optical microscope (ECLIPSE Ci-L, Nikon) following Ji et al. (2017).

2.2.3 Subcellular localization analysis of BrUFO

The expression location of *BrUFO* in cells was determined by subcellular localization. The full-length cDNA of *BrUFO* was amplified using primer P3 with *BamH*I and *Xho*I restriction sites (Table 1) from the roots of susceptible materials, and then ligated to pBWA(V)BS-GFP to obtained pBWA(V)BS-*BrUFO*-GFP. pBWA (V)BS-*BrUFO*-GFP was transformed into agrobacterium GV3101, and then cultured overnight, centrifuged. The cell pellet was resuspended in infection solution (containing 10 mM MgCl₂, 10 mM MES, 15 μ L AS, pH = 5.6). The obtained suspension (OD600 = 1.0) was injected into 4-week-old tobacco leaves. After 2 days of dark culture, the leaves were observed under a laser confocal microscope (TCS SP8, Leica, Germany).

2.2.4 Function verification of *BrUFO* in Chinese cabbage by virus-induced gene silencing

The function of BrUFO was verified by Virus-induced Gene Silencing (VIGS). In detail, a 300bp cDNA fragment of BrUFO was connected to pTRV2 to constructed pTRV2-BrUFO silenced vector. pTRV2-00 (empty vector) and pTRV2- BrUFO were transferred into A. tumefaciens strain GV3101 separately using the freeze-thaw method (Zhou et al., 2021). The infection solution containing vectors pTRV2-00, pTRV2- BrUFO were mixed respectively with the infection solution containing pTRV1 vector (1:1, vol/vol) to constructed pTRV1+pTRV2-00 or pTRV1+pTRV2- BrUFO mixed infection solution. Germinated seeds were treated with above two kinds of mixed infection solution respectively by the agrobacterium vacuum infiltration method (Yue et al., 2021), wild-type (untreated) plants served as controls. 60 seeds were infected in each group (the experiment was repeated three times). The seeds treated with the mix infection solution were cultured in a 25 °C incubator with a 16 h light/8 h dark cycle. When the gene silencing was confirmed, the roots were inoculated with P. brassicae suspension. When the typical swelling symptom of clubroot disease was obvious, the expression level of BrUFO was measured by qRT-PCR with a specific primer pair P4 (Table 1). All treatments were performed in triplicate with five randomly selected plants per treatment for each replicate. Duncan's multiple range tests (α =0.05) were conducted to evaluate significant differences. Data were analyzed by SPSS 11.5 (IBM, Armonk, NY, USA), and OriginPro 7.5 (OriginLab Corp., Northampton, MA, USA) was used to produce graphs. At the same time, when clubroot symptom was showed, the incidence and level of clubroot disease were analyzed using a completely random design

with three replicates and 30 seedlings per experimental unit. The infection progress of inoculated seedlings was analyzed by Fisher's least significant difference test at a significance threshold of p < 0.05.

2.2.5 Yeast two-hybrid (Y₂H) analysis

In order to screen the interaction proteins of BrUFO, the fulllength sequence of *BrUFO* with *NdeI* and *XmaI* restriction sites were amplificated with primer P5 (Table 1) and connected to pGBKT7 to obtained recombinant vector pGBKT7-*BrUFO*. Selfactivation and toxicity tests of the PGBKT7-*BrUFO* were performed to exclude the self-expression influence.

 Y_2H screening was conducted using yeast mating according to the Matchmaker Gold Y_2H System user manual (Clontech, USA). Strains carrying PGBKT7-*BrUFO* were mixed with the library strain and screened on SD/-LEU/- TRP/X- α -Gal/AbA (DDO/X/A) medium. All single blue colonies were selected and streaked on SD/-ADE/-HIS/- LEU/-TRP/X- α -Gal/AbA (QDO/X/A) medium. Positive blue colonies were assessed by PCR, and sequenced. The sequencing results were compared with the BLAST database using BRAD (http://brassicadb.cn/#/) to obtain potential interaction proteins of BrUFO.

2.2.6 Point-to-point interaction verification between candidate proteins and BrUFO

The full-length cDNA sequences of candidate proteins were cloned and connected to PGADT7 to construct PGADT7 recombinant vectors respectively. Each PGADT7 recombinant vector and PGBKT7-*BrUFO* recombinant vector were cotransfected into Y_2H Gold competent yeast cells respectively, and then cultivated in DDO medium at 30°C for 72-96 h. Selected the well-grown monocolones, and resuspensed them with 30 µL of sterile ultra-pure water. Incubated them on the QDO/A/X medium upside down at 30°C for 72-96 h, and observed the growth of colones.

