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Comparative transcriptomic and
metabolomic analyses reveal
differences in flavonoid
biosynthesis between PCNA and
PCA persimmon fruit

Yiru Wang1†, Yujing Suo1†, Weijuan Han1*, Huawei Li1,
Zhenxu Wang2, Songfeng Diao1, Peng Sun1 and Jianmin Fu1*

1Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, China, 2Food
Inspection Center, Henan Institute of Product Quality Technology, Zhengzhou, China
The fruit of the persimmon (Diospyros kaki.) has high economic and nutritional value

and is rich in flavonoids. Flavonoids are essential secondary metabolisms in plants.

The association between persimmon astringency and changes in the

proanthocyanidins (a flavonoid subclass) content is well-known. However,

information on the relationships between different astringency types and other

flavonoid subclasses and biosynthetic genes is more limited. In this study, an initial

correlation analysis between total flavonoids and fruit astringency type, and KEGG

analysis of metabolites showed that flavonoid-related pathways were linked to

differences between mature pollination-constant non-astringent (PCNA) varieties

(‘Jiro’ and ‘Yohou’) and pollination-constant astringent (PCA) fruit varieties

(‘Zhongshi5’ and ‘Huojing’). Based on these findings, variations in the expression of

genes and metabolites associated with flavonoid biosynthesis were investigated

between typical PCNA (‘Jiro’) and PCA (‘Huojing’) persimmons during fruit

development. The flavonoid concentration in ‘Huojing’ fruit was significantly

higher than that of ‘Jiro’ fruit, especially, in levels of proanthocyanin precursor

epicatechin and anthocyanin cyanidin derivatives. Combined WGCNA and KEGG

analyses showed that genes such as PAL,C4H,CHI,CHS, F3H, F3’5’H, FLS,DFR, ANR,

ANS, and UF3GT in the phenylpropanoid and flavonoid biosynthesis pathways may

be significant factors impacting the proanthocyanin precursor and anthocyanin

contents. Moreover, interactions between the R2R3MYB (evm.TU.contig7272.598)

andWD40 (evm.TU.contig3208.5) transcription factors were found to be associated

with the above structural genes. These findings provide essential information on

flavonoid biosynthesis and its regulation in the persimmon and lay a foundation for

further investigation into how astringency types affect flavor components in PCNA

and PCA persimmons.
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1 Introduction

Flavonoids are essential secondary metabolites in plants and

include more than 10 000 structural variants (Quideau et al., 2011;

Mikhailova et al., 2022; Tahmaz and Soylemezoglu, 2022).

Flavonoids are divided into six subclasses according to

substitutions and B-ring attachments to the basic skeletal

structure, namely, flavones, flavonols, anthocyanins, flavanols,

flavanones, and isoflavones (Winkel-Shirley, 2001; Sasaki and

Nakayama, 2015). These compounds have essential physiological

and ecological functions in regulating plant growth and

development, flower coloring, fruit flavor, physiological activities,

and adaptation to abiotic stress in plants (Havsteen, 2002; Tohge

et al., 2018). Flavonoids produced by plants have many health

benefits for humans, including antibacterial, antiparasitic, anti-

inflammatory, anticancer, and anti-aging properties (Dias et al.,

2021). Flavonoids have various pharmaceutical activities and often

act as antioxidants according to their free radical-scavenging

abilities (Kumar and Pandey, 2013). Thus, flavonoids have gained

increasing attention and are widely used in the food, cosmetic, and

pharmaceutical industries.

The flavonoid synthesis pathway is relatively well understood in

model plants (Routaboul et al., 2006; Tohge et al., 2017). The

structural genes encoding enzymes in the pathway have been

identified, including genes encoding phenylalanine lyase (PAL),

anthocyanidin synthase (ANS), cinnamic acid hydroxylase (C4H),

coumadin CoA ligase (4CL), chalcone synthase (CHS), flavonoid 3’-

hydroxylase (F3’H), chalcone isomerase (CHI), flavonol synthase

(FLS), flavonoid 3’5’-hydroxylase (F3’5’H), and the other key genes

(Routaboul et al., 2006; Saito et al., 2013; Chen and Li, 2016).

Studies on flavonoid biosynthesis have been conducted in many

horticultural plants such as Vitis vinifera (Azuma et al., 2012),

Malus×domestica (Henry-Kirk et al., 2012), Ziziphus jujuba (Zhang

et al., 2020), and others. Furthermore, flavonoid biosynthesis is

known to be influenced by the environment, developmental stage,

plant variety, temperature, and tissue type (Azuma et al., 2012; Wen

et al., 2020). Transcription factors (TFs) involved in the flavonoid

biosynthesis pathway have also been identified, such as R2R3MYB,

bZIP, WD40, and bHLH (Chen et al., 2022).

Persimmon (Diospyros kaki Thunb.) is a fruit tree that belongs

to the family Ebenaceae and has a long history of cultivation

(Saleem et al., 2022). As a major fruit variety with a unique

flavor, the persimmon has become increasingly popular and has

high commercial value in Asian countries (Han et al., 2022).

