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Transcriptional and metabolic
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potassium environments
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Potassium (K) is one of the most important macronutrients for plant

development and growth. The influence mechanism of different potassium

stresses on the molecular regulation and metabolites of apple remains largely

unknown. In this research, physiological, transcriptome, and metabolite analyses

were compared under different K conditions in apple seedlings. The results

showed that K deficiency and excess conditions influenced apple phenotypic

characteristics, soil plant analytical development (SPAD) values, and

photosynthesis. Hydrogen peroxide (H2O2) content, peroxidase (POD) activity,

catalase (CAT) activity, abscisic acid (ABA) content, and indoleacetic acid (IAA)

content were regulated by different K stresses. Transcriptome analysis indicated

that there were 2,409 and 778 differentially expressed genes (DEGs) in apple

leaves and roots under K deficiency conditions in addition to 1,393 and 1,205

DEGs in apple leaves and roots under potassium excess conditions, respectively.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

showed that the DEGs were involved in flavonoid biosynthesis, photosynthesis,

and plant hormone signal transduction metabolite biosynthetic processes in

response to different K conditions. There were 527 and 166 differential

metabolites (DMAs) in leaves and roots under low-K stress as well as 228 and

150 DMAs in apple leaves and roots under high-K stress, respectively. Apple

plants regulate carbon metabolism and the flavonoid pathway to respond to

low-K and high-K stresses. This study provides a basis for understanding the

metabolic processes underlying different K responses and provides a foundation

to improve the utilization efficiency of K in apples.
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Introduction

Potassium (K) is one of the most essential macronutrients for

plant growth and development, and it has essential physiological

functions, such as plant osmoregulation, photosynthesis, protein

synthesis, ion homeostasis, and enzyme activation (Kanai et al.,

2011; Hafsi et al., 2014). Four forms of K exist in the soil, namely,

exchangeable K, soluble K, lattice K, and fixed K. Only soluble K can

be taken up by plants from the soil. The K concentration in the soil

ranges from 0.1 to 6.0 mmol L−1 (Zeng et al., 2015). Too high or too

low K concentrations in soil affect plant growth; in many regions, K

concentrations are lower than 0.3 mmol L−1, and K deficiency limits

plant growth (Schroeder et al., 1994). Under low-K conditions, the

most common phenomena include stunted growth of plants,

yellowing of leaf margins, and yield reduction (Hasanuzzaman

et al., 2018). Excessive use of potassium fertilizer causes high-K

stress, and excessive application of potassium fertilizer in soil causes

soil and water pollution, reducing the productivity of crops.

However, plants initiate a series of physiological processes as well

as molecular and metabolite mechanisms to adapt to different levels

of K stress. K deficiency and excess conditions are typical abiotic

stress forms that induce a series of biological responses. Under

different K stress conditions, reactive oxygen species (ROS) and

phytohormones are affected (Ashley et al., 2006; Amtmann et al.,

2008). Plant responses to different K conditions are also due to

various complex gene regulatory networks that cause widespread

changes in gene expression and metabolite contents (Liang

et al., 2013).

Transcriptomes comprehensively and efficiently reveal gene

expression, thereby allowing elucidation of the plant molecular

mechanism response to different K stresses. In plants, many studies

have focused on K uptake, loading, and transport mechanisms. Some

related genes have been studied, such as the high-affinity K transporter/

uptake transporter (HAK/KUP/KT) family, including AtHAK1/5,

PpHAK2, AtHAK5, HvHAK1, OsHAK1, AtKUP3, AtKUP1, and

OsHKT2, as well as shaker-like K channels (AKT), including

OsAKT1 and AtAKT1/5 (Kim et al., 1998; Banuelos et al., 2002; Xu

et al., 2006; Fulgenzi et al., 2008; Jung et al., 2009; Pyo et al., 2010; Kim

et al., 2012; Oomen et al., 2012; Wu et al., 2019; Wang et al., 2021).

These genes play a vital role in plants’ responses to different K

conditions. Transcriptomic analysis of the response of Arabidopsis,

rice, maize, soybean, sugarcane, and wild barley to K deficiency

conditions has indicated that genes involved in metabolism, signal

transduction, and ion transport are altered at the transcript level

(Armengaud et al., 2004; Ma et al., 2012; Wang et al., 2012a; Zeng

et al., 2014).

Metabolomics, known as qualitative and quantitative analysis of

cellular metabolites, has become an important complementary tool for

the study of plant functional genomics and systems biology

(Weckwerth, 2003). Metabonomic analysis reflects the synthesis,

decomposition, or transformation rules of some objects, all

metabolites, or some metabolites in the tissue or cell (Hall, 2011).

