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Introduction: Conventional rice production techniques are less economical and

more vulnerable to sustainable utilization of farm resources as well as

significantly contributed GHGs to atmosphere.

Methods: In order to assess the best rice production system for coastal areas, six

rice production techniques were evaluated, including SRI-AWD (system of rice

intensification with alternate wetting and drying (AWD)), DSR-CF (direct seeded

rice with continuous flooding (CF)), DSR-AWD (direct seeded rice with AWD),

TPR-CF (transplanted rice with CF), TPR-AWD (transplanted rice with AWD), and

FPR-CF (farmer practice with CF). The performance of these technologies was

assessed using indicators such as rice productivity, energy balance, GWP (global

warming potential), soil health indicators, and profitability. Finally, using these

indicators, a climate smartness index (CSI) was calculated.

Results and discussion: Rice grown with SRI-AWDmethod had 54.8 % higher CSI

over FPR-CF, and also give 24.5 to 28.3% higher CSI for DSR and TPR aswell. There

evaluations based on the climate smartness index can provide cleaner and more

sustainable rice production and can be used as guiding principle for policy makers.

KEYWORDS

rice production techniques, energy budget, global warming potential, climate smart
index, nutrient use efficiency
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1 Introduction

Sustainable rice cultivation in Asia is important for global food

security, as rice fulfills the calorie requirement of more than 50% of

the world population. As per the future projection, the rice

production should be increased by 30% to meet out the future

food demand (Pathak et al., 2020). Currently, rice is grown on 43.79

million hectares (Mha) of cultivated land in India, with a

production of 116.4 million tons (Mt) (GOI, 2020). Farmers often

wet till their paddies to transplant young seedlings of rice. Tillage at

inappropriate moisture destructs the soil structure and declines the

soil health over the long run to support a healthy crop (Altieri,

2018). In addition, rice is blamed for its high-water requirement and

greenhouse gas emission due to its cultivation in completely

saturated and flooded condition. The water footprint of rice

production in India is 2,020 M3 a year compared with 970 M3 a

year in China and a global average of 1,325 M3 a year (Bouraima

et al., 2015). Rice requires 800–5,000 L of water with an average of

2,500 L/kg of grain yield (Bouman and Tuong, 2000; Najmuddin

et al., 2018), and the water productivity of rice ranges between 0.20

and 1.20 kg m−3, which is one of the least among the cereal crops

with equal caloric requirements (Najmuddin et al., 2018; Kumar

et al., 2019). Globally, rice fields account approximately 30% and

11% of agricultural emissions of CH4 and N2O, respectively

(Hussain et al., 2015). In India, rice fields emit 4.09 ± 1.19 Tg

CH4 year−1 of methane, which is approximately 5% of the total

methane emission from agriculture (Gupta et al., 2021). Thus, in the

era of climate change and energy crisis, focusing and popularizing

the sustainable crop production practices are the needs of the hour.

The crop production should be associated with minimum use of

water, energy, fertilizer, and other farm inputs to reduce the

environmental foot print associated with rice production

In past decades, alternative rice establishment techniques have

been advocated for sustainable intensification of rice production

systems (Jat et al., 2019), namely, system of rice intensification

(SRI), direct seeded rice (DSR), line transplanting, alternate wetting

and drying (AWD), etc. These techniques are popularly called as

resource conservation techniques (RCTs), as they improve the use

efficiency of applied resources. SRI has been adopted by more than

10 million farmers in 70 or more countries (Thakur et al., 2016).

Rice grown under SRI methods has merit of improving resource use

efficiency and crop productivity while mitigating greenhouse gas

(GHG) emissions (Gathorne-Hardy, 2013). Adaptation of SRI

methods reduced 28%–30% global warming potential (GWP) and

36% water use over the farmer practice (Jain et al., 2014). DSR rice

production is another popular crop establishment technique with

coverage of 29 Mha in Asia (Pathak et al., 2011). The main

advantage of DSR rice production techniques is 10%–30% saving

of irrigation water (Kumar et al., 2022; Rana et al., 2022), reduction

in GWP by 16%–33% (Pathak and Aggarwal, 2012; Chakraborty

et al., 2017; Susilawati et al., 2019), and reduction in the production

cost by 6%–32% (Kumar and Ladha, 2011). The alternate wet and

dry method of irrigation is usually followed along with SRI and DSR

establishment techniques (Rao et al., 2017). The mechanized line

transplanting of the seedlings is often advised for better stand

establishment as compared to random transplanting in the
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farmer’s field. The benefits of mechanized transplanting are

higher yield and nutrient and water use efficiency.

Although there are many studies evaluating the benefits of

RCTs for crop productivity and profitability, studies evaluating

multi-criteria assessment of different RCTs for sustainability

indicators are very few (Kakraliya et al., 2018). Again, most of the

studies have been conducted on the research stations, which does

not account for the socioeconomic conditions of farmers. The on-

farm assessment of crop production techniques for multiple

indicators of rice production is more important (Nayak et al.,

2022). Nowadays, along with productivity and profitability, the

environmental footprints are more focused due to the

environmental pollution/footprints associated with crop

production (Sapkota et al., 2019). Common rice production/crop

establishment techniques are evaluated for GHG emission, energy,

fertilizer, and water use, and soil health (Parihar et al., 2019). Thus,

in order to select a cleaner, efficient, and profitable rice production

practices, which are climate resilient, a comprehensive approach is

required. For this, the development of a common index combining

the effect of multiple indicators can be more appropriate. Although

many researchers have proposed the use of numerical index for

evaluating climate smart agriculture practices (Arenas-Calle et al.

(2019); Arenas-Calle et al. (2021)); Challinor et al., 2022), those

were less comprehensive (not based on three principles of climate

smart agriculture). There is no single available study assessing the

performance of rice production techniques against crop and water

productivity, soil health, nutrient use efficiency, energy productivity,

GHG emission, and profitability, in totality based on three

principles of climate smart agriculture (production, adaptation,

and mitigation). In this connection, there lies an excellent

opportunity to develop a unique index to compare multiple

criteria at one go while screening the most efficient rice

production techniques. Therefore, a 2-year experiment was

conducted with the following objectives: i) to measure or

compute multiple indicators of sustainability for diversified rice

establishment techniques in the eastern coastal rice production

system of India, ii) to identify the important soil properties affecting

productivity and greenhouse gas emission from the soil, and iii) to

develop an index to represent multiple indicators of sustainability

(climate smartness index) to screen for a cleaner, profitable, and

resource-efficient rice establishment technique. We hypothesized

that the SRI techniques of rice production are more sustainable,

with minimum resource use and ecological impact.
2 Materials and methods

2.1 Experimental site characteristics

A field experiment was conducted in a farmer’s field in Tangi-

Choudwar block of Cuttack districts of Odisha state, India during

the winter season of 2020 and 2021. This area is located at mid-

central table land zone (20°66′ N latitudes and 85° 95 E′ longitudes)
of Odisha and receives a mean annual rainfall of 1,400 mm. Soil

type was sandy clay loam (Bouyoucos, 1962) with 1.44 Mg m−3 bulk

density, 0.29 dS m−1 electrical conductivity (EC), 5.7–5.9 pH (using
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1:2.5, soil:water suspension) (Jackson, 1973), 5.8 g kg−1 organic C

