Check for updates

OPEN ACCESS

EDITED BY Roman A. Volkov, Chernivtsi University, Ukraine

REVIEWED BY

Wen-Bin Yu, Chinese Academy of Sciences (CAS), China Floris C. Breman, Wageningen University and Research, Netherlands

*CORRESPONDENCE Zhonghui Ma Mazhonghui@gxu.edu.cn

RECEIVED 28 December 2022 ACCEPTED 20 April 2023 PUBLISHED 15 May 2023

CITATION

Cai H, Liu X, Wang W, Ma Z, Li B, Bramley GLC and Zhang D (2023) Phylogenetic relationships and biogeography of Asia *Callicarpa* (Lamiaceae), with consideration of a longdistance dispersal across the Pacific Ocean –insights into divergence modes of pantropical flora. *Front. Plant Sci.* 14:1133157. doi: 10.3389/fpls.2023.1133157

COPYRIGHT

© 2023 Cai, Liu, Wang, Ma, Li, Bramley and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Phylogenetic relationships and biogeography of Asia *Callicarpa* (Lamiaceae), with consideration of a long-distance dispersal across the Pacific Ocean insights into divergence modes of pantropical flora

Huimin Cai¹, Xing Liu¹, Wenqiao Wang¹, Zhonghui Ma^{1*}, Bo Li², Gemma L. C. Bramley³ and Dianxiang Zhang⁴

¹Department of Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China, ²College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China, ³Herbarium, Royal Botanic Gardens, Kew, London, United Kingdom, ⁴South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China

There are about 140 species of Callicarpa L. 1753 (Lamiaceae), with more species richness in tropical to subtropical Asia and the New World. The genus might provide an insight into the amphi-Pacific disjunction pattern of tropical and subtropical vegetation. This study has greatly improved the phylogenetic underpinning for *Callicarpa*, derived from more inclusive taxonomic samplings, and employing data on both two-nuclear and eight-chloroplast regions. To address time and patterns of diversification in Callicarpa, we conducted divergence time and biogeographic analyses, and inferred shifts in the distribution areas across the phylogenetic clades. Our phylogenetic results show that Callicarpa is monophyletic with respect to the groups considered, and eight well-supported primary clades were discerned in the combined analyses. Our estimates indicated that the crown group of Callicarpa originates around the Late-Eocene (ca. 36.23 Ma) and diversification within most clades is concentrated in the Miocene and continued to the Pleistocene. In addition, our biogeographic analyses suggested that the probable ancestor of the Callicarpa crown clade originated in East Asia and Southeast Asia. Multiple dispersal and vicariance events contributed to the current distribution of the taxa. Furthermore, this genus expanded eastward out of East and Southeast Asia to the New World by long-distance dispersal, which inspired us to better understand the amphi-Pacific disjunct distribution.

KEYWORDS

Callicarpa, phylogeny, historical biogeography, amphi-Pacific tropical disjunction, long-distance dispersal