3 Results

3.1 The expression pattern analysis of *BrUFO* gene

qRT-PCR results of *BrUFO* in the roots of Chinese cabbage showed that the expression level of *BrUFO* in the inoculation-treated group (T) was higher than that in the uninoculated control group (CK) (Figure 1A). In addition, the expression level of *BrUFO* was higher in susceptible materials than that in resistant materials. Thus, it was concluded that low expression of *BrUFO* likely enhances the resistance of plants to *P. brassicae*.

In situ hybridization was used to verify the expression patterns of *BrUFO* in the roots of Chinese cabbage. The results revealed blue hybridization signals were showed in inoculated roots in both sampling periods (Figure 1B). Furthermore, the signal of *BrUFO* was stronger in susceptible materials than that in resistant materials when the plants was not been infected by *P. brassicae*, but low expression of *BrUFO* makes the difference indistinguishable by naked eye. Thus, the results of *in situ* hybridization were consistent with that of qRT-PCR.

UFO is an F-box protein (Samach et al., 1999; Wang et al., 2003), and some F-box proteins are located in the nucleus, such as VVF-Box5 of the grape F-Box family is mainly located in the nucleus of onion epidermal cells (Yu et al., 2018). The F-box protein of P. euphratica (Ren et al., 2017) and F-box family protein SIF-Box18 in millet (Huo et al., 2014) are also located in the nucleus. In order to clarify the action site of BrUFO in Chinese cabbage, subcellular localization was performed. The results showed that the leaves containing pBWA(V)BS-GFP (empty vector) showed fluorescence signals in the nucleus, cell membrane and cytoplasm. However, the leaves containing pBWA(V)BS-BrUFO-GFP recombinant vector only showed fluorescence signals in the nucleus. After staining with DAPI, the leaves containing pBWA(V) BS-GFP or pBWA(V)BS-BrUFO-GFP emitted a red signal on nucleus (Figure 2), which was the location of the GFP channel. Therefore, it was inferred that BrUFO was located in the nucleus. This result provided a basis for screening proteins potentially interacting with BrUFO from the Y₂H nuclear library.

3.2 The functional validation of BrUFO

The VIGS technique was used to verify the function of BrUFO in Chinese cabbage. The results showed that BrUFO began to be silenced on the 15th day after pTRV1+pTRV2-BrUFO VIGS treatment, which showed as the expression levels of BrUFO in plants harbouring pTRV1+pTRV2-BrUFO were lower than in pTRV1+pTRV2-00 (empty vector) and untreated wild-type plants. On the 25th day after VIGS treatment, the expression of BrUFO was significantly down-regulated in plants harbouring pTRV1+pTRV2-BrUFO. When the expression level of BrUFO in pTRV1+pTRV2-00 plants was set as 1, the expression levels in pTRV1+pTRV2-BrUFO plants was only 0.4, and the silencing efficiency was 60% (Figure 3A). On the 40th day after VIGS treatment (i.e. the 25th day after inoculation with *P. brassicae*), obvious swelling symptoms were showed on the taproots and fibrous roots of two control plants. To pTRV1+pTRV2-BrUFO plants, only mild swelling symptoms were evident on the fibrous roots, but not on taproots (Figure 3B). The average clubroot disease incidence (20 plants per treatment) of untreated, pTRV1+pTRV2-00 and pTRV1+pTRV2-BrUFO treated plants were 11, 42.25 and 7.25, respectively. And their average incidence rates were 35%, 85% and 15%, respectively (Table 2). pTRV1+pTRV2-00 (empty vector) treatment significantly influenced the resistance of plants, while the silence of BrUFO restored the resistance of plants. These results suggest that the decrease of BrUFO expression can enhance the resistance of Chinese cabbage to P. brassicae.

3.3 Y₂H screening for interaction proteins of BrUFO

To assess the self-activation ability of bait vector PGBKT7-BrUFO, PGBKT7-BrUFO and pGADT7-T were co-transfected into

FIGURE 1

BrUFO expression patterns. (A) qRT-PCR analysis of *BrUFO*. Results are mean \pm standard deviation (n = 3). Each set of data represents the mean of its three replicates, and the error line represents the standard deviation of its three replicates. Letters indicate significant differences at $p \le 0.05$ according to Duncan's multiple range test. (B) *In situ* hybridization analysis of *BrUFO*. Roots samples were collected on the 14th day after inoculation with *P. brassicae* (when zoospores of *P. brassicae* can be observe d in the root hairs under the ordinary light microscope), and on the 40th day after inoculation with *P. brassicae* (when obvious club symptoms are appear on roots); S, susceptible material of Chinese cabbage susceptible material 'SN742'; R, Chinese cabbage resistant material 'SN205'; CK, control roots not inoculated with *Plasmodiophora brassicae*; T, treated roots inoculated with *Plasmodiophora brassicae*.