Abiotic stress causes changes in the expression of metabolic products,

resulting in metabolite disorders in vivo (Meena et al., 2017). Many

studies have reported the changes in small-molecule compounds in
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response to mineral nutritional stress. Sung et al. (2015) reported

metabolic responses to deficiencies in nitrogen (N), phosphorus (P),

and K, and they demonstrated that the lack of these elements decreases

energy production and amino acid metabolism in tomato leaves and

roots. Low-K stress increases monosaccharide, disaccharide,

polysaccharide, and putrescine contents in barley (Zhao et al., 2021).

The contents of putrescine, aconitate, citrate, malate, and fumarate

increased in sunflower under low-K stress (Cui et al., 2019). Citric acid,

arginine, and asparagine contents are upregulated under K deficiency

in rapeseed leaves (Hu et al., 2021). The levels of glutamic acid and

aspartic acid are decreased in peanut under low-K conditions, whereas

the levels of histidine, lysine, and arginine are increased in peanut

under low-K conditions (Patel et al., 2022). The amino acid contents

are increased in both K-sensitive and K-tolerant genotypes of wheat

roots under K starvation (Zhao et al., 2020).

Apple (Malus domestica) is one of the most important fruits in the

world, and apple production and consumption are the highest in

China. K fertilizer plays a key role in apple growth and ripening. When

K deficiency occurs in apple trees, the middle and lower leaves of new

shoots turn yellow. In severe cases, the leaves gradually show brown

withered spots, resulting in a curly scorched appearance, and new

shoots stop growing early, forming small flower buds and small fruits

with a color difference and a decline in quality (Chang et al., 2014).

High-K stress causes the occurrence of apple bitter pox, which reduces

the absorption of cations, such as calcium and magnesium, by plants,

thus affecting the yield of plants. Excessive application of potassium

fertilizer causes soil environmental pollution and water pollution.

Many studies have investigated the molecular mechanisms that occur

under K deficiency in model plants, such as Arabidopsis, rice, and

maize (Armengaud et al., 2004; Ma et al., 2012; Wang et al., 2012a).

However, these mechanisms have rarely been reported in apple,

especially under high-potassium stress. In the present study, we

investigated the molecular response mechanism and metabolite

changes of apple to low-potassium and high-potassium stresses, and

we provided a theoretical basis for further study on the response

mechanism of apple to potassium.
Materials and methods

Plant growth conditions

The experimental materials, namely, “CG-935” apple seedlings,

were tissue cultured, after rooting, seeding, and transplantation, and

the apple plants were then transported to the experimental field as

previously reported by Sun et al. (2021).
Different potassium treatments

After 90 days, healthy apple seedlings of similar size (with 16–20

leaves) were transferred to a hydroponic slot (60 × 37 × 35 cm)

containing 60 L of a 1/2-strength Hoagland nutrient solution

(Hoagland and Arnon, 1950). Stress treatments were initiated after

10 days of precultivation. Apple seedlings were randomly divided into 3
frontiersin.org
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groups with 54 plants per treatment, and there were three biological

replicates for each stress treatment with 18 plants per replicate. The

treatments were as follows: (1) control (CK), 1/2-strength Hoagland

nutrient solution supplemented with 3 mM K2SO4; (2) low-K

treatment (LK), 1/2-strength Hoagland nutrient solution with 50 mM
K2SO4; and (3) high-K treatment (HK), 1/2-strength Hoagland

nutrient solution with 15 mM K2SO4 (Chang et al., 2014). The

solution was continuously aerated and refreshed every 3 days, and

the experimental treatment lasted for 15 days. Plant roots and leaves

were harvested for physiological, transcriptomic, and metabolomic

analyses. The samples were designated as follows: the apple leaves

and roots in the control condition were named CKL and CKR,

respectively; the apple leaves and roots in the low-K condition were

named LKL and LKR, respectively; and the apple leaves and roots in

the high-K condition were named HKL and HKR, respectively.
Growth indices, photosynthetic indices,
and nutrient concentration measurements

After 15 days of treatment, the plant heights, stem diameters, and

dry weights (DWs) of the whole apple as well as the ratio of

underground DW to aboveground DW (R/S) of the apple

were calculated.

The net photosynthetic rate (Pn), transpiration rate (Tr), water

use efficiency indicator (WUEi), stomatal conductance (Gs), and

intercellular CO2 concentration (Ci) values of the apple leaves were

measured by an LI-6800 portable photosynthesis system (LI-COR

Inc., Lincoln, NE, USA) on sunny days.