Flavonoids produced by plants have many health benefits for

humans and play crucial roles in both the fruit quality and its

economic value (Dias et al., 2021; Xie et al., 2022). Persimmons are

rich in phytochemicals such as flavonoids, carotenoids,
Abbreviations: PCNA, pollination-constant non-astringent; PCA, pollination-

constant astringent; PVNA, pollination-variant non-astringent; PVA,

pollination-variant astringent; DAFs, differentially accumulated flavonoids;

DEGs, differentially expressed genes; WGCNA, weighted gene coexpression

network analysis; PAs, proanthocyanidins.
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triterpenoids, fatty acids, and vitamin C (Direito et al., 2021),

with flavonoids being the main active antioxidants (Sun et al.,

2011). The persimmon fruit has a variety of pharmacological

poroperties, including antiadipogenic, hypocholesterolemic,

antioxidant, anti-inflammatory, and antitumor poroperties, due to

its flavonoid components such as hesperidin, naringin, and

nobiletin (Direito et al., 2021). Besides, flavonoids such as

proanthocyanidins are associated with the astringency and flavor

of the persimmon fruits (Zheng et al., 2021).

Proanthocyanidins (PAs), also known as condensed tannins,

are a subclass of flavonoids and consist of oligomers of catechins

that are biosynthesized through the flavonoid branch of the

phenylpropanoid pathway (Dixon et al., 2005; Zheng et al., 2021).

High concentrations of insoluble PAs usually lead to astringency in

persimmon fruit. Based on the fruit characteristics, persimmons can

be classified into four astringency types, namely, the pollination-

variant non-astringent (PVNA), PCNA, PCA, and pollination-

variant astringent (PVA) types (Yonemori et al., 2000). In China,

almost all persimmon cultivars belong to the PCA type, and no

PVA and PVNA types are found (Du et al., 2009). The quality and

flavor of the persimmon fruit vary greatly, with significant

differences between PCNA and PCA persimmons. The fruit

astringency type is not only affected the proanthocyanidins

content but also the accumulation of total soluble solids,

individual sugars, total phenolics, and total flavonoids (Novillo

et al., 2016; Yildiz and Kaplankiran, 2018). The influence of the

astringency types on variations in the proanthocyanidins

concentration is well-known in persimmon fruit (Akagi et al.,

2009). However, little is known about the impact of the fruit

astringency type on flavonoid metabolic pathway and its

associated enzymes, genes, and TFs in persimmon fruit.

This study conducted transcriptomic and quasi-targeted

metabolomic analyses to elucidate both gene expression and

metabolite accumulated profiles in different stages of PCNA and

PCA persimmon fruit. Specifically, dynamic changes in the

expression of genes and TFs in flavonoid biosynthesis and the

accumulation of a set of flavonoids were analyzed to clarify and

compare the secondary metabolism of the persimmon fruit and its

complex effects on the astringency and flavor components between

PCNA and PCA persimmons.
2 Material and methods

2.1 Plant materials

Well-cultivated PCNA (‘Jiro’ and ‘Youhou’) and PCA

(‘Zhongshi No.5’ and ‘Huojing’) persimmons were planted in the

forest planting base of the Research Institute of Non-timber

Forestry (34°55′18″–34°56′27″N, 113°46′14″–113°47′35″E),
Yuanyang County, Henan Province, China. The fruits of the ‘Jiro’

and ‘Huojing’ persimmon fruit were sampled at the young-fruit

stage (when the fruit had reached about 40% of the final size, stage

1), the fruit expansion stage (when the fruit had reached

approximately 70% of its final size, stage 2), the turning stage (the

initial change in the skin color of the fruit, stage 3) and the mature
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https://doi.org/10.3389/fpls.2023.1130047
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1130047
stage (fully developed fruit color without astringency, stage 4).

Persimmon fruit from the ‘Zhongshi No.5’ and ‘Youhou’ varieties

were also harvested at stage 4 and termed PCA1 and PCNA2,

respectively. The four development stages (from stage 1 to stage 4)

of the ‘Jiro’ and ‘Huojing’ fruit were labeled as Jiro_S1, Jiro_S2,

Jiro_S3, Jiro_S4 and Huojing_S1, Huojing_S2, Huojing_S3, and

Huojing_S4, respectively. Furthermore, fruits of 141 persimmon

germplasms were also harvested at the mature stage (stage 4), and

these samples were used for total flavonoids content detection. The

fresh fruit was frozen immediately in liquid nitrogen and stored at

-80° until used for RNA extraction and metabolic analyses.
2.2 Extraction and determination of total
flavonoids

The total flavonoids of persimmon fruit were extracted and

detected according to Han et al. (Han et al., 2021) with a few

modifications. Briefly, fruit powder (precise weight 5 g) was

extracted with 60% (v/v) ethanol in an ultrasonic bath (30 min).

Total flavonoid content was determined by AlCl3-(HAc-NaAC)

colorimetric method, and rutin with purity = 98% (Solarbio Science

& Technology Co., Ltd.) were used as a standard. The absorbance

was determined at 420 nm wavelength in a UV spectrophotometer.

Total flavonoids content and astringency type of 141 persimmon

germplasms are listed in Supplementary Table 1.
2.3 Metabolome data analysis process

The method used for metabolite identification was similar to that

of Wang et al. (Wang et al., 2022). Samples of freeze-dried

persimmon fruit (100 mg) were weighed into 1.0 mL of 70%

aqueous methanol. Metabolite profiling was performed using an

ExionLC™ AD system (SCIEX) coupled with a QTRAP®6500+

mass spectrometer (SCIEX) and equipped with Xselect HSS T3

column (2.1×150 mm, 2.5 mm) by Novogene Co., Ltd. (Beijing,

China). The mobile phase included eluent A, consisting of 0.1%

formic acid in water, and eluent B, consisting of 0.1% formic acid-

acetonitrile. The analysis conditions were as follows: column

temperature, 50˚C; injection volume, 1.5 mL; flow rate, 0.4 mL/min.