Subcellular localization of *BrUFO*. The green fluorescence signal is from GFP; the red fluorescence signal is from DAPI; the yellow fluorescence signal is the result of superposition of green and red fluorescence signals.

 Y_2H competent cells. The results showed that white colonies could grow on DDO solid plates, but no colonies grew after single colonies were diluted and plated on QDO/A/X solid plates as well as negative controls (pGBKT7-*Lam* + pGADT7-*T*). However, positive controls (pGBKT7-*53* + pGADT7-*T*) yielded blue colonies on QDO/A/X solid plates (Figure 4A). These results indicate that the expressed protein of PGBKT7-*BrUFO* did not possess self-activation ability. The toxicity test results for bait vector PGBKT7-*BrUFO* showed that the growth of Y187 colonies containing PGBKT7-*BrUFO* were similar to those of colones containing PGBKT7-*T* on SDO solid plates (Figure 4A). These results proved that the pGBKT7-*BrUFO* protein was not toxic, and it could therefore be used for subsequent library screening.

When the Y_2H yeast monoclone containing PGBKT7-*BrUFO* was hybridized with the Chinese cabbage yeast library induced by clubroot, typical cloverleaf-like binders were observed under the light microscope, and 366 large monoclonal colonies on TDO medium

were picked and cultivated on QDO/X/A medium (Figure 4B). Positive monoclones on QDO medium were sequenced and subjected to BLAST to analyze the function using the NCBI database, and six proteins were eventually identified (Table 3); These proteins include: Bru-1, Haloacid dehalogenase-like hydrolase (HAD) superfamily protein (detected twice); Bru-2 (CUS2), GDSL-motif esterase/acyltransferase/lipase (detected once); Bru-3, UDP-N-acetylglucosamine transferase subunit ALG14-like protein (detected once); Bru-4, Component of the SPT module of the SAGA complex (detected once); Bru-5, Li-tolerant lipase 1 protein (detected once) and Bru-6, B-cell receptor-associated 31like protein (detected once).

3.4 The validation result of proteins interacting with *BrUFO*

To validate the interactions between candidate proteins and BrUFO, co-transfection results showed these colonies could grow on DDO medium (Figure 4C). However, on QDO/X medium, only PGADT7-*Bru-6*+PGBKT7-*BrUFO*, and PGADT7-*Bru-2*+PGBKT7-*BrUFO* yielded blue clones as well as pGADT7-T + PGBKT7-*53* (positive controls). Contrast with positive controls, stains harbouring other candidate proteins as well as pGAD7-T + PGBKT7-T (negative

TABLE 2 Disease indices and incidence rates of *BrUFO* Silenced Chinese cabbage infected with *P. brassicae*.

Group	Incidence rates(%)	Disease indices
Wild-type	$35 \pm 4.08^{\mathrm{b}}$	10 ± 0.88^{a}
pTRV1+pTRV2-00	85 ± 7.07^{a}	41.25 ± 2.83^{b}
pTRV1+pTRV2-BrUFO	$15 \pm 4.08^{\rm b}$	$6.25 \pm 0.88^{\rm b}$

Wild-type: untreated, naturally grown Chinese cabbage controls; pTRV1+pTRV2-00: empty vector treatment group; pTRV1+pTRV2-BrUFO: pTRV1+pTRV2-BrUFO treatment group. Results are mean \pm standard deviation (n = 3) and ^a or ^b indicates significant differences at p \leq 0.05 according to Duncan's multiple range test.

controls) did not grow colonies (Figure 4C). So it is determined that Bru-2 and Bru-6 interact with BrUFO.

4 Discussion

4.1 *BrUFO* should be a key gene of Chinese cabbage against the infection of *P. brassicae*

A series of changes will occur when plants are infected by pathogens, such as the changes of gene expression (Coll et al., 2011). For example, the infection of *magnaporthe oryzae* resulted in the increase of expression levels of *Bd4g02060*, *Bd1g21177*, *Bd5g06390*, *Bd3g41480*, and *Bd3g28280* in rice within 48 hours (Peng et al., 2021). Both *CsRSF1* and *CsRSF1* could respond to the *S. fuliginea* infection. In the early stage of *S. fuliginea* infection, the expression levels of *CsRSF1* and *CsRSF1* were higher in the resistant varieties, which had a positive regulatory effect on the *S. fuliginea* infection (Wang X et al., 2021). In this study, qRT-PCR and *in situ* hybridization results showed that *BrUFO* was significantly upregulated expressed on the roots of Chinese cabbage infected by *P. brassicae*, and *BrUFO* expression levels were higher in susceptible materials than that in resistant materials (Figure 1).