(Walkley and Black, 1934), 176.5 kg ha−1 available N (Subbiah and

Asija, 1956), 15.8 kg ha−1 available P (Olsen, 1954), and 87.8 kg ha−1

NH4OAc-K (Jackson, 1973) content, respectively.
2.2 Details of the treatment and
crop management

The experiment was carried out in a randomized completely

block design (RCBD) replicated four times. The rice cultivar Pooja

of 130–135days duration with 5.5–6 t ha−1 of yield potential was

cultivated during both years. Five climate-resilient rice production

techniques along with farmer regular practice as control were

evaluated. The treatment detail of each rice production technique

has been described in Table 1. The treatments included I) system of

rice intensification with alternate wetting and drying (SRI-AWD),

II) direct seeded rice with continuous flooding (DSR-CF), III) direct

seeded rice with alternate wetting and drying (DSR-AWD), IV)

transplanted rice with continuous flooding (TPR-CF), V)

transplanted rice with alternate wetting and drying (TPR-AWD),

and VI) farmer’s practice (FPR-CF). The land was prepared once

with mold board plow up to 20 cm, followed by harrowing and

leveling. Each plots (100 m2) were isolated by bunds (30×50 cm2

with polythene sheets up to a depth of 45 cm to prevent interplot

seepage. The treatments details related to seed rate, method of

transplanting, seedling age, irrigation water management, and

amount of fertilizer applied were presented in Table 1. Urea, di-

ammonium phosphate (DAP) and muriate of potash (MOP) was

applied to supply the NPK to the rice. Half dose of N and full dose

of P and K were applied as basal, and the remaining half-dose of N

was applied at maximum tillering stage and panicle initiation stage

in two equal splits. In both DSR and transplanted condition after 1

week of showing/transplanting, 5 cm irrigation was applied when

soil moisture tension dropped to −20 kPa in alternate wetting and

drying (AWD) treatments throughout the rice growing season,

excluding the flowering period. In conventional flooding (CF)

conditions, irrigation was regularly applied to maintain a flooding

condition from the day of transplanting to physiological maturity.

The grain and biological yield were recorded after harvesting at

harvest maturity of the crops. The grain yield was recorded at 14%

moisture content. The harvest index (HI) was calculated as:

Harvest   index   ( % ) =  
Economic yield

total biological yield
� 100 (1)
2.3 Irrigation water productivity and
nitrogen partial factor productivity

The amount of applied irrigation water was measured by

measuring the discharge of Parshall flume installed at the field

multiplied by the water application duration (Parshall, 1928).

Furthermore, the irrigation water productivity was measured

across the treatments using Equation 2.
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Irrigation  water   productivity   (kg m−   3)

=  
Grain yield (kg)

Quantity of water supply (m3)
� 100 (2)

Nitrogen partial factor productivity (NPFP) was calculated by

using Equation 3 as described in Dobermann (2007).

PFPN =  
Grain yield (kg)

Quantity of nitrogenous fertilizer supply (kg)
(3)
2.4 Energy budgeting

The consumption of input energy from the use of all the farm

input and agricultural activities and energy output from rice grain,

and straw yield were included for energy budgeting (Scholz, 1997;

Sørensen et al., 2014). At first, the inventory of input use in all the

agricultural operations, such as tillage, sowing, weeding, fertilizer,

and agrochemical applications, harvesting, and threshing, was built.

Furthermore, the amount of fertilizers, seeds, agrochemicals, human

labor, diesel, and irrigation water were multiplied with their

respective energy conversion coefficients (Table 2) for the

calculation of input energy for different treatments. To determine

the system’s energy efficiency, the following parameters were

taken and calculated (Chaudhary et al., 2017) using the

following equation:

Net energy (NE) = Output energy − input energy

Energy use efficiency (EUE) =    Output energy (MJ ha−1) 
input energy (MJ ha−1)  

Energy productivity (EP)  =  Crop economic yield (kg ha−1) 
input energy (MJha−1)

Specific energy (SE)  = input energy (MJha−1) 
Crop   economic   yield (kg ha−1 )

Energy profitability (PE)  =
Net   energy   return   (MJ   ha−1)

input   energy   (MJ   ha−1)
2.5 Soil sampling and processing for
determination of soil properties

For the laboratory analysis of soil properties, four replicated

composite soil samples were collected randomly from each

treatment using an augur (depth of 0–15 cm) at panicle initiation

(PI) stage and after harvesting of rice, using the quartering method.

For enzymatic assays, one portion of fresh soil samples was stored in

the refrigerator at 4°C. The remaining portion was air dried,

ground, and passed through a 2-mm sieve to prepare a final

processed soil sample for analysis. Plant residues, root debris, and

gravels were thoroughly removed before processing the soil sample.
2.6 Soil chemical and biological
soil parameters

Soil chemical properties like soil pH and Eh (mV) weremonitored

at 3–7-day intervals throughout the seasons using pH and ORP (Star
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A3210 series) portable meter with a platinum-calomel electrode

submerged in the reduced zone. For fractional analysis of labile

carbon pool, air dried, ground, and passed through a 2-mm sieve,

soil samples were taken. For the extraction of readily mineralizable

carbon (RMC), 0.5 M K2SO4 (Inubushi et al., 1991) was used followed

by wet digestion with dichromate (Vance et al., 1987). Chloroform
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fumigation extraction method described byWitt et al. (2000) was used

for the analysis of microbial biomass carbon (MBC). For the analysis

of other three fractions of carbon, viz., permanganate oxidizable

carbon (POXC), water soluble carbohydrate carbon (WSC), and soil

oxidizable organic carbon, themethods described by Blair et al. (1995);

Haynes and Swift (1990), and Walkley and Black (1934), respectively,
TABLE 2 Energy equivalents and price of inputs and outputs in agricultural production.

Particulars Unit Energy equivalent (MJ unit−1) Reference Unit Price (Rupees)/unit

Inputs

Human labour

Adult man h 1.96 Mittal and Dhawan (1988) 8 h 300

Women h 1.57 Mittal and Dhawan (1988) 8 h 300

Diesel L 56.31 Mittal and Dhawan (1988)

Farm machinery h 62.7 Kitani (1999) H 1,400

Organic manure t ha−1 0.3 Kitani (1999) T ha-1 300

Chemical fertilizers

N kg 60.6 Kitani (1999) kg 6

P2O5 kg 11.1 Kitani (1999) kg 24

K2O kg 6.7 Kitani (1999) kg 16

Irrigation water m3 1.02 Singh et al. (2019) per irrigation 100

Pesticides kg 120 Kitani (1999) lit 112

Rice seed kg 14.7 Kitani (1999) kg 40

Outputs

Rice kg 14.7 Mandal et al. (2015) kg 19.4

Rice straw kg 13.4 Mandal et al. (2015) kg 2.5
TABLE 1 Details description of different rice production techniques.