The mobile phases were water. The gradient program of phase A/

phase B was 98:2 (v/v) at 0 min, 98:2 (v/v) at 2 min, 0:100 (v/v) at 15

min, 0:100 (v/v) at 17 min, 98:2 (v/v), at 17.1 min and 98:2 (v/v) at 20

min. The qualitative analysis of metabolites was conducted according

to the secondary spectral information using Novogene’s in-house

database. Metabolite quantification was carried out using the triple

quadrupole mass spectrometer’s multiple reaction monitoring

(MRM) mode. The KEGG (Kyoto Encyclopedia of Genes and

Genome) database (http://www.genome.jp/kegg/) (Kanehisa et al.,

2004) and HMDB (Human Metabolome Database) database (http://

www.hmdb.ca/) (Wishart et al., 2007) were used for metabolite

annotation. The metabolites with P-value < 0.05 and fold change≥

2 were considered as differentially accumulated flavonoids (DAFs).
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2.4 Transcriptome data analysis

Total RNA was extracted using the TRIzol Total RNA Isolation

Kit (Sangon, Shanghai, China), and a library was established.

Bioanalyzer 2100 was used to assess the RNA integrity. The

NovaSeq platform (Illumina, San Diego, CA, USA) sequencing

generates 150 bp paired-end readings. HISAT2 software (Zhang

et al., 2021) was used to map the filtered reads to the D. kaki

reference genome (unpublished). The prediction of new transcripts

was performed using StringTie (Shumate et al., 2022).

FeatureCounts (Liao et al., 2014) was used to count the read

numbers mapped to each gene. The FPKM of each gene was

calculated according to the length of the gene and the read count

mapped to the gene. DEseq2 (Love et al., 2014) was used to detect

the differentially expressed genes (DEGs) between the two groups,

with a |log2-fold change| ≥ 1 and padj ≤ 0.05. ClusterProfiler 4.0

(Wu et al., 2021) was used for DEGs in Gene Ontology (GO)

(Ashburner et al., 2000) and KEGG (Kanehisa et al., 2004)

functional enrichment analyses. Heatmaps and K-means

clustering were prepared using the online software Hiplot (Li

et al., 2022). The weighted gene coexpression network analysis

(WGCNA) were constructed using all genes and were analyzed

using WGCNA R package (Langfelder and Horvath, 2008). The

networks were visualized using Cytoscape v3.9.1 (Shannon

et al., 2003).
2.5 Quantitative RT-PCR analysis

The cDNA was synthesized from the high-quality total RNA

using TRUE-script First-Strand cDNA Synthesis Kit (Kemix,

Beijing, China). Reactions were performed with LightCycler 480

II (Roche), and PCR conditions were 95°C for 3 min, 45 cycles of

95°C for 5 s, and 55-60°C for 30 s. All analyses were conducted with

three biological replicates. The relative expression of each sample

was calculated by the 2−DDCt method. The persimmon GAPDH

gene was used as a reference gene (Du et al., 2019). All gene primers

are listed in Supplementary Table 2.
3 Results

3.1 Correlation analysis between total
flavonoids content and astringency type

The correlation between flavonoids content and fruit

astringency were detected in the mature fruit of a natural

population with different persimmon cultivars (Supplementary

Table 1). The Pearson correlation coefficient (r) between total

flavonoids content of persimmon fruit and astringency types of

141 persimmon resources was 0.415**, indicating a significant

correlation between total flavonoids content and fruit astringency

type (P < 0.01). The above information indicated that total

flavonoids were differences between PCNA and PCA fruit.
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3.2 Comparison of metabolites between
mature PCNA and PCA persimmon fruit

To comprehensively define and compare the metabolite profiles

between the PCNA and PCA persimmons, we evaluated metabolite

compositions using a Quasi-Targeted metabolome. Mature fruits

from the ‘Jiro’, ‘Youhou’, ‘Zhongshi No.5’, and ‘Huojing’

persimmon varieties were labeled as PCNA1, PCNA2, PCA1, and

PCA2, respectively. Principal component analysis based on the data

for all compounds separated all samples into four distinct groups,

with each sample and its replicates forming a separate group,

indicating that there were good correlations within group

replicates and differences among the different groups (Figure S1).

A total of 889 metabolites were identified in PCNA and PCA fruit,

including five metabolite categories, namely, amino acids and their

derivatives (170), flavonoids (135), carbohydrates and their

derivatives (76), nucleotides and their derivates (65), and organic

acid and its derivatives (62) (Supplementary Table 3).

To systematically identify and compare the metabolic pathways

between the fruit of the PCNA and PCA genotypes, KEGG

enrichment analysis was conducted on the differential metabolites

of the four groups (PCNA1 vs. PCA1, PCNA1 vs. PCA2, PCNA2 vs.