Plant innate immune response system is mainly composed of PTI and ETI. Many studies have shown that ubiquitination plays an important role in the PRR-mediated PTI response (Sandra and Birgit, 2009). Some F-Box proteins function in plant defence responses dependent on ubiquitin. UFO is an F-box protein (Samach et al., 1999; Wang et al., 2003), and some F-Box proteins, such as Coronatine insensitive 1 (COI1) and Suppressor of nim1-1 (SON1) have the function in plant defence responses such as disease resistance and insect resistance (Xie et al., 1998; Kim and Delaney, 2002). *Arabidopsis* SON1 is an F-box protein that

BrUFO from the yeast library. Left, Cloverleaf-like binders on TDO medium. Middle, Large monoclonal colonies in TDO transferred to QDO medium. Right, Positive interaction of proteins with BrUFO on DDO/X/A medium. (C) Validation of proteins interacting with BrUFO. Co-transformation results for proteins potentially interacting with BrUFO on DDO medium and QDO+X-α-Gal medium.

negatively regulates the resistance of pathogenic downy fungi and leaf spot bacteria through a selective protein degradation pathway dependent on ubiquitin (Kim and Delaney, 2002). These results suggest that BrUFO as an F-box protein played role in different types of disease resistance in plants.

4.2 *BrUFO* silencing improves the resistance of plants to clubroot disease

VIGS is a rapid and efficient method for studying gene function. It has the advantages of a short cycle, simple operation, and the capacity for high-throughput, and it is independent of a mature transgenic system (Burch-Smith et al., 2004). It is widely used in

plant growth and development, such as pistil development, flower development, fruit cracking, and ripening (Zhao et al., 2015; Qi et al., 2018), as well as gene function identification related to flower colour, organ formation (Wang P. et al., 2021), plant disease resistance and abiotic stress (Zhao et al., 2015; Liu et al., 2019), signal transduction, and metabolite synthesis and regulation. Currently, more than 30 vectors have been developed using VIGS technology. Among them, tobacco rattle virus (TRV) is the most widely used VIGS vector in many herbs and some woody plants (Ye et al., 2009; Annette and Matthias, 2010; Huang et al., 2012; Sahu et al., 2012; Jiang et al., 2014). In this study, pTRV1+pTRV2-*BrUFO* was firstly used to silence *BrUFO*. The results showed that *BrUFO* was reduced in silenced plants, suggesting that *BrUFO* silencing could improve the resistance of plants to *P. brassicae*.

TABLE 3 Information for candidate proteins that interacted with BrUFO.

Gene number	Gene name	Homologous <i>Arabidopsis</i> thaliana	Description of interacting protein	Screening times	ldentity
Bru-1	Bra016945	AT2G41250	Haloacid dehalogenase-like hydrolase (HAD) superfamily protein	2	99%
Bru-2	Bra038955	AT5G33370 (CUS2)	GDSL-motif esterase/acyltransferase/lipase. Enzyme group with broad substrate specificity that may catalyse <i>acyltransfer</i> or hydrolase reactions with lipid and non-lipid substrates. Mutants are defective in cuticle formation with reduced sepal cuticle ridge formation	1	99%
Bru-3	Bra013293	AT4G18230	UDP-N-acetylglucosamine transferase subunit ALG14-like protein	1	98%
Bru-4	Bra011659	AT4G36080 (TRA1B)	Component of the SPT module of the SAGA complex.	1	99%
Bru-5	Bra040203	AT3G04290 (ATLTL1)	Li-tolerant lipase 1	1	99%
Bru-6	Bra021273	AT1G48440	B-cell receptor-associated 31-like protein	1	97%

4.3 Regulation mechanism of BrUFO in Chinese cabbage against *Plasmodiophora brassicae*

A useful way to explore intracellular signal transduction is to study interactions between proteins (Waadt et al., 2010). The Y_2H system is widely used to identify and verify interactions between proteins (Zhang et al., 2021). In this study, Bru-6 (Bra021273) and Bru-2 (Bra038955) were screened and confirmed to interact with BrUFO. Bru-6 is a receptor-associated 31-like protein but little is known about it. Bru-2 is CUS2, a GDSL-like esterase/acyltransferase/lipase protein.

