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IP4GS: Bringing genomic
selection analysis to breeders

Tong Li †, Shan Jiang †, Ran Fu, Xiangfeng Wang,
Qian Cheng* and Shuqin Jiang*

Frontiers Science Center for Molecular Design Breeding, College of Agriculture and Biotechnology,
China Agricultural University, Beijing, China
Genomic selection (GS), a strategy to use genotypes to predict phenotypes via

statistical or machine learning models, has become a routine practice in plant

breeding programs. GS can speed up the genetic gain by reducing phenotyping

costs and/or shortening the breeding cycles. GS analysis is complicated involving

data clean up and formatting, training and test population analysis, model

selection and evaluation, and parameter optimization. In addition, GS analysis

also requires some programming skills and knowledge of statistical modeling.

Thus, we need a more practical GS tools for breeders. To alleviate this difficulty,

we developed the web-based platform IP4GS (https://ngdc.cncb.ac.cn/ip4gs/),

which offers a user-friendly interface to perform GS analysis simply through

point-and-click actions. IP4GS currently includes seven commonly usedmodels,

eleven evaluation metrics, and visualization modules, offering great convenience

for plant breeders with limited bioinformatics knowledge to apply GS analysis.

KEYWORDS

bioinformatics, genomic selection, genotype-to-phenotype prediction, web-based
platform, R shiny
Introduction

Polygenic traits of plants, such as grain yield (GY), flowering time (FT), and plant

height (PH), are usually controlled by many minor effect genes. In such cases, traditional

marker-assisted selection (MAS), which relies on statistical power to identify makers/

genes-traits associations, cannot effectively be applied to expedite trait improvement of

polygenic traits. (Collard and Mackill, 2008; Xu and Crouch, 2008). Genomic selection

(GS) predicting phenotypes from genome-wide molecular markers, may act as a

complementary approach for the improvements of polygenic traits. (Desta and Ortiz,

2014; Crossa et al., 2017). GS models use genome-wide genetic markers to predict

phenotypes, which can maximumly capture phenotypic variation contributed by

multiple minor effect genes. (Cerrudo et al., 2018). To perform GS analysis, first, a GS

model is built by genotypic and phenotypic data from a training population. The model is

then employed to predict phenotypes of a candidate population based on their genotypic

data. (Meuwissen et al., 2001; Desta and Ortiz, 2014). The advent of advanced next-

generation sequence technologies, e.g. genotyping by targeted sequencing (GBTS) has
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1131493/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1131493/full
https://ngdc.cncb.ac.cn/ip4gs/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1131493&domain=pdf&date_stamp=2023-03-06
mailto:qchengray@cau.edu.cn
mailto:wanshi0066@126.com
https://doi.org/10.3389/fpls.2023.1131493
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1131493
https://www.frontiersin.org/journals/plant-science


Li et al. 10.3389/fpls.2023.1131493
significantly reduced the cost of genotyping. (Guo et al., 2019).

Wide application of GS to more and more plant species has become

feasible since genotyping cost is no longer a bottleneck (Bauck et al.,

2018; Belamkar et al., 2018; Atanda et al., 2021; Wang et al., 2021).

Most popularly GS models are linear regression (or parametric)

regression models. These models include the best linear unbiased

prediction (BLUP) method represented by RRBLUP (ridge regression

BLUP) and the Bayesian method represented by BayesA and BayesB

(Meuwissen et al., 2001; Endelman, 2011). In recent years, machine

learning (ML)-based methods have been introduced to build GS

models, such as support vector machine (SVM), random forest (RF),

deep learning, and light gradient boost (LGB) algorithms (Blondel

et al., 2015; Qiu et al., 2016; Ma et al., 2018; Yan et al., 2021). ML

methods have been proposed to be better than linear models to

incorporate nonlinear relationships between genotypes and

phenotypes. However, ML may require relatively larger data size to

achieve better performance and outperform linear models on more

complex datasets. (González-Recio and Forni, 2011; Yan et al., 2021;

Yan andWang, 2022). In the practice of plant breeding at the current

stage, most of the time, the size of training datasets is not big enough

and the property of datasets is still relatively simple, because the high

cost of phenotyping must still be considered as an important factor.