PCA1, and PCNA2 vs. PCA2). Phenylpropanoid biosynthesis

(ko00940), phenylalanine metabolism (ko00360), flavonoid

biosynthesis (ko00941), flavone and flavonol biosynthesis

(ko00944), and anthocyanin biosynthesis (ko00942) were found

to be significantly enriched. The KEGG annotation results

suggested that flavonoid metabolism-related pathways were

involved in the nutritional value and taste differences between

PCNA and PCA fruit (Figures 1A-D). Given the importance of

flavonoids to human health, the subsequent investigation were

focused on flavonoid synthesis during PCNA and PCA

fruit development.
3.3 RNA-Seq of PCNA and PCA persimmon
developing fruits

To evaluate flavonoid variations between PCNA and PCA

persimmons, the typical PCNA type ‘Jiro’ and PCA type ‘Huojing’

were selected for investigation. The fruit was harvested at four stages

(S1–S4), namely, the young fruit stage (S1), expansion stage (S2),

turning stage (S3), and mature stage (S4). After the removal of low-

quality, poly-N, and adaptor sequences, the RNA-seq of the ‘Jiro’ and

‘Huojing’ fruit at the four stages yielded 160.80 GB of clean data. The

filtered samples contained nearly 6.70 GB of high-quality data with an

average Q30 base percentage of 92.42%. Approximately 85.43% of the

reads mapped to the reference D. kaki genome, and 4416 novel genes

were also identified. The transcriptome sequencing data were

confirmed through qRT-PCR. Seven DEGs were randomly selected

from the flavonoid metabolism pathway for qRT-PCR verification

(Figure S2). The expression profiles of these genes were consistent with

their FPKM values.
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The DEGs were compared using DESeq2 software, and selected

DEGs were then analyzed. There were 5009, 4023, 6340, and 10 989

DEGs in the Jiro_S1 vs. Huojing_S1, Jiro_S2 vs. Huojing_S2,

Jiro_S3 vs. Huojing_S3, and Jiro_S4 vs. Huojing_S4 groups,

respectively (Figure 2A). Venn diagrams showed that 849 genes

were differentially expressed in all the comparison groups,

suggesting that these DEGs might perform critical functions in

the regulation of flavonoids in PCNA and PCA fruit (Figure 2B).

These DEGs were analyzed by the KEGG database to identify their

associated pathways. This showed that the flavonoid biosynthesis

(ko00941) and phenylpropanoid biosynthesis (ko00940) pathways

were signicificantly enriched in the Jiro_S1 vs. Huojing_S1, Jiro_S2

vs. Huojing_S2, and Jiro_S3 vs. Huojing_S3 comparison groups.

These results indicated that flavonoid biosynthesis-related pathways

may play essential roles in different stages of PCNA and PCA fruit

development (Figures 2C-F).
3.4 Differential gene analysis of flavonoid
biosynthesis during the development of
PCNA and PCA persimmon fruit

Six expression patterns were generated through trend and

clustering analyses of the DEGs in the ‘Jiro’ and ‘Huojing’

varieties of the four developmental stages, termed Cluster 1-

Cluster 6 (Figure 3A). The genes in these expression profiles were

functionally analyzed by KEGG annotation (Figure 3B). The

expression levels of genes in Cluster 3 were higher in the

‘Huojing’ fruit than in the ‘Jiro’ fruit. Furthermore, the expression

levels of genes in Cluster 3 decreased gradually with fruit

maturation. The KEGG pathway analysis showed that genes in

Cluster 3 were mainly involved in several primary metabolic

processes, such as photosynthesis (ko00196) and starch and

sucrose metabolism (ko00500), and secondary metabolisc

processes, such as phenylalanine biosynthesis (ko00400) and

flavonoid biosynthesis (ko00941). These results indicated that

flavonoid metabolism was involved in the development of ‘Jiro’

and ‘Huojing’ fruit.

Genes involved in flavonoid biosynthesis were then selected

from Cluster III based on the results of the KEGG analysis. A total

of 44 DEGs involved in flavonoid biosynthesis were identified,

including CS, DAHPS, DHQS, DHD/SDH, EPSPS, PAL, C4H, 4CL,

CHS, CHI, F3H, DFR, ANS, FLS, OMT, SGT, UF3GT, LAC, ANR,

AHA10 (ATPase), and MATE (Supplementary Table 4). The

flavonoid-associated DEGs were more enriched in the Jiro_S1 vs.

Huojing_S1 group than in the other groups, and most of the DEGs

were decreased (Figure 3C). The analysis of the gene expression

levels found that the numbers of DEGs gradually decreased during

the developmental process and were specifically highly expressed in

Huojing_S1. These results indicated that flavonoid metabolism

occurred predominantly during in the early stage (S1) of fruit

development and the expression of flavonoid biosynthesis genes

in ‘Huojing’ was significantly higher than in the ‘Jiro’.
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3.5 Construction of a flavonoid co-
expression module during PCNA and PCA
fruit development

To further identify the specific genes involved in regulating

flavonoid metabolism during the development of PCNA and PCA

persimmon fruit, 29 057 genes were used in a WGCNA analysis

(Figure S3). To ensure high-scale independence (near 0.9), the b-value
was set at 5 (Figure S3A). The adjacency and topological overlap

matrices were then constructed (Figures S3B, S3C). Based on average

hierarchical clustering and dynamic tree clipping, a total of 42 modules

were obtained (Figure S3D). The expression levels of the MEbrown

transcripts were found to be significantly higher in S1 compared with

S2, and gene expression was significantly higher in Huojing_S1 than in

Jiro_S1 (Figure S3E). The MEblue module contains 3502 genes and

KEGG analysis of genes in these modules showed that the genes in the

MEblue module were associated with flavonoid biosynthesis during the

fruit development, specifically, phenylalanine biosynthesis (ko00400)

and flavonoid biosynthesis (ko00941) (Figure S3F).
Frontiers in Plant Science frontiersin.org05
The genes with high connectivity in the MEblue module were