The measurements of soil plant analytical development (SPAD)

of apple leaves and the concentrations of N, P, and K in apple roots,

apple stems, apple leaves, and whole apple were measured

according to the method of Sun et al. (2021).
Determination of H2O2, enzyme activities,
and phytohormones

For the determination of H2O2, enzyme activity, and

phytohormones, nine apple seedlings were selected for each

experimental replicate (n = 3) to provide an adequate amount of

root and leaf tissue. The levels of hydrogen peroxide (H2O2, SO1300),

and the activities of peroxidase (POD, KT5058), catalase (CAT,

KT4957), abscisic acid (ABA, KT4924), and indoleacetic acid (IAA,

NR, KT4992) were determined using commercial test kits purchased

from Jiangsu Kete Biotechnology Co., Ltd. (Jiangsu, China). H2O2 was

recorded on a UV-1750 spectrometer (Shimadzu, Japan). The enzyme

activities were analyzed using an ELISA reader (Multiskan MS,

Labsystems 325, Helsinki, Finland).
RNA isolation, qRT-PCR analysis, and
transcriptome sequencing

Total RNA of apple leaves and roots was isolated using TRIzol

Reagent (Invitrogen, Carlsbad, CA, USA) for quantitative real-
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time PCR (qRT-PCR) analysis and RNA sequencing (RNA-seq)

analysis, and three biological replicates of each sample were

sequenced. Quantitative real-time PCR (qRT-PCR) analysis was

conducted according to Sun et al. (2021), and the primers used for

qRT-PCR are listed in Table S1. Transcriptome analysis was

performed by Wuhan MetWare Biotechnology Co., Ltd.

(www.metware.cn, Wuhan, China). After rapid filtering (version

0.18.0) (Chen et al., 2018), the HISAT2.2.4 and Bowtie2 tools were

used to compare clean reads with the apple genome (https://

iris.angers.inra.fr/gddh13/index.html) (Langmead et al., 2009;

Kim et al., 2015). The RESM software was used to calculate the

values of fragment per kilobase of transcript per million mapped

reads (FPKM) (Li and Dewey, 2011). Differentially expressed

genes (DEGs) were determined according to cutoffs of log2(fold

change) ≥ 1 and p ≤ 0.05. Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO) tools were used to

analyze the DEGs.
Metabolite analysis

Metabolites were extracted and analyzed at Wuhan MetWare

Biotechnology Co., Ltd., Wuhan, China (www.metware.cn) (Zhang

et al., 2019). The metabolite analysis was performed using a liquid

chromatography–electrospray ionization–tandem mass

spectrometry (LC-ESI-MS/MS) system (HPLC, Shim-pack UFLC

SHIMADZU CBM30A system; MS, Applied Biosystems 6500 Q

TRAP). Metabolite quantification was performed using multiple

reaction monitoring (MRM) in triple quadrupole mass

spectrometry (Chen et al., 2013). Metabolomic data analysis was

performed according to previous methods (Zhu et al., 2018).
Statistical analysis

The statistical analysis of different plant treatments in triplicate

(n = 3) was performed by one-way analysis of variance (ANOVA)

using SPSS 20.0 software. A probability value of p < 0.05 was

considered statistically significant. The data are presented as the

mean ± standard deviation (SD) of three replicates.
Results

Potassium affects plant growth and
mineral nutrients

After 15 days of treatment with 50 mM (LK treatment), 3 mM

(CK treatment), or 15 mM (HK treatment) K2SO4 in hydroponic

culture, the plant height, stem diameter, DW, and root/shoot ratio

decreased under K stress. The plant height decreased more in LK

(82.49%) than in HK (82.73%), and the stem diameter also showed a

similar trend. The DW of LK-treated apple plants was 72.94% of

that of CK plants, and the DW of HK-treated seedlings was 75.69%

of that of CK seedlings. The root/shoot ratio significantly increased

by 111.76% in LK but decreased by 65.5% in HK (Table 1).
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The value of SPDA is a reliable indicator that can represent the

content of chlorophyll (Tan et al., 2021). The SPDA values and

photosynthetic characteristics were different under LK and HK

stresses. The SPAD significantly decreased under LK, but there was

no difference under HK. The Pn, Tr, WUEi, and Gs were

significantly reduced under LK and HK, especially under K

deficiency conditions (Table 2).

Differences in K fertilization conditions were reflected in the

apple root, stem, and leaf elemental N, P, and K mineral nutrients.