In this situation, BLUP and Bayesian methods outperform most ML

methods and have thus gained popularity in plant breeding (Tanaka

and Iwata, 2018; Yan et al., 2021).

Among all available GS methods, RRBLUP, a “simple” model

that assumes all marker effects possessing the same variance, is the

most widely used approach in GS application. It has therefore

become the baseline prediction model for the evaluation

performance of other GS models. However, the assumption of

equal variance of marker effects may be not realistic. Bayesian

methods which assumed prior distributions for the variance of

marker effects, has become another popular GS approach due to its

potential for better estimating of marker effects. Currently, the

majority of GS tools are command-line interfaces, requiring

advanced data management skills, good programing skills and

knowledge of statistical modeling, which restrict the practical use

by breeders in the seed industry. There has therefore been an urgent

need to develop a web-based platform with a user-friendly interface

for facilitating the use of GS strategies among the plant breeding

community. To solve this problem, we developed IP4GS, a web-

based interactive platform for genomic selection. IP4GS includes

seven GS models and eleven evaluation metrics to help users select

optimal models for GS analysis. It also includes bioinformatics

pipelines for preprocessing of genotypic data and visualization

modules for population analysis. The functionality of all modules

may be invoked simply by point-and-click actions through a user-

friendly interface developed using shiny.
Methods

Demo datasets for developing IP4GS

The public dataset from a population of 1,404 maize F1 hybrids,

which generated by crossing 1,404 inbred lines with an elite tester
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line Zheng58, was used to develop the web-based platform of IP4GS

(Liu et al., 2020; Xiao et al., 2021). The genotypic data of the 1,404

F1 hybrids includes 4,903 SNPs selected from a total of 14.8 million

SNPs; details of SNP selection were previously described by Cheng

et al. (Cheng et al., 2021). Phenotypes include flowering time (FT),

plant height (PH), and grain yield (GY) (Xiao et al., 2021). The

demo datasets of genotypes and phenotypes are accessible at https://

github.com/furan2019/IP4GSdata.
Implementation of a web-based
IP4GS platform

Shiny is an R-based framework, allowing programmers to

develop interactive web applications (https://www.rstudio.com/

products/shiny/). Benefitting from the expandability and

useability, Shiny has been widely used to develop online

applications for bioinformatics software or interactive plot tools

(McMurdie and Holmes, 2015; Yu et al., 2018; Sievert, 2020). The

shiny-based application can be accessed on the local host or

deployed on the public internet for public access. A shiny-based

application usually consists of two parts, a user-interface (UI) script

(IP4GS_UI.r for IP4GS) and a server script (IP4GS_server.r for

IP4GS). The UI script controls the layout of different panels and

visualization of results and bridges the user inputs and background

functions. IP4GS utilized several packages to enrich and improve

the UI interactive experience, such as “DT” for dynamic tables,

“plotly” for dynamic plots, “shinycssloaders” for loading

animations, “shinybusy” for progress notification, and

“shinyWidgets” for input of multiform parameters and dynamic

controls. HTML5 language and condition panels were also

introduced to improve and optimize the layout of panels. The

server script plays an important role in shiny-based applications. All

functions provided by IP4GS were achieved by server script,

including data input, data preprocessing, and GS model building

and evaluation. For real-time interaction, user-defined parameters

and operations are passed to the server script, which then executes

the corresponding functions and formats the outputs. Lastly, the

server script returns the results to a specific location according to

flags that can bridge the UI script and server script.
GS models and evaluation metrics in the
GS analysis panel

IP4GS integrates five linear models and twoML methods for GS

application, which are all called from R libraries (Table 1). The

RRBLUP method is called from the package “rrBLUP”. The

RRBLUP model is based on the assumption that all markers have

equal variance with small and nonzero effect (Endelman, 2011). The

three Bayesian methods, BayesA, BayesB, and BayesC, are called

from the package “BGLR (Bayesian generalized linear regression)”