further investigated as candidate key genes related to flavonoid

metabolism. The top 10% of genes in terms of connectivity were

selected as potential hub genes. Of these, 12 hubs were identified as

potential regulators of flavonoid metabolism, including the

ups t r e am chor i sm ic a c id pa thway gene DHD/SDH

(evm.TU.contig8908.198); phenylpropanoid biosynthesis PAL gene

(evm.TU.contig9504.51) and C4H gene (evm.TU.contig22.251);

isoflavonoid biosynthesis genes CHI (evm.TU.contig3165.103 and

evm.TU.contig8036.16), and CHS (evm.TU.contig2115.175); flavone

and flavanonols biosynthesis genes F3H (evm.TU.contig4466.49),

F3’5’H (evm.TU.contig31.16), and FLS (evm.TU.contig4397.195);

anthocyanidin biosynthesis genes DFR (evm.TU.contig1073.253),

ANR (evm.TU.contig4466.754), ANS (evm.TU.contig5828.5), and

UF3GT (evm.TU.contig6534.24); And flavonoid transport MATE

(evm.TU.contig4078.12) gene. We observed the transcription factors

R 2 R 3MYB ( e v m . T U . c o n t i g 7 2 7 2 . 5 9 8 ) a n d WD4 0

(evm.TU.contig3208.5) also showed higher connectivity and were

closely associated with the above structural genes. Therefore, these
A B

DC

FIGURE 1

Comparison of metabolites between mature PCNA and PCA persimmon fruit. Scatter plot showing KEGG enrichment of DEGs between the PCNA
and PCA groups. (A) PCNA1 vs. PCA1 group. (B) PCNA1 vs. PCA2 group. (C) PCNA2 vs. PCA1 group. (D) PCNA2 vs. PCA2 group.
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TFs might participate in regulating the expression levels of the

structural genes in flavonoid biosynthesis (Figure 4).
3.6 Analysis of flavonoid metabolites during
the development of PCNA and PCA
persimmon fruit

To further confirm flavonoid differences in the PCNA and PCA

persimmon fruit during the developmental process, Quasi-Targeted

metabolomic analysis of flavonoid compounds was used to evaluate

the four developmental stages of PCNA and PCA persimmon fruit

(Figure 5). In total, 135 flavonoids were identified in LS and JS fruit

at different stages. These flavonoids included 75 flavonoids, 22

flavones and flavonols, 15 flavanones, 11 anthocyanins, four

chalcones and dihydrochalcones, four isoflavonoids, and four

tannins (Supplementary Table 5).

A total of 70 DAFs were identified among all the comparison

groups, including 36 flavonoids, 13 flavones and flavonols, eight

anthocyanins, six flavanones, four tannins, two chalcones, and

dihydrochalcones, and one isoflavonoid, of which 28 flavonoids

were glycosides. There were 27 DAFs in Jiro_S1 vs. Huojing_S1, 33

DAFs in Jiro_S1 vs. Huojing_S1, 41 DAFs in Jiro_S1 vs.
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Huojing_S1, and 27 DAFs in Jiro_S1 vs. Huojing_S1. Most of the

DAFs were significantly higher in Huojing_S1 than in Jiro_S1, with

only Procyanidin B2 and Procyanidin B3 were upregulated in at

least two stages. The DAFs in the ‘Huojing’ variety were stronger

than in the ‘Jiro’, which was consistent with the results of the RNA-

seq analysis. Further analysis revealed that 8, 4, 12, and 10 flavonoid

metabolites were stage-specific for S1, S2, S3, and S4, respectively

(Figures 5A, B). In addition, six metabolites were differentially

expressed at al l developmental stages, including 3,7-

dimethoxykaempferol-C-glucoside, corilagin, gallic acid, laricitrin,

methyl gallate, and phlorizin. These results further confirmed that

there were significant differences in the flavonoids between PCNA

and PCA persimmons, and that flavonoid biosynthesis pathways

play an essential role in PCNA and PCA fruit development.
3.7 Analysis of flavonoid biosynthesic genes
and metabolies during the development of
PCNA and PCA persimmon fruit

Based on the KEGG enrichment and WGCNA analyses, a

flavonoid biosynthetic pathway was systematically constructed

showing the expression levels of structural genes and the
A

B D

C

F

E

FIGURE 2

DEGs between ‘Jiro’ (PCNA type) and ‘Huojing’ (PCA type). (A) Summary of DEGs in different comparison groups of ‘Jiro’ and ‘Huojing’ fruit. (B) Venn
diagram of DEGs. (c–f) Scatter plot showing KEGG enrichment of DEGs in four developmental stages in the ‘Jiro’ and ‘Huojing’ comparison groups.
(C) Jiro_S1 vs. Huojing_S1 group. (D) Jiro_S2 vs. Huojing_S2 group. (E) Jiro_S3 vs. Huojing_S3 group. (F) Jiro_S4 vs. Huojing_S4 group.
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flavonoid contents during PCNA and PCA persimmon fruit