Inputs details SRI-AWD DSR-CF DSR-AWD TPR-CF TPR-AWD FPR-CF

Seed rate (kg ha−1) 5 kg 30 kg 30 kg 25 kg 30 kg 50 kg

Method of trans planting/
showing

Manual
transplanting

Drum seeder Seed drill Mechanical
transplanter

Manual
transplanting

Manual
transplanting

Spacing (cm) 25 x 25 20 x 20 20 � 20 25x20 20 x 20 Random

Seedling age
(days)

12 days Direct sprouted seed
sowing

Direct seed
sowing

18 days 21 days 28 days

Seedling hill−1 1 – – 1–2 2 2–3

Water management AWD CF AWD CF AWD CF

Rate of manure 10 Mg ha−1

Fertilizer rate

N (kg ha−1) 50 100 100 100 100 100

P2O5 (kg ha−1) 25 50 50 50 50 50

K2O (kg ha−1) 25 50 50 50 50 50

Method of harvesting
Manual harvesting Manual harvesting Manual

harvesting
Manual harvesting Manual harvesting Manual harvesting
SRI, system of rice intensification; DSR, direct seeded rice; TPR, transplanted rice FPR, farmers’ practice rice; AWD, alternate wetting and drying; CF, continuous flooding.
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were followed. The analysis of microbial population and enzymatic

activities was done with field moist soil sample. Before analysis,

moisture content of soil was determined on oven-dry equivalent

weight basis. The soil dehydrogenase activity was determined

colorimetrically using the triphenyl tetrazolium chloride (TTC)

reduction technique (Casida et al., 1964). The determination of soil

urease activity was done colorimetrically with diacetyl monoxim assay

method described by Tabatabai (1972). On the other hand, b-
glucosidase enzyme activity was determined with the help of the

following method described by Dick (1994) in which colorimetric

estimation of p-nitrophenol was done, which was produced by

incubating soil at 37°C for 1 h with p-nitrophenol-d-

glucopyranoside, modified universal buffer pH 6.0 and toluene

followed by extraction with calcium chloride and tris

(hydroxymethyl) amino methane. The total microbial count was

estimated using serial dilution plate count method (Sikora et al.,

1983), bacterial colony counts by Waksman (1927), fungal colony

count by Ryckeboer et al. (2003), and Actinomycetes colony count by

Williams and Davies (1965), and expressed as colony forming units

(CFU) g−1 dry soil. Finally, soil health index was calculated taking

labile carbon pool, microbial population, and soil enzyme activity.
2.8 Greenhouse gas flux measurement

Throughout the growth season, the flux of methane (CH4),

carbon dioxide (CO2), and nitrous oxide (N2O) from each

treatment was measured using a manual closed chamber

technique. Aluminum base plate (53 cm × 37 cm × 10 cm length

× width × height) with 2-cm-wide channel on the rim were inserted

into the soil covering four rice plants. During the time of gas

sampling, a manual closed chamber (53 cm × 37 cm × 71 cm length

× width × height) was placed on the channel of the base, and

channel was filled with water in order to keep the base and chamber

air tight. Gas samples were collected shortly after showing/

transplanting and at 3–7-day intervals during the crop growing

season (depending on phenological phases of the crop) (Mohanty

et al., 2018). CH4 (ppm), CO2 (ppm), and N2O (ppb)

concentrations in the gas samples were analyzed using a gas

chromatograph (M/s Thermo Scientific) using the equation

as follows:

CH4flux (mg m-2h-1)  ¼ XCH4�EBV�STP�16�60�10−3  
22:4�A�T

N2O flux (μg m
-2h-1)  ¼ XN2O� EBV � STP � 44� 60� 10−3  

22:4� A� T

XCH4 = the difference in CH4 concentrations (ppm) at 0 min

and at 30 min.

XN2O = the difference in N2O concentrations (ppb) at 0 and

30 min.

EBVSTP = effective chamber volume at standard temperature

and pressure (liter).

T = time interval (minutes) between the initial (0 min) and final

(30 min) sample after chamber implantation.
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A = base plate area (m2).

Fluxes of CH4, N2O, and CO2 were computed for days without a

sample event using sequential linear interpolation of the sample

days’mean emissions (Kumar et al., 2016). The season’s cumulative

CH4, N2O, and CO2 emissions (kg ha−1) were calculated by adding

daily fluxes in sampling and non-sampling days.
2.9 Global warming potential and
greenhouse gas intensity

The global warming potential (GWP), greenhouse gas intensity

(GHGI), and carbon equivalent emission (CEE) of each rice

production techniques were calculated as per IPCC (2007) and

protocols proposed in Bhatia et al. (2005).

GWP (kg CO2eq: ha
-1)  ¼  24:5xCH4(kg ha

-1) + 320x N2O 

(kg ha-1) + CO2(kg ha
-1)

GHGI (kg CO2-eq kg
-1grain) = GWP

RY

CEEðkgÞ = GWP � 12
44

where GWP is global warming potential in kg CO2 eq. ha
−1, and

RY is rice grain yield in kg.
2.10 Estimation of profitability of different
rice establishment techniques

The economics of rice cultivation in all the rice production

techniques was estimated using the following equation (Gulati

et al., 2022).
Total cost of cultivation ðCCÞ¼oi=n

i=1(Qi � Pi)oi=n
i=1OCi

Gross returnðGRÞ¼oi=n
i=1(Yr � Pr)

Net benefit (NB)   ¼  Gross Return (GR) - Total Cost of Cultivation (CC)

Benefit :  cost ratioðB : C RatioÞ = Gross   return
Total   cost   of   cultivation  

Productionefficiency ðPEÞ ¼ Grain   yield
crop   duration  

Monetary efficiencyðMEÞ ¼ yield
Net  Benefit  

where Qi is the quantity of agricultural input used, Pi is the market

price of agricultural input, OCi is the agricultural operational cost,

YR is the yield of rice grain and straw yield (Mg ha-1), and Pr is the

minimum support price (MSP) (CACP, 2021) for rice grain and

market price for straw. After calculating the cost of cultivation,

gross return, and net profit, these figures are converted from Indian

rupees to US dollars by dividing by 73.5.
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2.11 Drivers of yield and greenhouse
gas emissions

A forward stepwise regression was used to establish a

relationship between crop yield and greenhouse gas emissions

with different soil properties and to screen the important soil

properties governing the yield and GHG emission variability. For

this, at first, two intercept models were fitted, i.e., rice yield ~

intercept and GHG emission ~ intercept. Furthermore, a full model

was developed, i.e., yield and emission dependent on all the soil

properties. Finally, the step function of R was used to create a

stepwise model in R to screen the important variables.
2.12 Estimation of climate smartness index

A modified climate smartness index (CSI) for different rice

production techniques was calculated based on the procedure

proposed in Arenas-Calle et al. (2019). For the calculation of CSI,

a set of indicators were selected to represent different indicators of

sustainability (productivity, Irrigation water productivity, energy

productivity, nitrogen partial factor productivity (PFPN), global

warming potential, and economy). The indicators were normalized

using the minimum (min) and maximum (max) normalization (N)

approach (OECD, 2008; Mazziotta and Pareto, 2013). This

normalization rescaled the CSI indicator values from 0 to 1.

Furthermore, either the “more is better” or “less is better”

technique was used depending on whether the indicator has a

beneficial or cost criteria, to ease the comprehension of each

indicator’s contribution in the CSI (Pollesch and Dale, 2016). For

this type of normalization, min and max thresholds of productivity,

nitrogen partial factor productivity (PFPN), water productivity

(WP), energy productivity (EP), global warming potential (GWP),

and benefit–cost ratio (B:C ratio) data for rice production system

were used. The maximum and minimum threshold values of

different rice production techniques were derived from different

published articles of the same location. Finally, the normalized

indicators were weighted. In this regard, three approaches were

used for weighting these indicators: (1) expert opinion (Brooks

et al., 2005); (2) by giving equally weight to each indicator (Gan

et al., 2017); and (3) Statistical approach by principal components

analysis (PCA) (Jiang et al., 2020). Here, we used PCA to assign

significant weight to each CSA indicators so that different indicators

affect CSI unequally. The following equations were used for

normalization and weightage computation.