(de los Campos and Pérez, 2015). BayesA utilizes a scaled t-

distribution for estimating marker effects. BayesB is similar to

BayesA, with the main difference that it utilizes both shrinkage

and variable selection algorithms to estimate marker effects. By
frontiersin.org
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contrast, BayesC estimates marker effects based on a Gaussian

distribution. The LASSO (least absolute shrinkage and selection

operator) method is called from the package “glmnet (Lasso and

elastic-net regularized generalized linear models),” which combines

both shrinkage and variable selection algorithms to estimate marker

effects. The two ML methods, SVR (support vector regression) and

RFR (random forest regression), are called from the “e1071” and

“randomForest” packages, respectively. SVR finds an appropriate

line (or hyperplane in higher dimensions) to fit the data, and RFR

uses a regression model rooted in bootstrapping sample

observations (Liaw and Wiener, 2002; Meyer et al., 2014; Ornella

et al., 2014).

To enable comprehensive evaluation of the prediction accuracy

of selected GS models, IP4GS integrates eleven evaluation metrics:

five correlation-based metrics to globally measure the relationship

between observed and predicted phenotypes, and six threshold-

based metrics to count accurately predicted top-ranked individuals

(Table 2). The correlation-based methods are Pearson correlation

coefficient (PCC), Kendall rank correlation coefficient (KCC),

Spearman rank correlation coefficient (SCC), squared R coefficient

of determination (R2), and mean squared error (MSE). These

metrics usually measure the global performance of models. For

example, KCC treats all pairs equally; however, in breeding practice,

more attention should be paid to extreme values such as high yield

and short flowering time (Blondel et al., 2015). Thus, six threshold-

based metrics were introduced for top-k individuals with ideal

phenotypic value. These are normalized discounted cumulative

gain (NDCG), mean NDCG, relative efficiency (RE), Accuracy, F-

score, and Cohen’s kappa coefficient (Kappa) (Ornella et al., 2014;

Blondel et al., 2015). The calculation methods for these metrics are

described in Table 2. X is an array of observed phenotypic values,

and Y is an array of predicted phenotypic values. For Accuracy, F-

score, and Kappa, positive samples are those with ideal

phenotypic value.
Bioinformatics pipelines in the data
preprocessing panel

Currently, IP4GS accepted genotypes with AA/AB/BB alleles

(allele format) and 0/1/2 format (numeric format). When data

processing button is pressed, the data processing function will
Frontiers in Plant Science 03
compute allele frequency, define the major and minor alleles,

filter and format submitted genotypic data. It is worth noting that

genotypic data in numeric format is not applicable to this function,

IP4GS suppose that genotypic data submitted in numeric format is

already processed by users. For genotypic data in

allele format, the function will compute allele frequency and

missing rate, define the major and minor alleles. Genotypic data will

be filtered by minor allele frequency (MAF) and missing rate,

markers with MAF below 0.05 (<= 0.05) or missing rate higher

than 0.2 (>= 0.2) will be removed and the criteria can be defined by

users. For format conversion, IP4GS uses a common 0, 1, 2 coding

scheme based on defined major and minor alleles, AA (homozygous

genotype comprising major alleles), AB (homozygous genotype)

and BB (homozygous genotype comprising minor alleles) will be

coded as 0, 1, and 2, respectively. Two methods are provided in

IP4GS for imputation of missing genotype values, “Mean” for mean

value of each SNP and “Major” for the code with highest frequency

of each SNP. In addition, IP4GS can implement dimensionality

reduction of genotypic data using three algorithms, the “prcomp”

function with default parameters (e.g., center = TRUE and scale. =

FLASE) in the “stats” package for principal component analysis

(PCA), the “umap” package for uniform manifold approximation

and projection (UMAP), and the “tsne” package for t-distributed

stochastic neighbor embedding (t-SNE). For current version of

IP4GS, the utilization of all above three algorithms with default

parameters except the dimension which can be defined by users.
Permissions and accessibility

The free version of IP4GS for academia distributed in the public

domain is available at https://ngdc.cncb.ac.cn/ip4gs/. All functions

of the public IP4GS described herein are freely accessible for small

datasets. There are suggested limitations on the number of SNP

markers (<10,000 SNPs) and samples (<1,000 individuals) because

of the limited high-performance computing resources of the public

web server hosting IP4GS. Considering the need for confidentiality

of breeding data by industrial users, an offline version of IP4GS that

can be installed on a private server or local devices without any

limitation on the number of SNPs and samples is also available.