development (Figure 6). Eleven structural genes and eight

flavonoids were mapped to the pathway. Two structural genes

(PAL and C4H) participated in the upstream phenylpropanoid

pathway and nine structural genes (CHS, 2 CHIs, F3’H, F3’5’H,

DFR, ANS, ANR, and UF3GT) participated in the flavonoid

biosynthetic pathway. PAL2 catalyzes the transformation of

phenylalanine to cinnamic acid and as the expression of C4H was

significantly higher in Huojing_S1 than in Jiro_S1, there was a

upregulation of r-coumaroyl-CoA, with downregulation of

cinnamic acid. Subsequently, a series of flavonoid structural

genes, CHS, CHIs, F3’5’H, and F3’H showed significantly higher

expression levels in Huojing_S1. Thus, some crucial intermediates

such as dihydrokaempferol and dihydromyricetin, produced by the

enzymes encoded by these structural genes, accumulated highly in

Huojing_S1 than in Jiro_S1. All genes related to anthocyanin

biosynthesis, such as F3’5’H, DFR, ANS, ANR, and UF3GT, were

significantly downregulated in ‘Jiro’ , resulting in lower

accumulation of anthocyanins, such as pelargonidin chloride and

cyanidin 3-O-glucoside in ‘Jiro’ than ‘Huojing’, which might be

associated with the differences in flesh color between ‘Jiro’ and

‘Huojing’. However, the levels of the colorless metabolites catechin
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(gallocatechin) and proanthocyanidin (procyanidin B2 and

procyanidin B3) metabolites were significantly higher in Jiro_S4

than Huojing_S4. These findinge demonstrated the main

contributions of these eight DAFs to the differences in flavonoid

biosynthesis between PCNA (‘Jiro’) and PCA (‘Huojing’), and the

critical regulatory roles of 11 genes associated with flavonoid

synthesis were hypothesized.
4 Discussion

As a fruit tree cultivated worldwide, the persimmon has

essential ecological, economic, and social value. Presently,

persimmon trees are mainly grown for their fruit, which can be

eaten fresh or dried. Persimmon fruit varies greatly in terms of

specific qualities, with significant variations observed between

PCNA and non-PCNA persimmons (Novillo et al., 2016; Yildiz

and Kaplankiran, 2018). Volatile compounds also vary significantly

between PCNA and PCA fruit, especially in terms of aldehydes

(Elhadi, 2017). In addition to soluble tannin, the astringency type

also affected the contents of total phenolics, flavonoids, soluble

solids, individual sugars, as well as antioxidant capacity
A B

C

FIGURE 3

Expression patterns and KEGG analysis of genes in the transcriptomes of PCNA and PCA fruit. (A) Heatmap showing the overall common expression
pattern. Heatmaps were constructed using the normalized gene expression values. (B) Expression profiles and KEGG annotations of six clusters. The
y-axis of each cluster represents the KEGG categories, while the x-axis represents the rich factors. Red dots represent significantly overrepresented
KEGG pathways. (C) Summary of flavonoid-associated DEGs in different comparison groups of ‘Jiro’ and ‘Huojing’. a, ABC transporters; b, alpha-
Linolenic acid metabolism; c, Amino sugar and nucleotide sugar metabolism; d, Arachidonic acid metabolism; e, Autophagy- other; f, Chromosome
and associated protein; g, Circadian rhythm-plant; h, Cytoskeleton proteins; i, Exosome; j, Fatty acid biosynthesis; k, Flavonoid biosynthesis; l,
Glycine, serine and threonine metabolism; m, Glycosyltransferases; n, Ion channels; o, Lipopolysaccharide biosynthesis proteins; p, MAPK signaling
pathway-plant; q, Membrane trafficking; r, Mitochondrial biogenesis; s, N-Glycan biosynthesis; t, Nitrogen metabolism; u, Oxidative phosphorylation;
v, Phagosome; w, Phenylalanine, tyrosine and tryptophan biosynthesis; x, Photosynthesis; y, Photosynthesis-antenna proteins; z, Plant hormone
signal transduction; aa, Porphyrin metabolism; ab, Promasome; ac, Protein export; ad, Protein processing in endoplasmic reticulum; ae, Ribosome;
af, Ribosome biogenesis; ag, Ribosome biogenesis in eukaryotes; ah, Spliceosome; ai, Starch and sucrose metabolism; aj, Transcription factors; ak,
Transcription machinery; al, Ubiquitin system.
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(Novillo et al., 2016; Yildiz and Kaplankiran, 2018). These studies

provide a preliminary survey of how the astringency type affects the

quality of the persimmon fruit; however, given the importance of

flavonoids, the flavonoid composition and potential mechanisms

involved in the regulation of flavonoid biosynthesis between the

PCNA and PCA fruit varieties still require clarification.

With the rapid development of transcriptome sequencing,

many studies have attempted to elucidate the molecular basis of

flavonoid biosynthesis via RNA-seq. The key genes involved in

flavonoid biosynthesis were identified by stage-specific

transcriptomic analysis in the petals of Camellia nitidissima (Liu

et al., 2023). Changes in the key genes and flavonoid metabolites

were also investigated using metabolomics and transcriptomics in

the developing exocarp and embryo of hickory (Chen et al., 2022).

Metabolomics examines the overall metabolic profile of plant

samples through high-throughput detection and data processing

(Foito and Stewart, 2018) and can thus provide a reliable method

for investigating compounds contributing to the flavor of the

persimmon fruit. GC-MS has been used previously to identify

volatile components in persimmon fruit (Besada et al., 2013;
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Elhadi, 2017). Nineteen polyhydroxyphenols were found to be

reduced in CO2-treated fruit using untargeted metabolomics

analysis, suggesting that persimmon browning might be caused

by phenolic compounds (Han et al., 2022). Differences in

metabolites between five Japanese persimmons were investigated

using NMR (Ryu et al., 2019). In this study, a comprehensive

transcriptomic and metabolite analysis was conducted to determine

the differences in flavonoid composition between PCNA and PCA

persimmons and identify genes related to flavonoid biosynthesis.