N ¼   (nobs)
(nmax)

more is better

N ¼   (nobs)
(nmin)

less is better

W ¼  
ev2i

oI=n
I=1ev

2
i

CSI ¼ on
i=1WiNi

where CSI= climate smartness index, W= weightage of each
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indicator, ev = Eigen vector from PCA analysis, N= normalized

value, P=productivity (min= 1.97 t ha−1, max= 6.55 t ha−1), WP

(min= 0.1 kg grain m−3, max = 70.1 kg kg−1), (PFPN (min = 25 kg

kg−1, max 70.1 kg kg−1) EP (min = 0.05 max= 0.3), GWP (min =

1,970 kg CO2-eq/ha, max= 5,109 kg CO2-eq/ha), and B:C ratio

(min=1.15, max = 2.2) are the minimum and maximum value these

indicators collected from systematic review.
2.12 Statistical analysis

The data for different indicators were analyzed using the SPSS

version 21.0 software. The data for various indicators were analyzed

using the one-way analysis of variance (ANOVA). If the ANOVA

was found significant at the 0.05 level of probability, Duncan’s

multiple range test (DMRT) was performed to differentiate the

effect of treatment means (Gomez and Gomez, 1984).
3 Result

3.1 Crop yield and water and nitrogen
use efficiency

The rice production techniques had significant effect on rice

grain yield, biomass yield, and harvest index (Table 3). Rice grown

under SRI-AWDmethod produced 5.04%–39.4% and 4.73%–40.1%

higher grain yield than other production techniques in the winter

season of 2020 and 2021, respectively. The DSR-based AWD and

CF rice production technique had 15.6% and 22.5% higher grain

yield than farmer practices (FPR-CF); however, the rice yield under

AWD and CF under DSR was similar. In addition, there was no

significant difference observed in yield of DSR-CF and TPR-AWD

during both the season. TPR methods had 21.9% higher yield in

AWD and 33.3% in CF compared to farmer practices (Table 3). The

straw yield was largest in the SRI-AWD treatment followed by TPR-

CF> DSR-CF>TPR-AWD>DSR-AWD > FPR-CF, while the harvest

index was highest in the SRI-AWD and lowest in FPR-CF among

different rice production techniques (Table 3).

Total water use was higher in conventional method of rice

cultivation (FPR-CF), followed by TPR-CF, DSR-CF, TPR-AWD,

SRI-AWD, and DSR-AWD, respectively (Table 3). The water saving

was largest under SRI-AWD (37.5%), followed by DSR-AWD

(34.7%) and TPR-AWD (33.5%) as compared to FPR-CF.

Significantly largest grain yield per unit quantity of water used

(water productivity) was found under SRI-AWD (0.53, 0.54 kg m−3)

and least in FPR-CF (0.24 and 0.24 kg m−3) during both the seasons.

Similarly, the water productivity for DSR-AWD was observed 0.42

and 0.44 kg m−3, whereas the water productivity under DSR-CF was

0.31 and 0.31 kg m−3 during both the crop growing season. Among

all the rice production techniques, on an average, the AWD

technique increased the water productivity by 78.3% compared to

CF water management (Table 3). Nitrogen partial factor

productivity (PFPN) was significantly varied among the rice

production techniques (Table 3). It varied from 38.8 to 65.0 kg
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grain per kg N applied, whereas the highest was observed in SRI-

AWD and least in FPR-CF. The DSR- CF had on an average 4.25%

higher PFPN as compared to DSR-AWD, whereas the TPR-CF had

8.4% higher NUE as compared to TPR-AWD. The PFPNs under

FPR-CF were 38.8 and 39.5 kg grain per kg N.
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3.2 Energy budgeting

The input energy requirement for rice production varied under

different rice production techniques (Table 4). The total energy

requirement was largest in TPR-CF, which was nearly similar to the
TABLE 3 Yield, irrigation water productivity, and nitrogen partial factor productivity of rice crop as influenced by different rice production techniques.

Treatment Grain yield (Mg ha−1) Straw yield (Mg ha−1) Harvest index (%) Irrigation water
productivity (kg m−3)

Nitrogen partial factor
productivity (%)

Rabi 2020 Rabi 2021 Rabi 2020 Rabi 2021 Rabi 2020 Rabi 2021
Rabi
2020

Rabi 2021
Rabi
2020

Rabi 2021

SRI-AWD 5.41a 5.53a 6.67a 6.79a 0.45a 0.45a 0.53a 0.54a 63.7a 65. 0a

DSR-CF 4.74c 4.83c 6.55b 6.54c 0.43c 0.42c 0.31d 0.31d 47.3c 48.3c

DSR-AWD 4.52d 4.65d 6.14e 6.34c 0.42cd 0.42c 0.42b 0.44b 45.2d 46.5d

TPR-CF 5.15b 5.28b 6.55b 6.65b 0.44b 0.44b 0.34c 0.35c 51.4b 52.8b

TPR-AWD 4.72c 4.82c 6.46c 6.56b 0.42d 0.42c 0.43b 0.44b 47.2c 48.2c

FPR-CF 3.88e 3.95e 6.07f 6.24c 0.39e 0.39d 0.24e 0.24e 38.8e 39.5e

SEm (±) 0.03 0.04 0.02 0.05 0.003 0.002 0.01 0.01 0.30 0.36

LSD ≤ 5% 0.06 0.07 0.11 0.12 0.01 0.003 0.02 0.02 0.64 0.76
SRI-AWD -T1; DSR-CF -T2; DSR-AWD -T3; TPR-CF -T4; TRP-AWD -T5; FPR-CF-T6 (different letters for each parameter show significant difference at p ≤ 0.05 by Duncan’s multiple
range test).
TABLE 4 Energy input–output relationship of rice crop as influenced by different rice production techniques.

Treatment Input energy
(GJ ha−1)

Output energy
(GJ ha−1)

Net energy
(GJ Ha−1)

Energy use
efficiency

Energy
productivity
(kg MJ−1)

Specific energy
(MJ kg−1)

Energy
profitability
(MJ ha−1)