Users interested in nonlimited IP4GS may contact the

corresponding author for access.
TABLE 1 Seven GS methods integrated into IP4GS.

Model Important parameter (s) Package Reference

BayesA nlter
burnIn
thin

BGLR (de los Campos and Pérez, 2015)

BayesB

BayesC

Least absolute shrinkage and selection operator (LASSO) alpha glmnet (Friedman et al., 2010)

Ridge regression best linear unbiased prediction (RRBLUP) N/A rrBLUP (Endelman, 2011)

Support vector regression (SVR) gamma; cost; kernel e1071 (Meyer et al., 2014)

Random forest regression (RFR) ntree; nodesize randomForest (Liaw and Wiener, 2002)
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Results

Overall workflow

The IP4GS platform can be divided into two main panels of

functional modules: the “Data preprocessing” panel and the “GS

analysis” panel. The Data preprocessing panel comprises not only

bioinformatics pipelines for data processing and quality control of

input datasets, but also a variety of dimensionality reduction (DR)

algorithms for population structure visualization based on

genotypes (Figure 1, left). Additionally, users may either preview

the processed data through the web browser or download the data

to a local computer. The GS analysis panel takes the input datasets

generated from the first panel and performs G2P prediction with

seven regression-based GS models and eleven evaluation metrics

(Figure 1, right). The parameters for each GS model can be

predefined on the parameter input panel by users. Visualization

of evaluation results allows users to identify and output predicted

phenotypes from the optimal model.
Functional modules in the data
preprocessing panel

To run the analytical modules in the Data preprocessing panel,

users need to prepare one mandatory input file of genotypic and
Frontiers in Plant Science 04
phenotypic data and one optional file containing data for fixed effects

considered by the model (Figure 2A). Acceptable data formats for the

genotypic data file are either the standard “HapMap” format or a plain

text file containing a matrix of genotypes in columns and individuals in

rows. In thematrix file, the genotype of each SNPmust be converted by

the users to “0,” “1,” or “2,” representing homozygous major alleles,

heterozygous alleles, and homozygous minor alleles, respectively. If

users select the “Custom” option from the pulldown list of file formats,

the genotype of each SNP can be entered in the character format “A, C,

G, T,” which is automatically converted to the “0, 1, 2” format on the

basis of allele frequency computed by IP4GS. Either a.csv (comma-

separated values) file or a tab-delimited.txt (text) file is acceptable by

IP4GS for phenotypic data.

After the input files are uploaded, the genotypic data file is first

processed with regard to two criteria, namely minor allele frequency

(MAF, default<= 0.05) and missing rate (MR, default >= 0.2), to

remove low-quality SNPs (Figure 2B). In addition, IP4GS offers users

the option of whether imputation is performed on genotypic data or

not. As reference haplotype-based imputation may consume a large

volume of computing resources, IP4GS only offers a simplified

imputation method using “Mean” or “Major” to replace missing

genotypic values (see Methods). The preprocessed and filtered

genotypic data can then be partially previewed or fully downloaded

by clicking the download button in the console (Figure 2C). In addition

to the raw and processed genotypic and phenotypic data, the DR data

computed using PCA (principal component analysis), UMAP
TABLE 2 Eleven metrics for model evaluation integrated into IP4GS.

Evaluation Metric Formula Remarks

Pearson correlation coefficient
(PCC, r, R)

PCC(X,Y) =   on
i=1(xi − �x)(yi − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(xi − �x)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − �y)2
q �x is the mean of X, �y is the mean of Y

Kendall rank correlation coefficient
(KCC, tau, t)

KCC   (X,Y) =  
N1 − N2
n(n − 1)=2

N1: number of concordant pairs (e.g., xi and yi);
N2: number of discordant pairs

Spearman rank correlation
coefficient (SCC, rho, r)

SCC(X,Y) =  
cov(R(X),R(Y))

sR(X)sR(Y)

R(X) and R(Y) are the rank of variables

Coefficient of determination, R
squared (R2, r2) R2   (X,  Y) =   1 −  o

n
i=1(xi − yi)