The concentrations of K in apple trees were lower under LK stress

but higher when more K was available, and the P and K

concentrations were much higher in CK compared to HK and LK

(Table S2).
H2O2 content, enzyme activities,
and phytohormones

Plant biomass decreased under K stress, while root growth

increased under LK stress (Figure 1A). The H2O2 content,

superoxide dismutase (SOD) activity, and POD activity were

affected by different K stresses. The H2O2 content increased in

apple leaves and roots under the LK and HK treatments with greater

increases under LK stress. Under different K conditions, the enzyme

activities increased in both apple leaves and roots, but the range

of increase varied. The activities of SOD and POD significantly

increased under different K conditions. The ABA content increased

by 1.13- and 1.29-fold in apple leaves under LK, and it increased by

1.14- and 1.25-fold in roots under HK (Figure 1E). The IAA content

exhibited a similar trend (Figure 1F).
Differential gene expression analysis

To obtain a global overview of the transcriptome responses to

different K treatments in apple roots and leaves, four RNA-seq

libraries were prepared, namely, HKL/CKL, HKL/CKL, LKR/CKR,

and HKR/CKR, according to different K stress conditions in apple

roots and leaves. The transcriptome data of the 18 samples

described in the study have been deposited into the National

Center for Biotechnology Information (NCBI) databases, and the

bioproject accession number is PRJNA895870. The sequencing data

are summarized in Table S3. The average for each sample of clean

reads was approximately 4.5 × 107, and the sequence alignment
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efficiency ranged from 82.59% to 90.04%. The FPKM of HK was

higher than those of CK and LK, and FPKM > 1 was used as the

threshold to determine gene expression (Figure S1A). The Pearson

correlations among the LK, HK, and CK replicates ranged from 0.97

to 1 in leaves and from 0.98 to l in roots (Figure S1B). Principal

component analysis (PCA) indicated that the roots and leaves of

LK, HK, and CK were clustered together, indicating significant

differences in gene expression profiles. The LK, HK, and CK in leaf

and root replicates were not tightly clustered, showing that

inoculation occurred within the replicates (Figure S1C).

According to DESeq2 analysis using cutoffs of |log 2-fold

change| ≥ 1 and false discovery rate (FDR) < 0.05, a total of 2,409

transcripts were differentially expressed in apple leaves under LK

with 1,412 upregulated genes and 997 downregulated genes (Figure

S2A). A total of 1,393 DEGs were detected under HK conditions

with 829 upregulated DEGs and 564 downregulated DEGs in apple

leaves under HK (Figure S2B). These observations suggested that

under different K conditions, more DEGs were found under LK

conditions than under HK conditions in apple leaves. A total of 778

DEGs were differentially expressed in apple roots under LK stress

with 442 upregulated genes and 336 downregulated genes (Figure

S2C), and a total of 1,205 DEGs were differentially expressed in

apple roots under HK with 819 upregulated DEGs and 386

downregulated DEGs (Figure S2D). In terms of fold change gene

expression values, the following maximum upregulation and

maximum downregulation values were observed: 8.19 log2 FC

and −8.38 log2 FC in leaves under LK, respectively; 7.92 and

−7.42 log2 FC in leaves under HK, respectively; 7.59 and −13.15

log2 FC in roots under LK, respectively; and 8.24 and −4.64 log2 FC

in roots under HK stresses, respectively (Figure S2E).

GO annotation analysis showed enrichment classifications

according to biological processes (BPs), molecular functions

(MFs), and cellular components (CCs) (Figure S3). Figure 2

shows the top 20 significantly enriched pathways under different

K stresses in apple leaves and roots. KEGG pathway enrichment

revealed that the vital biological pathways in response to different K

conditions were involved in flavonoid biosynthesis, photosynthesis,

plant hormone signal transduction, and biosynthesis of various

plant secondary metabolite biosynthetic processes.

The DEGs involved in potassium metabolism were then

thoroughly analyzed. The DEGs associated with potassium

uptake, loading, and transport processes were detected in four

pairs of libraries (Table 3). Most of the potassium transporter

gene family members were increased in the apple seedlings.
TABLE 1 The growth indexes in apple under control (CK), low-potassium (LK), and high-potassium (HK) conditions.

Treatment Plant height
(cm)

Stem diameter
(mm)

Dry weight
(g/plant) Root/Shoot

CK 18.67 ± 0.89 a 3.92 ± 0.23 a 2.18 ± 0.31 a (100) 0.34 ± 0.02 b

LK 15.40 ± 1.10 b 3.31 ± 0.16 b 1.59 ± 0.21 b (72.94) 0.38 ± 0.01 a

HK 17.50 ± 0.68 a 3.72 ± 0.15 a 1.65 ± 0.19 b (75.69) 0.28 ± 0.03 c
Data indicate means ± SE (n = 3). Different letters beside the values in the same column indicate significant difference between the treatments.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1131708
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2023.1131708
qRT-PCR validation of the DEGs

Ten apple genes were detected by qRT-PCR for expression analysis

to validate the RNA-seq results. The RT-qPCR analysis results were not

significantly different from the RNA-Seq data, and similar trends were

found in the up- and downregulated genes (Figure S4).
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Metabolomic response to different K
treatments in apple

The metabolome of apple seedlings was analyzed using four

different pairs of libraries, namely, LKL/CKL, HKL/CKL, LKR/CKR,

and HKR/CKR. Overall, 527 DAMs were quantified and identified in
A
B

D

E F

C

FIGURE 1

Measurement of H2O2, enzyme activities, and phytohormones in apple under different K treatments. (A) The phenotypic characteristics of apple.
(B) The content of H2O2. The activities of CAT (C) and POD (D). The contents of ABA (E) and IAA (F). Different letters indicate significant differences
according to Tukey’s multiple-range tests (p < 0.05).
TABLE 2 The photosynthetic characteristics in apple under control (CK), low-potassium (LK), and high-potassium (HK) conditions.