Rabi 2020

SRI-AWD 23.8d 174a 150a 7.30b 0.23a 1.96e 6.30b

DSR-CF 22.5e 159c 136c 7.07c 0.21b 2.02d 6.07c

DSR-AWD 21.2f 156d 135c 7.36a 0.21b 1.95e 6.36a

TPR-CF 29.2a 168b 139b 5.80e 0.18d 2.46b 4.80e

TPR-AWD 24.9c 160c 135c 6.44d 0.19c 2.21c 5.44d

FPR-CF 28.7b 146e 117d 5.06f 0.13e 2.84a 4.06f

SEm (±) 0.02 0.83 0.86 0.03 0.001 0.01 0.03

LSD ≤ 5% 0.06 1.80 1.74 0.07 0.002 0.02 0.07

Rabi 2021

SRI-AWD 23.8d 176a 152a 7.36b 0.23a 1.94e 6.36b

DSR-CF 22.5e 160cd 138c 7.13c 0.21b 2.00d 6.13c

DSR-AWD 21.2f 158d 137c 7.45a 0.22b 1.93e 6.45a

TPR-CF 29.2a 172b 143b 5.94e 0.19d 2.40b 4.94e

TPR-AWD 24.9c 162c 137c 6.49d 0.19d 2.19c 5.49d

FPR-CF 28.7b 146e 118d 5.10f 0.14e 2.82a 4.10f

SEm (±) 0.02 0.92 0.95 0.04 0.001 0.01 0.04

LSD ≤ 5% 0.06 1.96 1.97 0.08 0.002 0.02 0.08
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energy requirement under farmer’s practices (1.74% higher over

farmer practices). The least total energy requirement was recoded in

DSR-AWD, which was on an average 26.1% lesser than FPR in both

seasons (Table 4). DSR production technique required 23.8% less

energy as compared to conventional rice cultivation, with the

majority of the energy savings obtained from diesel, machinery,

and labor. The energy output was found largest in SRI-AWD, which

was 19.8% more than the FPR-CF (Table 4). All the indices of

energy use efficiency, i.e., EUE, net energy, energy productivity, and

profitability, differed significantly among the rice production

practices (Table 4). The largest net energy was observed in SRI-

AWD technique, which was on an average 28% higher than FPR-CF

during both the year. The largest energy use efficiency was obtained

under DRS-AWD method of rice production, which was 45.7%

larger than FPR-CF technique. The different energy-efficient rice

production practices improved the EUE by 27.3%–45.4% and 27.3–

46.1% during 2020 and 2021, respectively.
3.3 Soil redox potential, greenhouse gas
emission and global warming potential

Soil pH and Eh value during rice growing period varied in

between 5.5–7.1 and 20 to −261 mV among different rice

production techniques during both years. After transplanting/

sowing under continues flooding conditions, soil Eh declined

until panicle initiation stage, then gradually increased in all CF

treatments (Figure 1). The lowest Eh value was recorded under

DSR-AWD, TPR-AWD, and SRI-AWD treatment, which was

significantly lower than other CF treatments. The average

seasonal redox potential under AWD based techniques was 26.2%

more than the CF treatments.

Methane flux under different rice production techniques varied

significantly (p< 0.05) in between 1.06–9.01 mg m−2 h−1 and 0.72–

7.83 mg m−2 h−1, during the rice production season of 2020 and

2021, respectively (Figure 2). The highest methane flux (9.201 and

7.83 mg m−2 h−1) was recorded during panicle initiation stage (at

72th Julian day of 2020 and 2021) under different rice production

technique during both the season (Figure 2). The cumulative CH4

emission under FPR-CF was significantly (p< 0.05) higher than that

under SRI-AWD and DSR-AWD during both years (Table 5). Alike

methane emission, the N2O emissions varied significantly under
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different rice establishment techniques. The largest N2O emission

(127.0 and 147 mg m2 h−1) was observed under the TPR-AWD

treatments, which was at per with DSR-AWD (126.8 and 147 mg
m−2 h−1), whereas TPR-CF had the least nitrous oxide emission

(126.8 and 147g m2 h−1) in both years (Figure 2). The cumulative

N2O emission was significantly (p< 0.05) higher in AWD

treatments (DSR-AWD, TPR-AWD, and SRI-AWD), which was

27.9% to 42.3% higher compared to CF treatments (DSR-CF, TPR-

CF, and FPR-CF) during both years (Table 5). Significant effects of

different rice production techniques on CO2 emission from rice

field were observed (Figure 2 and Table 5). The CO2 fluxes varied

from 12.3 to 115.2 mg CO2 m
−2 h−1 in the rice production system

during both years. Regardless of the treatments, the CO2 flux

increased till flowering and decreased thereafter. The average

cumulative CO2 emissions under different rice production

techniques ranged between 1,146–1,647 kg ha−1 and 1,147 to

1,625 kg ha−1 in 2020 and 2021, respectively (Figure 2 and Table 5).

The methane, nitrous oxide, and carbon dioxide emission were

converted to GWP based on CO2 equivalent values of respective

GHGs. The GWP under different rice production techniques varied

significantly in both years. The largest GWP was observed in FPR-

CF, which was 9.9%–25.5% and 12.8%–27.5% higher than other rice

production techniques during 2020 and 2021, respectively. The

AWD irrigation with SRI establishment techniques had least

(3,106–3,131kg CO2 ha-1) GWP, which was 25.5% and 27.5%

lesser than the GWP under FPR-CF during both seasons

(Table 5). The DSR-AWD and TPR-AWD had 20.2%–21.3% and

18.2%–20.5% lesser GWP than FPR-CF during both the seasons.
3.4 Soil health indicators

The soil health indicators, i.e., the labile carbon fractions, soil

enzymes, and microbial parameters at panicle initiation state of rice

soil, varied significantly across different rice production techniques

(Figure 3, 4 and Table 6). In addition, the rice production practices

significantly affected different C-fractions (RMC, WSC, and POXC)

(Figures 3, 4 and Table 6). The mean RMC, POXC, and WSC

contents were significantly higher in SRI-AWD, which were 1.54,

1.58, and 2.05 times higher than the FPR-CF treatment. The RMC

concentration was significantly increased in SRI-AWD practices by

156 and 163 mg kg−1 during 2020 and 2021, respectively, than FPR-
FIGURE 1

Effect of different rice production techniques on soil Eh (redox potential) in rice crop. SRI-AWD-T1; DSR-CF-T2; DSR-AWD-T3 TPR-CF-T4; TPR-
AWD-T5; FPR-CF-T6.
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CF. Soil POXC concentration was greater in DSR-AWD and TPR-

AWD, as compared to FPR-CF. MBC of soil remained unaffected by

different rice production techniques, and the largest MBC was

observed under SRI-AWD (211–251 mg kg−1 soil), while the least

MBC was observed under FPR-CF (168–198 mg kg−1 soil). The

microbial populations of bacteria, fungi, actinomycetes,
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heterotrophs, denitrifiers, and methanogen recorded at PI stages

varied significantly across different rice production techniques

(Table 6). The largest microbial population was observed in the

SRI-AWD method of rice cultivation, which was 20%–45% higher

as compared to FPR-CF. The trend in the build-up of bacteria,

fungi, and Actinomycetes populations was largest under SRI-AWD,
TABLE 5 Greenhouse gas emissions, GWP, and carbon equivalent emission in different rice production techniques.