2

on
i=1(xi − �x)2

�x is the mean of X

Mean squared error (MSE)
MSE(X,Y)   =  o

n
i=1(xi − yi)

2

N

N is the total number of samples

Normalized discounted cumulative
gain (NDCG) NDCG(k,  X,  Y) =  o

k
i=1x(i,Y)d(i)

ok
i=1x(i,X)d(i)

d(i) =  
1

log2 i + 1
is a discount function; x(i,Y) is the ith value of X with the

order of Y; x(i,X) is the ith value of X with the order of X;
k is the top k individuals with ideal phenotypic values; �x is the mean of XMean normalized discounted

cumulative gain (mean NDCG)
meanNDCG@K(X,Y) =  

1
K o

K

k=1

NDCG(k,X,Y)

Relative efficiency (RE)
RE(k) =  

  1kok
i=1x(i,Y) − �x

1
kok

i=1x(i,X) − �x

Accuracy
Accuracy =  

NTP + NTN

N
TP: true positive; TN: true negative; FP: false positive; FN: false negative;

default b = 1; P =
NTP

NOp  
;R =

NTP

NPp  
; NOp = NTP + NFN; NOn = NFP + NTN; NPp

= NTP + NFN; NPn = NFN + NTN.
F-score

Fb − score =  
(1 + b2)� P � R
b2 � P +  R

Cohen’s kappa coefficient (Kappa)
Kappa =  

p0 − pe
1 − pe

; p0 =  
NTP +  NTN

N
;

pe =
NPp

N
 �  

NOp

N
+  

NPn

N
 �  

NOn

N
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FIGURE 1

Overall workflow of IP4GS. IP4GS comprises two panels of functional modules: the Data preprocessing panel (left) and the GS analysis panel (right).
FIGURE 2

Preprocessing of genotypic data. (A) IP4GS accepts genotypic data in HapMap, Matrix, and Custom file formats, phenotypic data in CSV and tab-delimited
text formats, and an optional file including features as fixed effects. (B) Control console for genotypic data filtration (left) and display window for preview of a
variety of data tables (right). (C) Preview of processed genotypic data with statistics for MAF, AF, and MR for each SNP. (D) Preview of DR data generated by
PCA, UMAP, and t-SNE algorithms.
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(uniform manifold approximation and projection), and t-SNE (t-

distributed stochastic neighbor embedding) algorithms can also be

previewed and downloaded (Figure 2D).

The last module in the Data preprocessing panel is interactive

visualization of genotypic and phenotypic data with a control

console and display window. This function facilitates not only

visualization of the genetic composition of the population

subjected to GS analysis (Figure 3A) but also understanding of

the distribution of phenotypes about to be predicted (Figure 3B).

When all data preprocessing is complete, IP4GS performs a quality-

control assessment on the processed data to ensure proper

execution of the subsequent GS analysis.
Functional modules in the GS
analysis panel

After the completion of quality control, users may proceed to the

GS analysis panel. The current version of IP4GS supports seven GS

methods commonly used in plant breeding: five linear methods

(RRBLUP, BayesA, BayesB, BayesC, and LASSO) and two ML

methods (the RFR and SVR algorithms) (Table 1). We highly
Frontiers in Plant Science 06
recommend that users try all seven methods for initial evaluation

of G2P prediction results for a given set of data since it has previously

been reported that no single GS method is superior for all traits and

species (Ornella et al., 2014; Yan et al., 2021; Robert et al., 2022). It is

important to select the optimal model given a designated trait and

species to ensure the most precise prediction. Additionally, IP4GS

offers eleven evaluation metrics for comprehensive evaluation of

model performance; these include not only correlation-based

Pearson, Spearman, and Kendall algorithms but also other

algorithms such as F-score and MSE (Table 2).