Flavonoid biosynthesis is complicated and diverse and requires

the substrates derived from the phenylpropanoid pathway (Liu

et al. , 2021). Phenylpropanoid biosynthesis, flavonoid

biosynthesis, flavone and flavonol biosynthesis, phenylalanine

metabolism, isoflavone biosynthesis , and anthocyanin

biosynthesis were observed to be enriched during the

development of hickory fruit (Chen et al., 2022). In this study, a

full-spectrum metabolomic determination of persimmon fruit was

performed using liquid chromatography and triple quadrupole

mass spectrometry in the MRM mode. This resulted in the

identification of a total of 135 flavonoids, greatly broadening our
FIGURE 4

Weighted gene coexpression network analysis. The linkages between TFs and flavonoid-related structural genes in the MEblue module and the sizes
of round rectangles were changed according to gene connectivity.
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knowledge of flavonoids in ripening persimmon fruit. KEGG

analysis of the differential accumulated metabolites in PCNA and

PCA persimmons showed that pathways involved in

phenylpropanoid biosynthesis , flavonoid biosynthesis ,

phenylalanine metabolism, anthocyanin biosynthesis, and flavone

and flavonol biosynthesis were significantly enriched, indicating not

only the high accumulation of flavonoids in persimmons but also

that the flavonoids differed significantly between PCNA and PCA

persimmons, which may be responsible for the differences in

nutritional value and taste between the PCNA and PCA fruit.
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In this study, a total of 70 differential accumulated flavonoids

were identified between the fruit of the PCNA (‘Jiro’) and PCA

(‘Huojing’) persimmon varieties at different developmental stages,

of which the top three were flavonoids (36), flavones and flavonols

(13), and anthocyanins (8). Twenty-eight DAFs were glycosides,

which were mainly glycosylated derivatives of quercetin and

cyanidin. Quercetin is mostly present in plants as glycosides and

has been reported in foods such as onions, apples, broccoli, and tea,

and it also has beneficial effects on health (Zheng et al., 2017).

Glycoside modifications enhance the water solubility, structural
A

B

FIGURE 5

Differentially accumulated flavonoids (DAFs) in ‘Jiro’ (PCNA type) and ‘Huojing’ (PCA type). (A) Heatmap of the DAFs. The Heatmaps depict the
normalized gene expression values, representing the mean value of three biological replicates. (B) Venn diagram of DAFs.
FIGURE 6

Diagram of phenylpropanoid and flavonoid biosynthetic pathways involving DEGs and DEMs. Heatmaps represent the normalized expression values.
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complexity, and molecular stability of flavonoids (Bai et al., 2022).

Thus, flavonoids with glycosides could play essential roles in plant

growth, hormonal balance, and the elimination of toxic endogenous

and exogenous substances (Wang et al., 2017; Bai et al., 2022); it has,

for instance, been shown that delphinidin and its glycosides

enhance plant resistance to a wide range of biotic and abiotic

stresses (Silva et al., 2017).

In the early stages of flavonoid biosynthesis, the PCNA (‘Jiro’)

and PCA (‘Huojing’) cultivars differed in the expression of the C4H

(evm.TU.contig22.251), PAL (evm.TU.contig9504.51), CHI

(evm.TU.contig3165.103 and evm.TU.contig8036.16), and CHS

(evm.TU.contig2115.175) genes. L-phenylalanine is converted to

cinnamic acid by PAL, the frist enzyme in the flavonoid

biosynthetic pathway (Heldt and Piechulla, 2011). In addition to

PAL, C4H, CHS, and 4CL play critical roles in the synthesis of

crucial secondary metabolites such as lignin, phenolic acids,

coumarin, flavonoids, and anthocyanins (Chen et al., 2022; Xia

et al., 2022). Subsequently, r-Coumaric-CoA produces naringenin,

which is catalyzed by CHS and CHI (Yuan et al., 2022). CHS is a key

initiating enzyme and forms part of a multi-gene family in most

s p e c i e s ( N i e s b a c h - K l ö s g e n e t a l . , 1 9 8 7 ) . CH S

(evm.TU.contig2115.175) expression was observed to be

significantly lower in cultivar ‘Jiro’ compared with ‘Huojing’ at

t h e e a r l y s t a g e . T w o D EG s t h a t e n c o d e CH I

(evm.TU.contig3165.103 and evm.TU.contig8036.16) were also

identified between PCNA and PCA persimmons; these two CHI

genes were highly expressed in cultivar ‘Huojing’ at stage 1. The

expression levels of these genes might influence flavonoid

metabolism in PCNA and PCA persimmons.

At the late stage of flavonoid biosynthesis, the F3H

(evm.TU.contig4466.49), F3’5’H (evm.TU.contig31.16), and FLS

(evm.TU.contig4397.195), DFR (evm.TU.contig1073.253), ANS

(evm.TU.contig5828.5), ANR (evm.TU.contig4466.754), and

UF3GT (evm.TU.contig6534.24) genes showed differential

expression between PCNA ( ‘Jiro’) and PCA ( ‘Huojing ’)

persimmon fruit. Two key enzymes, F3’H and F3’5’H, regulate the

hydroxylation of naringenin and dihydrokaempferol at the 3’

position or both the 3’ and 5’ locations in the B ring (Bailey et al.,

2003), and the products are crucial intermediates in the biosynthesis

of anthocyanins and proanthocyanidins (Jeong et al., 2006). Thus,

the genes encoding the F3’H and F3’5’H enzymes have been

extensively studied in horticultural plants such as cyclamen

(Boase et al., 2010), tea (Guo et al., 2019) and grapes (Jeong et al.,

2006). In this study, F3’H (evm.TU.contig4466.49) showed

significantly lower expression in cultivar ‘Jiro’ compared with

‘Huojing’ at the early stage when it catalyzes dihydrokaempferol

to produce dihydroquercetin, a substrate of cyanidin. F3’5’H

(evm.TU.contig31.16) catalyzes the synthesis of dihydromyricetin,

a substrate of leucodelphinidin. These results are consistent with

those of similar studies of Rhododendron pulchrums (Xia

et al., 2022).