GDSL lipases play important roles in many physiological and biochemical processes such as plant growth and development (Takahashi et al., 2009; Dong et al., 2016; Ji et al., 2017), organ morphogenesis, lipid metabolism (Clauß et al., 2011; Ding et al., 2019a; Ding et al., 2019b) and stress reaction (Hong et al., 2008; Kwon et al., 2009; Lee et al., 2009; Kim et al., 2014). In addition, expression of GDSL lipase genes in some plants can be induced by pathogens, hormones such as salicylic acid (SA), ethylene and jasmonic acid (JA), and abiotic stress factors, suggesting that they may be involved in plant disease resistance and stress responses (Jakab et al., 2003; Lee and Cho, 2003; Hong et al., 2008; Kwon et al., 2009; Kim et al., 2014; Gao et al., 2017). GDSL protein family plays an important role in jasmonic acid (JA) antagonistic SA signaling pathway. In addition, many studies have proved that some GDSL proteins can enhance plant resistance to some pathogens through the SA resistance pathway (Hong et al., 2008; Kwon et al., 2009; Kim et al., 2014; Gao et al., 2017). The overexpression of AtGDSL1

decreased the content of reactive oxygen species (ROS) and salicylic acid (SA), which enhanced the resistance of *Brassica napus* to *S. sclerotiorum* (Ding et al., 2020). The expression of two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune response were inhibited by pathogen infection and salicylic acid (SA) treatment. The simultaneous downregulation of *OsGLIP1* and *OsGLIP2* increased the resistance of rice to *Xoo* and *M. oryzae* (Gao et al., 2017). Therefore, it is speculated that BrUFO may interact with CUS2 to induce ubiquitination in PRR-mediated PTI reaction through GDSL lipases, so as to achieve the effect of Chinese cabbage against the infection of *P. brassicae* (Figure 5). However, this should be verified in follow-up studies.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.

Author contributions

BZ: Conceptualization, Methodology, Data curation, Writingoriginal draft, Formal analysis, Investigation, Writing-review & editing. HF: Formal analysis, Methodology, Data curation, Investigation. WG and XW: Formal analysis, Data curation. JZ: Formal analysis. RJ: Funding acquisition, Conceptualization, Formal analysis, Supervision, Writing-review & editing. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by the National Natural Science Foundation of China under grant 31972412 and 32272717.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Annette, B., and Matthias, L. (2010). VIGS-genomics goes functional. Trends Plant Sci. 15 (1), 1–4. doi: 10.1016/j.tplants.2009.09.002

Burch-Smith, T. M., Anderson, J. C., Martin, G. B., and Dinesh-Kumar, S. P. (2004). Applications and advantages of virus-induced gene silencing for gene function studies in plants. *Plant J.* 39 (5), 734–746. doi: 10.1111/j.1365-313X.2004.02158.x

Clauß, K., Roepenack-Lahaye, E., Böttcher, C., Roth, M., Welti, R., Erban, A., et al. (2011). Overexpression of sinapine esterase BnSCE3 in oilseed rape seeds triggers global changes in seed metabolism. *Plant Physiol.* 155 (3), 1127–1145. doi: 10.1104/pp.110.169821

Coll, N. S., Epple, P., and Dangl, J. L. (2011). Programmed cell death in the plant immune system. Cell Death dif. 18 (8), 1247–1256. doi: 10.1038/cdd.2011.37

Ding, L., Guo, X., Li, M., Fu, Z., Yan, S., Zhu, K., et al. (2019a). Improving seed germination and oil contents by regulating the GDSL transcriptional level in *Brassica napus*. *Plant Cell Rep.* 38 (2), 243–253. doi: 10.1007/s00299-018-2365-7

Ding, L., Li, M., Guo, X., Tang, M., Cao, J., Wang, Z., et al. (2020). Arabidopsis GDSL1 overexpression enhances rapeseed sclerotinia sclerotiorum resistance and the functional identification of its homolog in *Brassica napus. Plant Biot. J.* 18 (5), 1255–1270. doi: 10.1111/pbi.13289

Ding, L., Li, M., Wang, W., Cao, J., Wang, Z., Zhu, K., et al. (2019b). Advances in plant GDSL lipases: from sequences to functional mechanisms. *Acta Physiol. Plant* 41 (9), 1–11. doi: 10.1007/s11738-019-2944-4

Dixon, G. R. (2009). The occurrence and economic impact of *plasmodiophora brassicae* and clubroot disease. J. Plant Growth Reg. 28, 194–202. doi: 10.1007/s00344-009-9090-y