The GS analysis panel is composed offive major parts: modeling

console, parameter display window, results display window,

visualization console, and plot display window. Modeling console

consists of G2P console and CV console. From the G2P console,

users may select GS methods and corresponding arguments, define

indexes of training and test samples, and select evaluation metrics

and corresponding arguments (Figure 4A). The CV console offers

the option of three commonly used CV methods: k-fold, holdout,

and leave-one-out schemes. Users may also set up the repeat time

for CV and proportion of testing set included from the console. As

long as all parameters for G2P models and CV methods are set, the

display window will exhibit these preset parameters for users to
FIGURE 3

Data visualization console. (A) Parameter-setting console (left) for visualization of population structure (right) based on genotypic data. (B) Parameter-setting
console (left) for visualization of data distribution (right) of selected phenotypic data.
frontiersin.org
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double check (Figure 4B). If no further corrections are needed, users

may press the execution button to run the GS analysis. It is worth

noting that users may select all seven GS methods and eleven

evaluation metrics and run G2P prediction and CV evaluation

simultaneously to generate a table containing prediction and

evaluation results for comparison.

From the results display window, G2P prediction and model

evaluation results derived from all GS methods and evaluation

metrics selected can be previewed before downloading of the full

results (Figure 4C). Users may further use the visualization console

to visually compare either observed phenotypes and predicted

phenotypes or any two sets of predicted phenotypes from any

two selected methods (Figure 4D). When parameters are set up on

the visualization console, a scatter plot depicting the correlation of

observed and predicted phenotypes is generated on the plot display

window (Figure 4E). When IP4GS finishes the analysis of a set of
Frontiers in Plant Science 07
breeding data, users may select the best prediction results from the

optimal model to download.
Discussion

Owing to the rapid advancement of next-generation sequencing,

GBTS has greatly reduced the expense of genotyping, making GS-

assisted breeding more and more feasible for a growing number of

plant species. However, GS analysis requires not only basic

bioinformatics skills for data management but also experience in

data modeling. The IP4GS platform was developed using the R

shiny package, as an interactive, user-friendly web interface, allowing

breeders perform GS analysis without the need of bioinformatics skills.

However, as with any web-based application, limitations exist.We only

integrated seven GS methods commonly used in plant breeding into
FIGURE 4

GS analysis panel. (A) Modeling console for selection of GS methods, evaluation metrics, and setting of model parameters. (B) Display window for
viewing selected models and parameter settings. (C) Previews of prediction results from multiple GS methods (upper panel) and evaluation results
from different metrics (bottom panel). (D) Visualization console for viewing prediction results. (E) Display window for viewing scatter plots of
observed and predicted phenotypes.
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IP4GS. It is impossible to include all existing methods, especially those

ML methods that require intensive computing resources for model

training and parameter tuning. The seven methods were selected on

the basis of a previously published evaluation of multiple statistical and

MLmethods, and all seven satisfy three basic criteria (Yan et al., 2021).

First, prediction accuracy may not be greatly reduced when the size of

the training set is smaller than that of the testing set, since the ratio of

training versus test set is usually 1:4 in the seed industry (Yan et al.,

2021). Second, model training and CV evaluation may not require too

much CPU and memory usage. Third, non-excessive parameters and

manual model-tuning are required to properly perform the GS

analysis. Another common issue for all web-based applications is the

upper size limit of input files uploaded for GS analysis. It is better for

users to compile marker sets containing less than 10,000 SNPs, and a

population size of smaller than 1,000. Therefore, if a user wants to

perform GS analysis of a large dataset or use ML methods consuming

intensive computing resource, we do not recommend using IP4GS.

Furthermore, IP4GS, as a GS analysis platform, is theoretically

applicable to other crops that have successfully applied the GS

strategy including rice and wheat. And other species which can

provide same format of genotypic and phenotypic data are also

applicable but the effectiveness needs further investigation

and exploration.

Previously reports indicate that no single GS method

outperformed others for all evaluated traits and species. (Heffner

et al., 2010; Xiao et al., 2021; Yan et al., 2021). The only solution is to

evaluate multiple GS methods and select the optimal one for specific

traits and species. Given this need, we integrated multiple GS

methods and evaluation metrics so that users may compare

results from different predictive models. The seven methods we

selected usually generate similar prediction results according to our

previous evaluation. Hence, the current version of IP4GS does not

include a solution for integration of multi-model prediction results.

However, in case of multi-model prediction, we also provided an R

script to integrate prediction results from two algorithms. The tool

is freely available at https://github.com/furan2019/IP4GSdata.git for

users to integrate multi-model prediction results.
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