Treatment

CH4 emission (kg
ha−1)

CO2 emission (kg
ha−1)

N2O emission (kg
ha−1)

GWP of rice system
(kg CO2 ha

−1)

Carbon equivalent
emission (CEE) (kg C

ha−1)

Rabi
2020

Rabi
2021

Rabi
2020

Rabi
2021

Rabi
2020

Rabi
2021

Rabi
2020

Rabi
2021

Rabi
2020

Winter
2021

SRI-AWD 62.6e 63.6f 1,179e 1,146f 1.22b 1.33ab 3106e 3,131d 847e 854d

DSR-CF 76.9c 78.7c 1,527c 1,474b 1.07bc 1.13c 3757b 3,766b 1,024b 1,027b

DSR-AWD 63.2e 65.6e 1,310d 1,323c 1.46a 1.47a 3326d 3,401c 980c 928c

TPR-CF 84.4b 88.2b 1,576b 1,265e 0.94d 1.09b 3680b 3,773b 1,004b 1,029b

TPR-AWD 66.9d 68.2d 1,303d 1,287d 1.46a 1.48a 3412c 3,433c 931d 937c

FPR-CF 91.2a 94.6a 1,625a 1,647a 0.92d 1.11b 4169a 4,319a 1,137a 1,178a

SEm (±) 1.20 0.65 15.0 3.86 0.06 0.11 35.1 31.8 9.57 8.69

LSD ≤ 5% 2.94 1.45 33.5 8.54 0.11 0.25 78.2 71.0 21.3 19.4
SRI-AWD-T1; DSR-CF-T2; DSR-AWD-T3; TPR-CF-T4; TRP-AWD-T5; FPR-CF-T6 (different letters for each parameter show significant difference at p ≤ 0.05 by Duncan’s multiple range test).
FIGURE 2

Methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) flux from soils during different rice production technique of rice crop.
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followed by TPR-AWD, and least in FPR-CF. Similarly, the

heterotrophs and methanogens population were higher in FPR-

CF, followed by TPR-CF, and least in SRI-AWD, whereas the

denitrifiers population was higher in DSR-AWD and TPR-AWD

in both the season. The soil enzymes activities, like DHA, urease, b-
glucosidase, and FDA, were significantly improved with different

rice production practices (Figure 4). Among the different rice

production techniques, the SRI-AWD practices had largest

enzymatic activities like urease, b-glucosidase, and FDA, whereas

the FPR-CF had least enzymatic activities, which were at par with

DSR-CF and TPR-CF. The urease, b-glucosidase, and FDA

activities increased by 19.4%, 16.7%, and 61.2%, respectively, in

SRI-AWD, as compared to FPR-CF during 2021 and 16.7%, 12.1%,

and 57.3% during 2020, respectively. The maximum DHA activity

was found in FPR-CF (362 and 357 g kg−1) and least in TPR-AWD

(296.5 and 282 g kg−1).
FIGURE 4

Soil dehydrogenase activity, urease activity, b − glucosidase activity
and fluorescein diacetate activity (mg TPF g−1 day−1) during Rabi
2020 and Rabi 2021 under different rice production techniques in
rice crop.
TABLE 6 Soil microbial population dynamics of rice crop influenced by different rice production techniques.

Treatment

Bacterial
population (CFU
× 105 g−1 dry

soil)

Fungus (CFU ×
103 g−1 dry soil)

Actinomycetes
(CFU × 104 g−1

dry soil)

Heterotrops
(CFU × 106 g−1

dry soil)

Denitrifiers (CFU
x 105 g−1 dry

soil)

Methanogens
(log MPN g−1 dry

soil

Rabi
2020

Rabi
2021

Rabi
2020

Rabi
2021

Rabi
2020

Rabi
2021

Rabi
2020

Rabi
2021

Rabi
2020

Rabi
2021

Rabi
2020

Rabi
2021

SRI-AWD 12.8a 17.8a 2.46a 3.72a 4.23a 5.98a 2.1b 2.5cd 5.4ab 6.3ab 3.3bc 4.3b

DSR-CF 10.9b 13.2b 1.78ab 2.78b 3.05d 4.0b 2.3b 2.9b 5.2ab 6.1ab 3.6ab 4.5bc

DSR-AWD 10.1ab 12.7b 1.74ab 2.49b 3.45c 4.45b 2.2b 2.2de 5.5a 6.4a 3.4abc 4.4bc

TPR-CF 11.5ab 13.4b 1.86ab 2.86b 3.22cd 3.98b 2.3b 2.8bc 5.1b 6.1ab 3.6ab 4.7ab

TPR-AWD 11.2ab 11.3b 1.74ab 2.56b 3.73b 4.3b 2.1b 2.1e 5.5a 6.4a 3.2c 4.1b

FPR-CF 10.1b 12.1b 1.66c 1.45c 3.23cd 3.23c 2.4a 3.5a 5.1b 5.8b 3.7a 4.8a

SEm (±) 0.71 0.70 0.05 0.15 0.08 0.19 0.08 0.11 0.10 0.15 0.12 0.10

LSD ≤ 5% 0.21 2.07 0.14 0.44 0.24 0.55 0.24 0.33 0.30 0.45 0.35 0.30
fron
SRI-AWD-T1; DSR-CF-T2; DSR-AWD-T3; TPR-CF-T4; TRP-AWD-T5; FPR-CF-T6 (different letters for each parameter show significant difference at p ≤ 0.05 by Duncan’s multiple range test).
FIGURE 3

Soil labile C content such as readily mineralizable carbon (RMC), permanganate oxidizable carbon (POXC), water soluble carbohydrate carbon (WSC),
and microbial biomass carbon (MBC) (g kg−1) in Rabi 2020 and Rabi 2021 under different rice production techniques in rice–rice cropping system.
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3.5 Drivers of crop yield and greenhouse
gas emission

The stepwise regression was used to screen the important soil

properties governing the yield and emission variability. WSC and

bacterial population (BP) positively affected the rice yield, whereas

the methanogenesis activity and POXC negatively affected the rice

yield (although very small negative effect of permanganate

oxidizable carbon). A unit change in WSC was associated with

0.06 t increase in rice yield, whereas the unit increase in

methanogenesis was associated with 0.33 t ha decrease in rice

yield when all other factors are present at their mean level

(Table 7). As expected, the denitrifiers and methanogenesis

population positively affected the GHG emission from the rice

field, i.e., a unit increase in methanogens and denitrifiers population

was associated with 208 and 189 CO2-eq increase in GWP when all

other factors are present at their mean level. The bacterial

population, urease activity, and readily mineralizable carbon

negatively affected the GWP (Table 7).
3.6 Profitability of different rice
production techniques

Production cost for various rice production techniques varied

significantly across different crop production techniques (Table 7).

The cost of production was largest in TPR-CF, followed by TPR-

AWD, which was at par with FPR-CF and least in DSR-AWD. The

cost of production under FPR-CF was 1.12%–4.62% higher than other

rice production techniques, i.e., SRI AWD, DSR-AWD, and DSR-CF

during both years. Gross and net return and benefit–cost ratio varied

significantly across different rice production techniques (Table 7).

SRI-AWD method fetched significantly largest gross and net return

over other rice production techniques. The gross and net return under

SRI-AWDwere 34.9% and 122%, respectively, higher than FPR-CF in
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both years. The largest B:C ratio was observed in SRI-AWD and least

in FPR-CF in both years. Among different rice production techniques,

the production efficiency (PE) varied from 25.8% to 36.2% and 31.0%

to 36.9% in 2020 and 2021, respectively, whereas the monetary

efficiency (ME) varied from 9.65% to 15.2% and 9. 32% to 14.7%.