1 Introduction

Understanding how distributions of organisms have been shaped is a fundamental question in biogeography and the use of molecular clocks and fossil records introduced a timeframe for the evolution of the taxa (Smith and Peterson, 2002). Complex interactions between abiotic and biotic factors and geologicaltectonic settings have played an important role in this process. Amphi-Pacific disjunctions is a striking distribution pattern in biogeography, and temperate elements between eastern Asia and North America have been extensively studied in plants (Wen, 2001; Donoghue and Smith, 2004; Wen et al., 2016). These have intrigued many botanists and biogeographers to produce more studies of Northern Hemisphere botanical biogeography (Gaynor et al., 2020; Zhang et al., 2020b; Zhou et al., 2020). Wen (2001) suggested that the disjunction pattern was largely caused by complex processes such as dispersal, extinction, speciation, vicariance, and stasis. The relevant disjunction patterns are common in plants, and many temperate forest groups originated and diversified within East Asia, followed by movements out of Asia to the New World (Wen, 1999; Manos and Donoghue, 2001; Milne and Abbott, 2002; Donoghue and Smith, 2004). Two major hypotheses have been proposed to explain amphi-Pacific tropical disjunctions -the boreotropics hypothesis and the West Gondwanan vicariance hypothesis (Yang et al., 2017). The boreotropics hypothesis postulates a continuous belt of tropical to subtropical forest at middle to northern latitudes of the Northern Hemisphere, and the continents were connected by the Bering and North Atlantic land bridges during the early Cenozoic (Wolfe, 1975; Tiffney, 1985; Lavin and Luckow, 1993; Wen et al., 2016). Recently, an increased focus on the amphi-Pacific tropical (subtropical) disjunction of taxa has supplemented our knowledge of how this distribution pattern has been achieved. Dendropanax (Araliaceae) is disjunctly distributed in tropical to subtropical Asia and the Neotropics, and Li and Wen (2013) hypothesized that the genus originated in the Old World and migrated to the New World via the North Atlantic land bridges in the early Tertiary. Yang et al. (2018) suggested a Eurasian origin of Sabiaceae (with an amphi-Pacific tropical disjunct distribution) in the late Cretaceous, and a boreotropical range expansion during the Paleogene and a long distance dispersal from Central America to tropical Asia during the Neogene and Quaternary boundary in Kingsboroughia alba. Lian et al. (2020) inferred that the formation and breakup of the boreotropical floral may have been responsible for the amphi-Pacific disjunct distribution within Pachygoneae. The West Gondwanan vicariance hypothesis postulates a tropical origin and expansion in southern West Gondwana followed by vicariance from tectonic separation into South America and Africa (Yang et al., 2017), and has not been applied to any taxa showing the amphi-Pacific tropical distribution pattern. Similar distribution patterns were also reported within groups such as Leydigiopsis species (Van Damme and Sinev, 2013), Symplocaceae (Fritsch et al., 2015), Diplazium (Wei et al., 2015), and diving beetles (Toussaint et al., 2017). Also, disjunct species ranges could be explained by long-distance dispersal and it is known that a great variety of processes can move seeds by anemochory, hydrochory, autochory,

ectozoochory, and endozoochory (Van Der Pijl, 1982; Higgins et al., 2003).

Callicarpa (Lamiaceae), with the nickname 'beauty berry', was first described by Linnaeus (1753). The genus takes its name because of its attractive purple fruits usually displaying in the autumn (Figure 1). There are about 140 species of Callicarpa in temperate, subtropical, and tropical Asia, America, Australia, and the Pacific Islands (Leeratiwong et al., 2007; Bramley, 2009; Bramley, 2013; Ma et al., 2016). However, regional diversity is variable and the genus is more species rich in the Old World, particularly with ca. 51 species in Malaysia (Bramley, 2013) and ca. 48 species in China (Chen and Gilbert, 1994). The current distribution range of Callicarpa recognized species over the world is characterized by a typical East Asia-Southeast Asia/North America disjunction, especially in tropical and subtropical regions on both sides of the Pacific Ocean. Under this biogeographic pattern, differentiation history of Callicarpa might be a good candidates for biogeographic studies in pantropical plants. A tropical and subtropical amphi-Pacific disjunction is among the most fascinating distribution patterns, and what might have been responsible for this pattern is the focus of most research into this disjunction. East and Southeast Asia are pivotal, having two of the highest levels of species diversity in the Northern Hemisphere owing to their geological and climatological history (Latham and Ricklefs, 1993; Wu and Wu, 1996; Myers et al., 2000; Tan et al., 2020; Zhang et al., 2020b). During their evolutionary history, Callicarpa may have exhibited significant species diversification in Southeast Asia and East Asia. Equally importantly, most species of this genus are much-valued traditional medicinal plants, and research has tended to focus on several of them at present, such as C. bodinieri, C. macrophylla, C. kwangtungensis, C. nudiflora, and C. integerrima (Wu et al., 2018; Ma et al., 2022). Based on current research results, Callicarpa produce abundant flavonoid, terpenoid, and phenylethanol glycosides, and have significant pharmacological effects on the prevention and treatment of health disorders such as inflammation, menoxenia, hematuria, and scrofula (Tu et al., 2013; Yang et al., 2021).