LAR and ANS play essential roles in the synthesis of

proanthocyanins and anthocyanins; both are downstream genes

of the flavonoid biosynthetic pathway and catalyze leucocyanidin

into catechins and cyanidins, respectively (Springob et al., 2003).

ANR and LAR encode key enzymes involved in the production of
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2,3-cis-flavan-3-ols [(-)-epigallocatechin (ECG), (-)-epicatechin

(EC), and (-)-epi-gallocatechin 3-O-gallate (EGCG)] and 2,3-

trans-flavan-3-ols [(+)-gallocatechin (GC) and (+)-catechin (CA)]

respectively (Ikegami et al., 2007). Interestingly, there were no

differences in the LAR expression level between the two cultivars

but ANR (evm.TU.contig4466.754) was expressed at higher levels in

cultivar ‘Huojing’, a finding similar to previous studies showing that

the expression level of DkANR was much higher than that of

DkLAR during proanthocyanin accumulation (Akagi et al., 2009).

This resulted in a lower epicatechin content in the PCNA

persimmon and was one of the main reasons for the reduction in

the proanthocyanin contents in PCNA types. Cyanidin and

pelargonidin usually provide the red pigment in fruit and flowers

(Harborne and Williams, 2000). In this study, UF3GT

(evm.TU.contig6534.24) catalyzed the formation of cyanidin 3-O-

glucoside, and ANS (evm.TU.contig5828.5) also catalyzed naringin

to produce pelargonidin chloride; both two genes were expressed at

higher levels in ‘Huojing’ than in ‘Jiro’, which might result in the

accumulation of less red pigmentation in PCNA persimmons.

Genes involved in flavonoid biosynthesis are mainly regulated

by the MYB, bHLH, and WD40 TFs and their MBW complex in

plants (Hichri et al., 2011), such as rose (Shen et al., 2019) and pears

(Premathilake et al., 2020). R2R3MYB TFs are core members of the

MBW complex and are involved in the regulation of flavonoid

biosynthesis through binding to the promoter regions of structural

genes (Yoshida et al., 2015). In pears, PpMYB17 has been shown to

positively regulate flavonoid biosynthesis by activating the

structural genes PpCHS, PpCHI, PpF3H, and PpFLS in fruit

(Premathilake et al., 2020). In persimmon, the combined action

of DkMYB2, DkMYC1, and DkMYB4 (MBW) increases the

expression levels of the ANR gene involved in the biosynthesis of

the proanthocyanin precursor cis-flavan-3-ols (Gil-Muñoz et al.,

2020), supporting the above findings on the structural gene ANR

and the cis-flavan-3-ols epicatechin content. Besides, DkMYB14 in

the Chinese PCNA (C-PCNA) persimmon was found to suppress

proanthocyanin biosynthesis and activate acetaldehyde

biosynthesis, resulting in the deastringency of the C-PCNA

persimmon fruit (Chen et al., 2021). MYB82 is involved in

trichome development (Liang et al., 2014) and has potential roles

in anthocyanin biosynthesis in Arabidopsis (Yang et al., 2013). In

this study, an R2R3MYB (evm.TU.contig7272.598) was identified by

WGCNA, which was homologous to AtMYB82 and BrMYB82

(Yang et al., 2013), indicating a potential role of MYB82 in

anthocyanin biosynthesis regulation; however, the mechanism

remains requires further investigation and confirmation.

In conclusion, a comprehensive metabolomic and

transcriptomic analysis of PCNA (‘Jiro’) and PCA (‘Huojing’)

persimmon fruit was conducted. The concentration of flavonoids

in ‘Huojing’ was found to be significantly higher than in ‘Jiro’ fruit,

especially the concentrations of the proanthocyanin precursor 2,3-

cis-flavan-3-ols epicatechin and anthocyanin cyanidin derivatives.

Combined WGCNA and KEGG analyses showed that genes such as

PAL, C4H, CHI, CHS, F3H, F3’5’H, FLS, DFR, ANR, ANS, and

UF3GT involved in the phenylpropanoid and flavonoid

biosynthetic pathways might be the major factors impacting the

proanthocyanin precursor flavan-3-ols and the anthocyanin
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content. Moreover, the R2R3MYB (evm.TU.contig7272.598) and

WD40 (evm.TU.contig3208.5) TFs showed significant connections

with the above structural genes. This study provides basic

information on flavonoid biosynthesis and regulatory network in

persimmon fruit and lays a foundation for ongoing investigations

on the influence of astringency types on flavor components in

PCNA and PCA persimmon.
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Principal component analysis score plot of all metabolites in mature PCNA

and PCA persimmon fruit.

SUPPLEMENTARY FIGURE 2

Verification of transcriptomic data by qRT-PCR analysis of the expression of
seven genes.
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WGCNA analysis. (A) Soft threshold selection; (B) Module hierarchical
clustering tree; (C) The gene co-expression module; (D) The correlation

between samples and modules; (E) Gene expression pattern of the MEblue

module; and (F) KEGG enrichment analysis of the MEblue module.
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