The maximum PE was observed in SRI-AWD, whereas the least PE

was observed under FPR-CF. The SRI-AWD techniques were most

profitable than all other rice production practices.
3.7 Climate smartness index

The multiple indicators were evaluated using a composite index,

i.e., climate smart index, to screen the production practices that are

sustainable over long run. The CSI varied between −1 to +1. The

composite CSI varied significantly across different rice production

methods (Figure 5). The SRI-AWD had the largest CSI, i.e., 0.80

and 0.82, which indicates that CSI had higher grain yield, higher

water productivity, higher energy efficiency, higher profitability,

and least GHG emission, whereas the least CSI score was observed

under FPR-CF, i.e., 0.53 during both years, which indicates the least

yield, energy efficiency, and largest emission under FPR-CF. The

CSI under CSI-AWD was 1.50 and 1.55 times greater than the

farmer’s practices. The performance of the DSR-AWD and TPR-

AWDwas in between that of SRI-AWD and FPR-CF. The CSI score

under DSR-AWD and TPR-AWD techniques of rice production

was 4.6% and 1.54% higher than DSR-CF and TPR-CF, respectively.
4 Discussion

4.1 Effect of different rice production
techniques on productivity, profitability,
and energy use efficiency.

The congenial growth conditions prevailed because AWD

under SRI method allowed the rice plant to have a greater

number of phyllochrons, increased number of tillers, and highly

developed roots, before the flowering phase (Deb, 2020) and

produced highest grain yield over all the rice production

techniques evaluated. Our findings were in accordance with the

findings of Chapagain and Yamaji (2010); Mishra and Salokhe
TABLE 7 Stepwise regression between yield and GWP with soil properties.

Parameters Yield Emission

(Intercept) 3.447308*** 7,124.55***

WSC 0.064905*** −2.9401

Bacterial population 0.049683* −33.2759**

Methanogenesis −0.33959*** 208.7053***

POC −0.00508* 0.612

Heterotroph 0.223876 113.0558

MBC 0.00367 −1.4006

UA −5.1213***

BGTA −3.188*

Denitrifiers 189.1699**

RMC −4.9061*
*(p< 0.05); **(p< 0.01), ***(p< 0.001) in parameters coefficients indicate level of significance
in the stepwise regression analysis.
FIGURE 5

Climate smartness index (CSI) during both the season under
different rice production techniques in rice crop.
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(2011), and Nazir et al. (2022). Talla and Jena (2014) and Kumar

et al. (2016) have also reported approximately 7%–30% higher grain

yield in SRI-AWD over the conventional method. Lal et al. (2016)

reported that younger seedlings with higher tillering ability,

optimum plant population, efficient nutrient, and moisture

utilization enabled SRI to produce higher grain yield. Higher

grain yield in DSR was due to early seeding vigor, avoidance of

transplanting shock, increased panicle number, higher test weight,

and reduced poor grain sterility percentage (Gangwar et al., 2008).

Compared to continuous flooding, AWD considerably reduced

water use while maintaining or even increasing yields (Mishra

and Salokhe, 2011; Thakur et al., 2014; Malyan et al., 2016).

Although the mechanisms underlying these adaptations are

unknown, AWD was found to be strongly associated with root

development and access to water and nutrients at a deeper level in

the soil profile (Thakur et al., 2014). AWD-induced rhizosphere

drying also improved plant hormone signaling and increased grain

filling rate, especially in inferior spikelet (Davies et al., 2011; Zhang

et al., 2012). Zhang et al. (2009) reported an increase in rice yield by

11% due to AWD compared to continuous flooding. Moreover,

yield decreased in DSR, which was also reported by recent studies

(Farooq et al., 2007; Farooq et al., 2009). The yield and yield

attributes are often higher in TPR because of proper utilization of

available resources and efficient partitioning of photosynthates in

comparison to the conventional method (Kumar et al., 2016).

However, yield attributes were lower in TPR compared to that in

SRI and higher over DSR in sandy clay loam soil, since the older

seedlings took relatively longer time to mature. In line transplanted

rice, the flowering was delayed by 12–16 days compared to DSR,

which might be ascribed to transplanting shock (Joshi et al., 2013).

Soil texture plays an important role in water management in rice

production. Similarly, rice yield was reduced under AWD

management in clay texture soil compared to loam soil because of

dryness in clay soil at −20kPa compared to loam (Carrijo et al.,

2017). Under the conventional system, cultural practices of

transplanting of older seedlings at three to four seedlings/hill,

continuous flooding of the field throughout crop would have

resulted in poor root growth with quicker root degeneration

(Chakraborty et al., 2017). Nirmala et al. (2021) reported that

conventional method of rice production yield was reduced up to

55% compared to SRI methods. Thus, adaptation of rice production

technique like SRI, DSR, and TPR (mechanical) with AWD in rice

ecology may enhance overall productivity along with resilience to

climate change (Lal et al., 2020; Kumar et al., 2022).

SRI-AWD rice production technique required less water and

have higher grain yield, whereas DSR-AWD and TPR-AWD

methods of rice production required less water use but had less

yield compared to SRI-AWD. This might be attributed to less

irrigation water and chemical fertilizer lowering the cost of

cultivation without affecting grain yield. Increased water

productivity in AWD systems could be attributed to reduced

seepage and percolation loss compared to flood irrigation.

However, such losses are highly reliant on a soil’s hydrological

characteristics (Sharma et al., 2002; Pérez-Sánchez et al., 2012).

Saving of water in AWD, SRI-AWD (20%–50%), and DSR (13%–

60%) as compared to flooding was also reported by several workers
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(Singh et al., 2013; Dass et al., 2016; Carrijo et al., 2017; Mboyerwa

et al., 2021). In SRI-AWD rice production technique, 1 kg of N

fertilizer produced 65 kg of grain on average; however, when 1 kg of

N fertilizer was applied to rice using the FPR-CF technique, only

38.8 kg of grain was produced. Higher N use efficiency in SRI-AWD

treatment might be due to higher root growth, photosynthetic rate,

and N uptake. In AWD practices, there were different losses of N,

viz., leaching and denitrification by draining less water and leaving

less stagnant water in the field. Contrarily, hypoxic conditions in

continuous flooding with faulty N management in farmer’s practice

inhibit root growth and N uptake. Thakur et al. (2013) reported the

same, as SRI-AWD had higher PFPN than FPR-CF.

Energy was consumed at every stage of the rice production,

from tillage operation to threshing. Total energy requirement for

optimum production of a crop is the function of input used (seed

rate, manure and fertilizer rate, herbicide and pesticide rate,

irrigation, etc.), crop production method, duration of cultivar,

and cropping system (Lal et al., 2020). The total energy

requirement was highest in TPR-CF. It might be due to

mechanical transplanter, which consumed higher energy than

manual transplantation. However, FPR-CF had demanded more

human labor, fertilizer, seed, and area to get more seedling to

transplanting per unit area than other rice production techniques.

Fertilizers used the majority of total input energy consumption,

accounting for 40%–70% of total input energy compared to other

input requirement, which was supported by recent findings (Singh

et al., 2019; Lal et al., 2020). The second important factor of energy

consumption was land preparation, which includes tillage

operation, irrigation for seedbed preparation, and machinery. It

was similar to the finding of Eskandari and Attar (2015). SRI-AWD

had higher output energy, which could be attributed to higher yield

than the other tested techniques (Lal et al., 2020). Highest EUE in

DSR technique might be due to high resource use efficiency

(radiation use efficiency, water productivity, and nutrient use

efficiency) (Lal et al., 2020; Htwe et al., 2021). DSR technique

needed less energy consumption than transplanting rice

production technique, resulting in a greater EUE (Eskandari and

Attar, 2015). Here, higher specific energy in FPR-CF technique

indicated that more energy input is needed to produce one-unit rice

grain. The B:C ratio of SRI-AWD was in accordance with findings

of Singh et al. (2013) and Soni and Soe (2016). DSR-AWD was a

cost-effective alternative to DSR-CF, TPR-CF, and TPR-AWD with

a similar B:C ratio. Gautam et al. (2021) reported less gross return in

DSR-AWD compared to transplanted rice. The least benefit–cost

ratio for FPR-CF was due to higher seed rate, higher disease and

weed infestation, lower grain yield, and knowledge gap in rice

production (Devkota et al., 2022).
4.2 Effect of different rice production
techniques on greenhouse gas emission
and GWP