Dong, X., Yi, H., Han, C., NouIll, S., and Hur, Y. (2016). GDSL esterase/lipase genes in *Brassica rapa l.*: genome-wide identification and expression analysis. *Mol. Gen. Gen.* 291 (2), 531–542. doi: 10.1007/s00438-015-1123-6

Durfee, T., Roe, J. L., Sessions, R. A., Inouye, C., Serikawa, K., Feldmann, K. A., et al. (2003). The f-box-containing protein *UFO* and agamous participate in antagonistic pathways governing early petal development in *Arabidopsis. Proc. Natl. Acad. Sci.USA.* 100, 8571–8576. doi: 10.1073/pnas.1033043100

Gao, M., Yin, X., Yang, W., Lam, S., Tong, X., and Liu, J. (2017). GDSL lipases modulate immunity through lipid homeostasis in rice. *PloS Pathog.* 13 (11), e1006724. doi: 10.1371/journal.ppat.1006724

Hershko, A. (1996). The ubiquitin system for protein degradation. *Bioch. Society.* 24 (4), 627S–627S. doi: 10.1042/bst024627sc

Hong, J., Choi, H., Hwang, I., Kim, D., Kim, N., Choi, D., et al. (2008). Function of a novel GDSL-type pepper lipase gene, *CaGLIP1*, in disease susceptibility and abiotic stress tolerance. *Planta* 227 (3), 539–558. doi: 10.1007/S00425-007-0637-5

Huang, C., Qian, Y., Li, Z., and Zhou, X. (2012). Virus-induced gene silencing and its application in plant functional genomics. *Sci. Chin. Life Sci.* 55 (2), 99–108. doi: 10.1007/s11427-012-4280-4

Huo, D., Zheng, W., Li, P., Xu, Z., Zhou, Y., Chen, M., et al. (2014). Identification, classification and drought response of f-box gene family in foxtail millet. *J. crops.* 40 (09), 1585–1594. doi: 10.3724/SP.J.1006.2014.01585

Jakab, G., Manrique, A., Zimmerli, L., Métraux, J. P., and Mauchi-Mani, B. (2003). Molecular characterization of a novel lipase-like pathogen-inducible gene family of *Arabidopsis. Plant Physiol.* 132, 2230–2239. doi: 10.1104/pp.103.025312

Ji, R., Wang, H., Xin, X., Peng, S., Hur, Y., Li, Z., et al. (2017). *BrEXL6*, a GDSL lipase gene of *Brassica rapa*, functions in pollen development. *Biol. Plant* 61 (4), 682–694. doi: 10.1007/s10535-017-0735-6

Jia, Q., Liu, N., Xie, K., Dai, Y., Han, S., Zhao, X., et al. (2016). CLCuMuB β C1 subverts ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in *Nicotiana benthamiana*. *PloS Pathog.* 12 (6), e1005668. doi: 10.1371/journal.ppat.1005668

Jiang, Y., Ye, S., Wang, L., Duan, Y., Lu, W., Liu, H., et al. (2014). Heterologous gene silencing induced by tobacco rattle virus (TRV) is efcient for pursuing functional genomics studies in woody plants. *Plant Cell Tissue Organ Cult.* 116 (2), 163–174. doi: 10.1007/s11240-013-0393-0

Kim, H. S., and Delaney, T. P. (2002). Arabidopsis SON1 is an f-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. *Plant Cell*. 14, 1469–1482. doi: 10.1105/tpc.001867

Kim, G. K., Kwon, S. J., Jang, Y. J., Chung, J. H., Myung, H. N., and Park, O. K. (2014). GDSL lipase 1 regulates ethylene signaling and ethylene-associated systemic immunity in *Arabidopsis. FEBS Letters.* 588 (9), 1652–1658. doi: 10.1016/j.febslet.2014.02.062

Kravtsova-Ivantsiv, Y., and Ciechanover, A. (2011). "Ubiquitination and degradation of proteins," in *Gel-free proteomics. methods molec. biol*, vol. 753. Eds. K. Gevaert and J. Vandekerckhove (Humana Press), 335–357. doi: 10.1007/978-1-61779-148-2_23

Kushwaha, N. K., Bhardwaj, M., and Chakraborty, S. (2017). The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome. *PloS Pathog.* 13 (8), e1006587. doi: 10.1371/journal.ppat.1006587

Kwon, S. J., Jin, H. C., Lee, S., Nam, M. H., Chung, J. H., Kwon, S. I., et al. (2009). GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in *Arabidopsis. Plant J.* 58 (2), 235–245. doi: 10.1111/j.1365-313X.2008.03772.x