To date, no comprehensive molecular phylogenetic study on the infrageneric system of the genus has been presented. Here, we display the first comprehensive molecular investigation of the genus Callicarpa in Asia and discuss the infrageneric phylogenetic relationships. Our samples were mainly collected from China and Southeast Asia, alongside individual species expanding to Korea, New Guinea, Australia, and America. Currently improved phylogenetic underpinning is warranted to identify the factors responsible for shaping the present distribution of Callicarpa and gain new insights into the patterns of diversification of this genus in the World. The reconstruction of ancestral areas on a phylogeny is important for understanding the biogeographical history of a lineage, as it permits the inference of the place of origin and dispersal routes of organisms. In a sense, a better understanding of biogeographic history within Callicarpa could also provide a case for exploring biogeographic patterns in amphi-Pacific tropical disjunctions.

In this study, our objectives are (1) to reconstruct phylogenetic relationships within *Callicarpa* using eight chloroplast and two

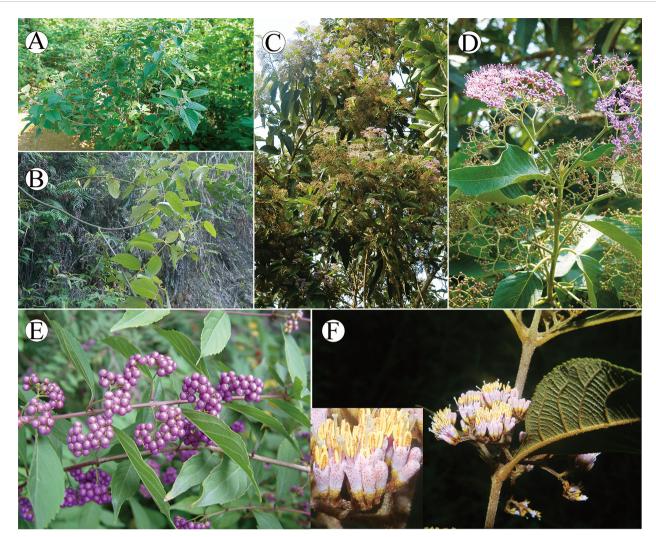


FIGURE 1

Morphology of *Callicarpa*. (A) erect shrub showed by *C. candicans*; (B) woody climber showed by *C. integerrima* var. *chinensis*; (C) tree showed by *C. nudiflora*; (D) Cymose or thyrsoid inflorescence, axillary showed by *C. nudiflora*; (E) purple fruits showed by *C. dichotoma*; (F) red glands on the inflorescences showed by *C. bodinieri*.

nuclear DNA regions, thus with a more comprehensive sampling than in previous studies; (2) reveal the timing of genus and species differentiation; (3) investigate the historical biogeography of the *Callicarpa*, a pantropical flora.

2 Materials and methods

2.1 Taxon sampling

A total of 145 accessions representing 56 recognized species and several unidentified species ingroups were collected in this study. Among them were four varieties represented by *C. bodinieri* var. *rosthornii*, *C. integerrima* var. *chinensis*, *C. pedunculata* var. *longifolia* and *C. longifolia* var. *lanceolaria*, and four forms represented by *C. rubella* f. *angustata*, *C. rubella* f. *crenata*, *C. japonica* f. *kiiruninsularis*, and *C. brevipes* f. *annamensis*. We selected *Dasymalla teckiana*, *Dicrastylis parvifolia*, *Clerodendrum* sp., *Clerodendrum cyrtophyllum*, *Gomphostemma Chinense*, and *Vitex negundo* as the outgroups. To estimate molecular divergence times of the *Callicarpa* group, we expanded our sampling more broadly across Lamiaceae to ensure sufficient representation for assigning appropriate fossil calibrations. Our sampling also encompassed the mainly biogeographic range of *Callicarpa*, including representatives from Asia, Australia, New Guinea, and America. The original sources of the plant materials used in this study and voucher information are presented in additional files (Table 1). We added fifteen sequences representing five species from Ocimeae, eight species from Mentheae, and two from Elsholtzieae, and the DNA sequence of closely related species were used to substitute for the several species lacking corresponding data (Li et al., 2016). All the data presented in the study are deposited in the NCBI database (https:// www.ncbi.nlm.nih.gov/) (Table 2).

2.2 DNA extraction and sequencing

Two nuclear [internal transcribed spacer (ITS) and external transcribed spacer (ETS)] and eight chloroplast [(*matK*, *rpl32-trnL*,

TABLE 1 Taxa sampled and the vouchers in infrageneric phylogenetic analysis of Callicarpa.