Methane gas emissions included production, oxidation, and

transportation systems (Brye et al., 2016). Alternate wetting and

drying (AWD) increased irrigation water efficacy in mitigating
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45%–90% CH4 emissions compared to continuous flooding (Nalley

et al., 2015; Xu et al., 2015; Liang et al., 2016). During dry spells in

AWD, the reduction in CH4 emission is the consequence of a subtle

decrease in methanogenic and methanotrophic activity along with

an increased supply of oxygen (Tirol-Padre et al., 2018; Islam et al.,

2020). Continuous flooding maintained anoxic soil environment

(redox potential<−150 mV), which facilitated anaerobic organic

matter decomposition and increased CH4 emissions (Minamikawa

et al., 2006; Tirol-Padre et al., 2018; Islam et al., 2020). DSR reduced

GHG emission by 82%–87% than TPR (Gupta et al., 2016; Mishra

et al., 2021). DSR provided non-puddled soil condition, higher

water percolation rate, and increased soil macro-porosity and soil

pore continuity (Singh et al., 2020), thus improved gas diffusivity

and increased CH4 oxidation. However, in TPR-CF, puddled

condition restricted percolation of water and anaerobic condition

was formed, which was favorable for CH4 emission (Harada et al.,

2007; Kumar et al., 2019). Anoxic conditions were produced in

FPR-CF, allowing methanogens to produce CH4 by anaerobic

decomposition of organic materials (Bhattacharyya et al., 2016;

Swain et al., 2016, Swain et al.,2018). In the AWD water regime

treatment, N2O emissions were greater than continuous flooding

plots, which varied from 0.88 and 1.5 kg N2O ha−1 worldwide

(Romasanta et al., 2017; Islam et al., 2020). Previous studies have

also reported the similar findings of higher N2O emissions in AWD

(Miniotti et al., 2016; Tariq et al., 2017; Islam et al., 2020). The

anaerobic conditions found in continuous flooding techniques are

estimated to significantly impede NO3
−
flux from nitrification

while also promoting complete denitrification of any NO3
− to N2,

resulting in minimal N2O emissions. Conversely, the AWDmethod

involved a shift to more aerobic conditions and might have

accelerated nitrification and NO3
− production increasing N2O

production (Verhoeven et al., 2019; Islam et al., 2020). The

integrative impact of soil moisture content in different rice

production techniques and rice development stage could be

ascribed to temporal CO2 flux fluctuation. The increased CO2

fluxes at panicle initiation stage were owing to increased carbon

substrate and microbial activities (Swain et al., 2018). In

comparison to continuously flooded systems, AWD technique

mitigated global warming potential (GWP: CO2+CH4+N2O) by

45%–90% (Linquist et al., 2012).
4.3 Effect of different rice production
techniques on soil health indicators and
climate smartness index

The post-harvest soils of SRI-AWD technique had higher plant

biomass that might result in secretion of root exudates and

metabolites that improved water-soluble carbon (Thakur et al.,

2011; Mandal et al., 2020; Wen et al., 2022). Generally, soil

moisture regime of 60%–80% field capacity is best suitable for

microbial activity (Linn and Doran, 1984; Zhang et al., 2020).

Hence, MBC content was higher in SRI-AWD, DSR-AWD, and

TPR-AWD as compared to FPR-CF. Tian et al. (2013) reported
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abundance of bacteria and AM fungi, and actinomycetes population

decreased under continuous submerged situation. Anoxic flooding

condition favored methanogenic archaea activities over alternate

wetting and drying condition, whereas a reverse trend occurred in

denitrifier’s activity (Lagomarsino et al., 2016). In SRI technique,

organic manure was added to soil during land preparation, which

could have improved microbial and enzyme activities (Lakshmi et al.,

2019). The urease activity was higher under AWD condition as

compared to CF, which could be referred to a decrease in oxygen

diffusion rate (ODR) value (Naher et al., 2021). Similarly, b-
glucosidase activities are primarily responsible for the conversion of

low-molecular-weight carbon molecules to sugar in response to soil

moisture regimes (Turner et al., 2002; Nayak et al., 2007; Watts et al.,

2010). Continuous submerged soils had higher dehydrogenase activity

than soils with alternately wet and dry. Low ODR was shown to be

favorable for dehydrogenase activities in soil in previous studies

(Wolińska and Bennicelli, 2010; Lakshmi et al., 2019).

The CSI presented here suggests universal improvements in the

selection of climate-smart rice production techniques when

compared with farmer practices. The approach to developing a CSI

presented here offers a means for quantitatively measuring and

comparing the combined mitigation, adaptation, and productivity

properties of agricultural practices. The specific CSI presented is a

suitable metric for contexts of climate-driven constraint relating to

water stress like drought, changing rainfall patterns, increasing

temperatures, and the socioeconomic condition of farmers. The

selection of the indicators for the development of CSI was done by

combining mitigation, adaptation, and productivity properties such

as GHG, PFPN, IWP, EP, BC ratio, and yield of rice farming. SRI-

AWD, DSR-AWD, and TPR-AWD had higher CSIs, which might be

due to their higher yield potential, water productivity, nutrient use

efficiency, global warming mitigation potential, and economics

compared to continuous flooding rice production techniques (Yang

et al., 2012; Fangueiro et al., 2017; Arenas-Calle et al., 2019). Linquist

et al. (2015) and Tarlera et al. (2016) reported that in AWD trials,

water savings and emissions reductions outweighed yield costs when

compared with continuous flooding practices. Consequently, we

cannot explain the climate smartness associated with rice

establishment method, irrigation, and nutrient management

without considering suitability, and the situations in which

individual CSA pillars improve considerably with respect to others,

or even at the expense of others, should be carefully considered, as

CSA priorities may not be the same in all cases (Campbell et al., 2014;

Lipper et al., 2014; Totin et al., 2018). This is important because rice is

also threatened by sub-emergence, soil salinity, and high

temperatures (Mohanty et al., 2013), which means that the

meaning of “climate smart” may change. The CSI could offer an

easy interpretation and a transparent measure of climate smartness.
5 Conclusion

The present research calculates a climate smartness index and

then applies it to screening different rice production techniques based
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on their score. The CSI was constructed by taking relevant indicators

such as grain yield, irrigation water productivity, nutrient use

efficiency, energy productivity, global warming potential, and the

economy, then normalizing and weighing those indicators, and finally

calculating the CSI by aggregating indicator scores and weightage

using additive methods. Among the climate-resilient rice methods,

SRI-AWD is the best method in terms of CSI score. The approach

provides a pragmatic solution to meet the several needs and

advantages of adaptation progress monitoring, effectiveness, and

reduced supply chain risks resulting from climate change. Even so,

as this is still a preliminary research, more investigation and

assessment in multiple years, multiple locations, and multiple

climatic situations are needed to reduce the uncertainty in CSI

assessments, particularly in terms of spatial and temporal variability

in yield, GHG mitigation potential, soil health, water productivity,

and profitability in large-scale agricultural systems.
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