Treatment SPAD Pn
(µmol CO2/m

2/s)
Tr

(mmol H2O/m
2/s) WUEi (µmol/mmol) Gs

(mol H2O/m
2/s)

Ci
(µmol CO2/mol)

CK 49.07 ± 2.74 a 12.73 ± 0.59 a 2.80 ± 0.09 a 4.55 ± 0.22 a 0.36 ± 0.01 a 282.88 ± 8.83 a

LK 43.98 ± 2.12 b 8.00 ± 0.56 c 2.24 ± 0.12 c 2.59 ± 0.25 b 0.17 ± 0.02 c 281.48 ± 12.02 a

HK 49.59 ± 2.76 a 9.75 ± 0.84 b 2.61 ± 0.07 b 2.26 ± 0.23 b 0.29 ± 0.01 b 285.44 ± 14.18 a
Data indicate means ± SE (n = 3). Different letters beside the values in the same column indicate significant difference between the treatments.
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A B

DC

FIGURE 2

Statistics of KEGG enrichment under different K conditions in apple leaves and roots. (A) Statistics of KEGG enrichment under low-K conditions in
apple leaves. (B) Statistics of KEGG enrichment under high K conditions in apple leaves. (C) Statistics of KEGG enrichment under low-K conditions in
apple roots. (D) Statistics of KEGG enrichment under high K conditions in apple roots.
TABLE 3 Genes encoding transporters showed differential expression in response to different K stresses.

Gene Seq ID LKL HKL LKR HKR

AKT MD15G1178200 1.13

KAT MD05G1284400 1.18

KUP MD16G1089900 −1.18

MD01G1165900 1.04

MD07G1232700 1.04

HAK MD03G1283600 2.89

MD10G1204500 3.37

MD11G1302600 1.71 1.18

MD11G1303100 1.91 1.40

MD11G1302900 2.29

MD13G1133200 1.32

MD16G1143900 1.34
F
rontiers in Plant Science
 06
 frontiersin.org

https://doi.org/10.3389/fpls.2023.1131708
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2023.1131708
LKL/CKL with 246 upregulated DAMs and 122 downregulated DAMs.

For HKL/CKL, 228 DAMs were significantly upregulated, and 129

DAMs were downregulated. For LKR/CKR, 166 DAMs were identified

with 74 upregulated DAMs and 92 downregulated DAMs. For HKR/

CKR, 150 DAMs were identified with 92 upregulated DAMs and 74

downregulated DAMs (Table S4). The heatmaps of the differences in

metabolites among the four combinations show the above

trends (Figure 3).

Under different K stresses, the contents of amino acids, amino

acid derivatives, organic acids, carbohydrates, flavonoids, and lipids

changed. Under LK conditions, most lipids, flavonoids, and

phenolic acids increased in apple roots. The metabolites of apple

leaves and roots under different potassium stress conditions are

presented in Figure 3. In apple leaves, the content of amino acids,

amino acid derivatives, phenolic acids, terpenoids, and flavonoids

increased under different K stresses, while nucleotides and

nucleotide derivatives decreased. Under LK conditions, the

content of lipids was upregulated in apple roots.

The co-joint KEGG enrichment analysis determined the co-

mapped pathways in apple leaves and roots under K deficiency and

excess conditions (Figures 4A, D, G, J). Of the metabolic pathways, the

co-mapped pathways, namely, flavonoid biosynthesis, carbon

metabolism, biosynthesis of secondary metabolites, glycerolipid

biosynthesis, and phenylpropanoid biosynthesis, were the

significantly enriched pathways under different K stresses. The

Pearson correlation coefficients for the nine quadrants are shown in

Figures 4B, E, H, K. In the third and seventh quadrants, the gene and

metabolite differential expression patterns were consistent; the genes
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were positively correlated with the regulation of metabolites, and the

changes in metabolites were positively regulated by the genes. The

DEGs and DAMs with Pearson correlation coefficients (PCCs) higher

than 0.8 were further selected and represented by heatmaps

(Figures 4C, F, I, L).
Responses of carbon metabolite and
flavonoid metabolites in apple to different
potassium conditions