Taxon	Voucher	Locality	DNA No.
C. americana	K-LCD_081-84-00-507 (K)	#	14293
C. americana	ZHMa 0101 (IBSC)	Xishuangbanna, Yunnan, China	MZH76
C. poilanei	Suddee et al. 2596 (BKF)	Ubon Ratchathani, Nam Yuen dist, Thailand	23191
C. angustifolia	Leeratiwong 05-195 (KKU)	Trat, Thailand	38160
C. angustifolia	H. Toyama et al. 2221 (Kyushu University)	Kampot, Cambodia	2221
C. angustifolia	H. Toyama et al. 1431 (Kyushu University)	Kampot, Cambodia	1431
C. angustifolia	H. Toyama et al. 774 (Kyushu University)	Kho Khong, Cambodia	774
C. maingayi	Leeratiwong 05-193 (KKU)	Narathiwat, Thailand	38169
C. furfuracea	S. Tagane et al. MY364 (Kyushu University)	Tanintharyi, Myanmar	MY364
C. furfuracea	Leeratiwong 06-325 (KKU)	Songkhla, Thailand	38163
C. furfuracea	S. Tagane et al. T4789 (Kyushu University)	Nakhon Si Thammarat, Thailand	T4789
C. arborea	Nguyen et al. HNK720 (K)	Hoa Binh Dist, Vietnam	23189
C. arborea	Leeratiwong 05-261 (KKU)	Mae Hong Son, Thailand	38161
C. arborea	ZHMa 071 (IBSC)	Luxi, Yunnan, China	MZH5
C. arborea	ZHMa 092 (IBSC)	Napo, Guangxi, China	MZH41
C. arborea	ZHMa 099 (IBSC)	Xishuangbanna, Yunnan, China	MZH42
C. arborea	ZHMa 096 (IBSC)	Tianbao, Yunnan, China	MZH75
C. arborea	LB 0240 (IBSC)	Yunnan, China	MZH29
C. arborea	S. Tagane et al. T1412 (Kyushu University)	Chiang Mai, Thailand	T1412
<i>C</i> . sp1	Leeratiwong 05-232 (KKU)	Loei, Thailand	38173
<i>C</i> . sp2	de Kok 1275 (K, LAE)	from Bulolo to Lea, Papua New G	38174
C. yunnanensis	ZHMa 0114 (IBSC)	Xishuangbanna, Yunnan, China	MZH77
C. erioclona	Nguyen et al. HNK934 (K)	Nam Cat Tien NP, Vietnam	23190
C. erioclona	J. Gagul 9 (K)	Papua, Indonesia	42085
C. candicans	Leeratiwong 04-119 (KKU)	Songkhla, Thailand	38162
C. candicans	W.W Nong VTN828 (IBSC)	Vietnam	MZH61
C. candicans	ZHM 0128 (IBSC)	Bawanglin, Hainan, China	MZH62
C. candicans	LB 0162 (IBSC)	Hainan, China	MZH20
C. sp3	S. Tagane et al. T3048 (Kyushu University)	Pechaburi, Thailand	T3048
<i>C</i> . sp5	S. Tagane et al. V2677 (Kyushu University)	Thua Thien Hue, Vietnam	V2677
C. luteopunctata	ZHMa 0162 (IBSC)	Emei, Sichuan, China	MZH52
C. luteopunctata	G. Yao 402 (IBSC)	Emei, Sichuan, China	MZH53
C. integerrima var. chinensis	X.X. Huang 8887 (IBSC)	Longnan, Jiangxi, China	MZH19
C. integerrima var. chinensis	X.X. Huang 1032 (IBSC)	Rucheng, Hunan, China	MZH60
C. integerrima var. chinensis	X.X. Huang 1016 (IBSC)	Rucheng, Hunan, China	MZH59
C. dichotoma	ZHM 0126 (IBSC)	Wugong mountain, Jiangxi, China	MZH38
C. dichotoma	ZHM 080 (IBSC)	SCBG, China	MZH2
C. peichieniana	X. Guo 101 (IBSC)	Huizhou, Guangdong, China	MZH81
C. macrophylla	Leeratiwong 05-262 (KKU)	Chiang Mai, Thailand	38168