Lee, K., and Cho, T. (2003). Characterization of a salicylic acid and pathogen induced lipase like gene in Chinese cabbage. *J. Bioc. Mol. Biol.* 36 (5), 433–441. doi: 10.5483/bmbrep.2003.36.5.433

Lee, D., Kim, B., Kwon, S., Jin, H., and Park, O. (2009). Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochem. Biophys. Res. communic. 379 (4), 1038–1042. doi: 10.1016/j.bbrc.2009.01.006

Lee, I., Wolfe, D. S., Nilsson, O., and Weigel, D. (1997). A leafy co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr. Biol. 7 (2), 95–104. doi: 10.1016/s0960-9822 (06)00053-4

Li, P., Liu, C., Deng, W., Yao, D., Pan, L., Li, Y., et al. (2019). Plant begomoviruses subvert ubiquitination to suppress plant defenses against insect vectors. *PloS pathogens*. 15 (2), e1007607. doi: 10.1371/journal.ppat.1007607

Liu, J., Lei, Y., Zhang, Z., Hu, G., Tang, Y., Zhang, N., et al. (2019). Resistance of *GhWRKY48* negatively regulated cotton against verticillium dahliae. *Acta agricult. Bor.* 34 (5), 99–105.

Long, T., Zhang, Y., Yang, N., Cao, C., Zhang, G., Zhang, S., et al. (2019). Progress in biological control of Chinese cabbage clubroot disease. *Hubei Agricult. Sci.* 58 (5), 5–8. doi: 10.14088/j.cnki.issn0439-8114.2019.05.001

Lozano-Durán, R., Rosas-Díaz, T., Gusmaroli, G., and Bejarano, E. R. (2011). Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in *Arabidopsis thaliana*. *Plant Cell*. 3), 1014–1032. doi: 10.1105/tpc.110.080267

Lv, M., Liu, Y., Wu, Y., Zhang, J., Liu, X., Ji, R., et al. (2021). An improved technique for isolation and characterization of single-spore isolates of *Plasmodiophora brassicae*. *Plant Disease*. 105, 3932–3938. doi: 10.1094/PDIS-03-21-0480-RE

Peng, W., Song, N., Li, W., Yan, M., Huang, C., Yang, Y., et al. (2021). Integrated analysis of microrna and target genes in brachypodium distachyon infected by *magnaporthe oryzae* by small rna and degradome sequencing. *Front. Plant Sci.* 12. doi: 10.3389/fpls.2021.742347

Qi, D., Zhang, Y., Zhao, Z., Zhang, W., Chen, Y., Lian, Y., et al. (2018). Optimization of vitus-induced gene silencing system and function identification of *smIAA19* gene in eggplant. *Acta horticult. Sinica.* 45 (4), 691–701. doi: 10.16420/j.issn.0513-353x.2017-0643

Ren, Y., Jia, H., Xu, X., Li, J., Lu, M., Fan, J., et al. (2017). Identification and functional analysis of f - box gene from populus euphratica. *J. Mol. Plant Breed.* 15 (5), 1655–1662. doi: 10.13271/j.mpb.015.001655

Sahu, P. P., Puranik, S., Khan, M., and Prasad, M. (2012). Recent advances in tomato functionalgenomics: utilization of VIGS. *Protoplasma* 249 (4), 1017–1027. doi: 10.1007/s00709-012-0421-7

Samach, A., Klenz, J. E., Kohalmi, S. E., Risseeuw, E., Haughn, G. W., and Crosby, W. L. (1999). The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an f-box protein required for normal patterning and growth in the floral meristem. *Plant J.* 20, 433–445. doi: 10.1016/J.IJBIOMAC.2020.12.102

Sandra, P., and Birgit, K. (2009). Plant systems for recognition of pathogenassociated molecular patterns. *Semin. Cell Dev. Biol.* 20 (9), 1025–1031. doi: 10.1016/ j.semcdb.2009.06.002

Sun, B., Shen, X., Guo, H., and Zhou, Y. (2005). Research progress in clubroot of crucifers and resistance breeding. *Chin. Veg.* 4, 34–37.