The concentrations of glucose, glycerate-3P, and succinate,

which are involved in carbon metabolism, particularly glycolysis

and the tricarboxylic acid (TCA) cycle, were increased in apple

leaves under LK. The glucose content was upregulated in LKR/CKR

and HKL/CKL, whereas glycerate-3P was increased in HKR/CKR

(Figure 5). Under LK stress, the following changes were observed:

the expression of PFK (MD05G13633600), CS (MD13G1111200),

FUM (MD03G1292300), and IDH (MD09G1029200) was decreased

in leaves; the expression of PFK (MD01G107500 and

MD07G1144100) and CS (MD13G1153500) was increased in

leaves; and the expression of PFK (MD 05G1363600) and PPDK

(MD16G1179400) was decreased in roots. Under HP conditions,

the expression of PFK (MD 05G1363600) and PPDK

(MD16G1179400) was downregulated in leaves; the expression of

PFK (MD05G1363600) was increased in roots; and the expression

of AD (MD11G1038900) and PPCK (MD01G1046200) was

decreased in roots (Figure 5).
A B D

E F G H

C

FIGURE 3

Differentially accumulated metabolites among different potassium treatments in apple. (A, E) Major classes of detected metabolites and heatmaps of
differential metabolites between LKL/CKL. (B, F) Major classes of detected metabolites and heatmaps of differential metabolites between HKL/CKL. (C, G)
Major classes of detected metabolites and heatmaps of differential metabolites between LKR/CKR. (D, H) Major classes of detected metabolites and
heatmaps of differential metabolites between HKR/CKR. Three independent replicates of each stage are also displayed in the heatmap.
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The level of naringenin chalcone, which is involved in flavonoid

metabolites, was increased under LK conditions in apple leaves and

roots. The phenylalanine content was decreased in apple leaves

under different K conditions. The gene expression of PAL in leaves

was increased under LK stress but decreased under HK conditions.
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The C4H, 4CL, CHS, F3H, ANS, CHI, and DFR genes were

upregulated under LK stress, whereas the UGT gene was

decreased under LK stress. Under HK conditions, the PAL, UGT,

CHI (MD01G1118300), and DFR (MD11G1229100) genes were

downregulated in leaves (Figure 6).
A B

D E F

G

C

IH

J K L

FIGURE 4

(A, D, G, J) Histograms of joint KEGG enrichment p-values, and (B, E, H, K) the associations of transcriptomic and metabolomic variation quadrant
diagrams in LKL/CKL, HKL/CKL, LKR/CKR, and HKR/CKR; the black dotted lines indicate the differential thresholds. Outside the threshold lines, there
were significant differences in the gene/metabolites, and within the threshold lines are shown the unchanged gene/metabolites. Each point
represents a gene/metabolite. Black dots, green dots, red dots, and blue dots indicate unchanged genes/metabolites, differentially accumulated
metabolites with unchanged genes, differentially expressed genes with unchanged metabolites, and both differentially expressed genes and
differentially accumulated metabolites, respectively. (C, F, I, L) Heatmaps of the correlation coefficient clusters (>0.8), p-values < 0.05.
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Discussion

K plays essential roles in many physiological and biochemical

processes in the plants, such as ion homeostasis, enzyme activation,

osmoregulation, and protein synthesis (Kanai et al., 2007; Ma et al.,

2020). K stress affects the normal growth of plants; the scarcity of K

slows plant growth, reduces plant height, reduces stem diameter (Tester

and Blatt, 1989), and decreases photosynthesis (Kanai et al., 2011). The

plant height, stem diameter, plant DW, and photosynthesis were

decreased under different LK and HK stresses in apple (Tables 1, 2).

Trankner et al. (2018) revealed that K deficiency also reduces

photosynthetic CO2 fixation, as well as the transportation and

consumption of photoassimilates, thus damaging plant membranes

and chlorophyll under low-K conditions. In the present research, the

SPDA value and photosynthetic characteristics decreased under LK

stress in apple (Table 2). Xu et al. (2020) reported that an adequate

supply of K increased the photoassimilate transportation rate from

apple leaves to roots as well as increased nutrient use efficiency by

influencing photosynthesis. The SPAD value of apple plants was

slightly increased under HK stress, while the photosynthetic index

decreased to a lesser extent under HK stress compared to LK stress

(Table 2); it means that apple seedlings under low-potassium stress are

more damaged than those under high-potassium stress. In the present
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study, RNA-Seq and KEGG enrichment analysis indicated that a

different potassium environment had an effect on plant

photosynthesis. Combined transcriptome metabolome analysis

showed that the DEGs and DAMs were associated with biological

processes, such as carbohydrate metabolism and photosynthesis. Hafsi

et al. (2014) revealed that K stress limits plant leaf growth, which may

be due to sugar starvation in stems and leaves. In the present study,

genes involved in the TCA cycle, such as CS, IDH, and TCA, were

downregulated in apple leaves under LK (Figure 5), which may induce

apple plant growth restriction.