Takahashi, K., Shimada, T., Kondo, M., Tamai, A., Mori, M., Nishimura, M., et al. (2009). Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in *Arabidopsis* thaliana. *Plant Cell Physiol.* 51 (1), 123–131. doi: 10.1093/pcp/pcp173

Waadt, R., Schmidt, L. K., Lohse, M., Hashimoto, K. J., Bock, R., and Kudla, J. (2010). Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. *Plant J.* 56 (3), 505–516. doi: 10.1111/ j.1365-313X.2008.03612.x

Wang, X., Chen, Q., Huang, J., Meng, X., Cui, N., Yu, Y., et al. (2021). Nucleotidebinding leucine-rich repeat genes *CsRSF1* and *CsRSF2* are positive modulators in the cucumis sativus defense response to *Sphaerotheca fuliginea*. *Int. J. Mol. Sci.* 22 (8), 3986. doi: 10.3390/ijms22083986

Wang, X., Feng, S., Nakayama, N., Crosby, W. L., Irish, V., Deng, X., et al. (2003). The COP9 signalosome interacts with SCF^{UFO} and participates in *Arabidopsis* flower development. *Plant Cell.* 15, 1071–1082. doi: 10.1105/tpc.009936

Wang, P., Liu, P., Geng, D., Wang, K., and Hao, Q. (2021). Establishing virus induced gene silencing(VIGS)system of polination and fertilization gene *PoMYBs* in tree peony. *J. Qingdao Agricult. Univ. (Nat. Sci. edit.).* 38 (03), 199–204+217.

Wei, X., Xu, W., Yuan, Y., Yao, Q., Zhao, Y., Wang, Z., et al. (2016). Genome-wide investigation of microRNAs and their targets in brassica *rapa ssp. pekinensis* root with *plasmodiophora brassicae* infection. *Horticult. Plant J.* 2 (4), 209–216. doi: 10.1016/ j.hpj.2016.11.004

Wielkopolan, B., and Obrepalska-Steplowska, A. (2016). Three-way inter-action among plants, bacteria, and coleopteran insects. *Planta* 244, 313–332. doi: 10.1007/s00425-016-2543-1

Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M., and Turner, J. G. (1998). COI1: an *Arabidopsis* gene required for jasmonate-regulated defense and fertility. *Science* 280, 1091–1094. doi: 10.1126/science.280.5366.1091

Yang, L., Fang, Z., Zhang, Y., Zhuang, M., Lü, H., Wang, Y., et al. (2020). Recent advances of disease and stress resistance breeding of cabbage in china. *Acta Horticult. Sinica.* 47 (9), 1678–1688. doi: 10.16420/j.issn.0513-353x.2020-0494

Ye, J., Qu, J., Bui, H., and Chua, N. (2009). Rapid analysis of jatropha curcas gene functions by virus-induced gene silencing. *Plant Biotechnol. J.* 7 (9), 964–976. doi: 10.1111/j.1467-7652.2009.00457.x

Yu, L., Zhou, S., Zhang, S., Ji, Y. J., and Liu, Y. (2018). Gene structure and expression analysis of f-box gene *VvF-BOX5* in grapevine (*Vitis vinefera l.*). *J. Plant Genet. Res.* 12 (02), 361–369. doi: 10.13430/j.carol.carroll.nki.JPGR.2018.02.019

Yue, N., Li, Y., Sun, Y., Pan, P., Pan, Y., Zheng, Y., et al. (2021). VIGS silencing effects of VIGS silencing *SlDCL2* and *SlDCL4* destroy tomato *TY-1/TY-3* resistance to tomato yellow leaf curl virus (TYLCV). *J. Nuc. Agricult. Sci.* 35 (11), 2493–2500.

Zhang, J., Ge, W., Chang, H., Xin, X., and Ji, R. (2021). Discovery of *BrATG6* and its potential role in *Brassica rapa* l. resistance to infection by *Plasmodiophora* brassicae. *Gene* 791, 145711. doi: 10.1016/J.GENE.2021.145711

Zhang, H., Zhang, S., Li, F., Zhang, S., Li, G., Ma, X., et al. (2020). Research progress on clubroot disease resistance breeding of *Brassica rapa*. Acta Hortic. Sinica. 47 (9), 1648–1662. doi: 10.16420/j.issn.0513-353x.2020-0681

Zhao, Z., Liu, F., Zhang, Y., Qi, D., Chen, Y., and Lian, Y. (2015). VIGS expression vector construction and expression analyses of *SmMsrA* gene in eggplant. *Acta Hortic. sinica.* 42 (8), 1495–1504. doi: 10.16420/j.issn.0513-353x.2015-0177

Zhou, P., Peng, J., Zeng, M., Wu, L., Fan, Y., and Zeng, L. (2021). Virus-induced gene silencing (VIGS) in Chinese *narcissus* and its use in functional analysis of *NtMYB3*. *Hortic. Plant J.* 7 (06), 565–572. doi: 10.1016/J.HPJ.2021.04.009