Plants under K stress conditions increase ROS production,

resulting in oxidative stress (Hernandez et al., 2012). The

accumulation of higher K in plant cells restores oxidative stress by

increasing the activity of antioxidant enzymes, such as glutathione

reductase (GPX), dehydroascorbate reductase (DHAR), ascorbate

peroxidase (APX), CAT, SOD, and POD (Garcıá-Martı ́ et al., 2019).
The H2O2 content, SOD activity, and POD activity were affected by

different K stresses in apple seedlings. The SOD and POD activities

were significantly increased to combat different K conditions

(Figures 1B–D). Under HK stress, the enzyme activities increased

more significantly than under LK stress, which indicated that LK had a

greater effect on apple plants. A previously metabolome analysis has

revealed that the glutathione content is increased in roots in low-K-
FIGURE 5

Carbon metabolites in apple leaves and roots under different K stresses. The boxes in the pathway represent DEGs or DAMs. Red and green
represent upregulated and downregulated genes, respectively. Yellow and blue represent upregulated and downregulated metabolites, respectively.
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tolerant KN9204 wheat but not in low-K-sensitive BN207 wheat (Zhao

et al., 2020). Under low potassium, the content of S-(methyl)

glutathione in apple leaves and roots was significantly increased in

the present study (Table S4). Thus, these findings indicated that

glutathione is an important metabolite for plant adaptation to

K deficiency.

Phytohormones are active substances that widely exist in plants to

regulate their physiological metabolism, affect plant development, affect

plant growth, and play a regulatory role in stress conditions. Different

potassium environments influence phytohormones in plants, such as

brassinosteroids, IAA, ABA, and jasmonic acid (JA) (Ahanger et al.,

2018; Ahanger et al., 2020; Yang et al., 2020). After 15 days of different

K stress treatments, ABA and IAA contents increased in both apple

leaves and roots (Figures 1E, F). The concentration of ABA in peanut

leaves also increases under low-K stress (Patel et al., 2022). Therefore,

considering the importance of phytohormones in plant growth, these

findings indicated that ABA, JA, SA, and other phytohormones are

important molecules in plant resistance to K stress.

Potassium uptake and absorption are mainly accomplished

through potassium transporters and potassium channels in the

plasma membrane (Ashley et al., 2006). K transporters and channels

play vital roles in translocation and cell growth in various plants (Wang

and Wu, 2013). Under the condition of K deficiency, the expression

levels of HAK1 and HAK5 in maize are upregulated, and AtHAK5,

OsHAK1, and HvHAK1 are also induced by K-limited conditions

(Santa-Marıá et al., 1997; Banuelos et al., 2002; Ahn et al., 2004; Gierth
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et al., 2005; Fulgenzi et al., 2008; Qin et al., 2019). In addition,

transcriptome analysis of rice roots under LK stress has revealed that

the OsHAK1, OsHAK7, OsHAK11, and OsHKT2;1 genes are

upregulated; in addition, potassium channel genes, such as OsAKT1,

OsAKT2/3, and OsKCO1, are also increased in response to low-K

conditions (Ma et al., 2012). In tobacco seedlings, the KUP3 K

transporter and the SKOR K channel are increased under LK stress

(Lu et al., 2015). In apple seedlings, the AKT (MD15G1178200) and

HAK (MD11G1302600, MD11G1303100, MD11G1302900,

MD13G1133200, and MD16G1143900) genes were upregulated in

roots under KL. Moreover, the KAT (MD05G1284400) and KUP

(MD01G1165900 and MD07G1232700) genes were upregulated in

apple leaves, whereas HAK (MD03G1283600, MD10G1204500,

MD11G1302600, and MD11G1303100) was increased in apple roots

(Table 3). These results were consistent with previous studies, showing

that a common regulatory mechanism exists across plant species

whereby the transcription of genes encoding K transporters and

channels increases, which may be an efficient strategy to increase

potassium uptake in plants under a K-deficient environment.

Therefore, these findings suggested that apple AKT, HAK, KUP, and

HAK are key genes involved in potassium channels and transporters,

which play an important role in coping with low- and high-potassium

stresses in apple seedlings.

Under potassium-deficient conditions, the amino acid content

increases in cotton (Wang et al., 2012b) and in roots of the K-

tolerant genotype of wheat (Zhao et al., 2020), and lysine, histidine,
FIGURE 6

Flavonoid metabolites in apple leaves and roots under different K stresses. The boxes in the pathway represent DEGs or DAMs. Red and green
represent upregulated and downregulated genes, respectively. Yellow and blue represent upregulated and downregulated metabolites, respectively.
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and arginine accumulated in peanut leaves and roots (Patel et al., 2022).

In addition, the citric acid, arginine, and asparagine contents increase

under LK in rapeseed (Hu et al., 2021), and most amino acids increase

in tomato roots under LK (Sung et al., 2015). Armengaud et al. (2009)

found that the selective reduction of acidic amino acids contributes to

maintaining charge balance in response to potassium-deficient

conditions. Under high-N conditions, most amino acids decreased in

apple leaves, and under HK conditions, most amino acids decrease in

apple (Sun et al., 2021). In plants, the accumulation of free amino acids

has been reported under N and P deficiency conditions (Hernández

et al., 2007; Pant et al., 2015; Mo et al., 2019; Ding et al., 2021). In this

study, we found that the synthesis of most amino acids was increased in

apple leaves under LK stress, especially in ornithine and arginine

(Figure 5; Table S4). These results show that the deficiency of

macronutrients affects the accumulation of amino acids in plants.

Carbohydrate metabolism plays core roles in plant metabolism,

providing energy for plant growth and development, and it acts as a

bridge in the communication of proteins, lipids, and metabolism

(Rolland et al., 2006). The increased content of soluble sugars,

including glucose, sucrose, and fructose, in plants is a typical

response to different stresses (Armengaud et al., 2004; Rosa et al.,

2009; Carvalhais et al., 2011; Wang et al., 2012b; Tang et al., 2015).

Zeng et al. (2018) found that most sugars are significantly

upregulated under a K-deficient environment in barley roots and

leaves. Under LK and HK stresses, the glucose and glycerate-3P

contents also increased in apple, suggesting that increased

accumulation of sugar may be one of the physiological

characteristics for different K stress adaptations in plants. Sugar

and potassium have a common function in regulating osmotic

potential. We also identified DEGs involved in carbohydrate

metabolism, especially those related to glycolysis and the TCA

cycle, which were differentially expressed in response to different K

stresses. Glycolysis is a process of glucose breakdown to form

pyruvate (Fernie et al., 2004). Changes in the levels of gene

transcripts in the glycolytic pathway, such as phosphofruckinase-1

(PFK), aldolase (AD), pyruvate-phosphate kinase (PPDK), and

phosphoenolpyruvate carboxylase kinase (PPCK), were found

under LK and HK conditions in apple. PFK catalyzes a reversible

reaction in glycolysis and regulates the glycolysis pathway (Schaeffer

et al., 1996; Mustroph et al., 2013). It has been reported that the PFK

gene is upregulated in barley under LK (Ye et al., 2022). In this study,

the expression of PFK (MD01G107500 and MD07G1144100) was

increased in apple leaves, which may have induced an increase the

glycerate-3P content in apple leaves under LK (Figure 5). Li et al.

(2018) revealed that the TCA cycle of two soybean genotypes is

inhibited in leaves and roots under low-N stress. We have previously

reported that the TCA cycle is also decreased under N-deficient stress

in apple leaves (Sun et al., 2021). The DEGs involved in the TCA

cycle, namely, fumarase (FUM), isocitrate dehydrogenase (IDH), and

citrate synthase (CS), were also downregulated in apple leaves under

LK (Figure 5), indicating that LK stress caused greater damage to
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apple leaves. Carbohydrate metabolism enzymes, particularly those

involved in glycolysis and the TCA cycle, may be indispensable for

plant survival under low nutrient conditions (Zeng et al., 2015).

Combined KEGG enrichment analysis of these pathways showed

that the biosynthesis offlavonoids was a significantly enriched pathway

under different K stresses (Figure 6). Flavonoids are secondary

metabolites with low molecular weights, and they are widely found

in plant communities and are closely related to the UV protection,

flower color formation, plant growth regulation, and pathogen

resistance. Many studies have found that flavonoids are related to

macronutrients in plants, such as N, P, and K. In rapeseed, nitrogen

deficiency enhances ANS and DFR gene expression (Koeslin-Findeklee

et al., 2015). The expression of the PAL5, CHS2, F3’H, and F3’5’H genes

is significantly increased in tomato leaves under N deficiency stress

(Løvdal et al., 2010). Luo et al. (2019) reported that flavonoids are

significantly decreased under low P in maize. In the present study, the

DEGs and DAMs involved in the flavonoid pathway also changed in

apple under different K conditions (Figure 6). The level of naringenin

chalcone in apple leaves and roots was increased under LK conditions.

Moreover, the phenylalanine content decreased in apple leaves under

different K conditions. The PAL gene in apple leaves was upregulated

under LK stress but downregulated under HK conditions. The C4H,

4CL, CHS, F3H, ANS, CHI, andDFR genes were upregulated under LK

stress, but the UGT gene was downregulated under LK stress. Under

HK conditions, the PAL, UGT, CHI (MD01G1118300), and DFR

(MD11G1229100) genes were downregulated in leaves. Together,

these results indicated that the flavonoid pathway plays an important

role in the apple response to different potassium stresses.
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