TABLE 1 Continued

Taxon	Voucher	Locality	DNA No.
C. macrophylla	ZHMa 087 (IBSC)	Kunming, Yunnan, China	MZH18
C. macrophylla	ZHMa 0158 (IBSC)	Shanglin, Guangxi, China	MZH56
C. macrophylla	ZHMa 095 (IBSC)	Funing, Yunnan, China	MZH57
C. macrophylla	17010 (IBSC)	Zhaoqin, Guangdong, China	MZH58
C. nudiflora	ZHMa 0155 (IBSC)	Changjiang, Hainan, China	MZH69
C. nudiflora	ZHMa 0112 (IBSC)	Xishuangbanna, Yunnan, China	MZH70
C. nudiflora	N. Nguyen et al. V3120 (Kyushu University)	Da Nang, Vietnam	V3120
C. nudiflora	L.X. Zhou 5208 (IBSC)	Lingshui, Hainan, China	MZH71
C. kochiana	G. Yao 255 (IBSC)	Shaoguan, Guangdong, China	MZH10
C. kochiana	LB (IBSC)	Dongguan, Guangdong, China	MZH49
C. kochiana	X.X. Huang 8697 (IBSC)	Yujiang, Jiangxi, China	MZH50
C. kochiana	X.X. Huang 1025 (IBSC)	Rucheng, Hunan, China	MZH51
C. loboapiculata	ZHMa 013 (IBSC)	Sanfang, Guangxi, China	MZH14
C. loboapiculata	ZHMa 0143 (IBSC)	SCBG, China	MZH34
C. longifolia	Leeratiwong 05-249 (KKU)	Songkhla, Thailand	38165
C. longifolia	de Kok 1029 (K)	Along Sungei Imbak, Malaysia	21551
C. longifolia	R.J. Johns 9851 (K)	Papua, Indonesia	42087
C. longifolia	P.W. Xie 10-145 (IBSC)	Xishuangbanna, Yunnan, China	MZH28
C. longifolia	LB 0242 (IBSC)	Yunnan, China	MZH31
C. longifolia	S. Tagane et al. 5830 (Kyushu University)	Kampot, Cambodia	5830
C. longifolia	T. Yahara et al. V3294 (Kyushu University)	Ha Tinh, Vietnam	V3294
C. longifolia	ZHMa 0117 (IBSC)	Xishuangbanna, Yunnan, China	MZH43
C. longifolia	T. Yahara & D. Darnaedi S413 (Kyushu University)	Bantimulung Bulusarum, Indonesia	S413
C. longifolia	T. Yahara et al. IK133 (Kyushu University)	Mandor, Indonesia	IK133
C. longifolia	H. Toyama et al. 2329 (Kyushu University)	Kampot, Cambodia	2329
C. longifolia	S. Tagane et al. V1723 (Kyushu University)	Khanh Hoa, Vietnam	V1723
C. longifolia	Nob. Tanaka et al. MY105 (Kyushu University)	Shan, Myanmar	MY105
C. longifolia	H. Toyama et al. 2227 (Kyushu University)	Kampot, Cambodia	2227
C. longifolia	C.J. Yang et al. V2321 (Kyushu University)	Khanh Hoa, Vietnam	V2321
C. longifolia var. lanceolaria	Leeratiwong 04-014 (KKU)	Loei, Thailand	38166
C. longifolia var. lanceolaria	ZHM 0154 (IBSC)	Ningming, Guangxi, China	MZH65
C. longissima	ZHMa 0159 (IBSC)	Changjiang, Hainan, China	MZH72
C. pedunculata	J. Halford GAQLD0430 (K)	QLD, Conondale, Australia	42088
C. angusta	Leeratiwong 06-291 (KKU)	Quang Ninh, Vietnam	38159
C. sp4	S. Tagane et al. IK1596 (Kyushu University)	Bukit Bangkirai, Indonesia	IK1596
C. albida	T. Yahara et al. IJ266 (Kyushu University)	West Java, Indonesia	IJ266
C. acutidens	T. Yahara et al. V5569 (Kyushu University)	Ha Tinh, Vietnam	V5569
C. bodinieri	Zhuqiu Song ZHM0125 (IBSC)	Honghe, Yunnan, China	MZH40
C. bodinieri	ZHM 094 (IBSC)	Napo, Guangxi, China	MZH39

TABLE 1 Continued

Taxon	Voucher	Locality	DNA No.
C. bodinieri	ZHMa 053 (IBSC)	Longnan, Jiangxi, China	MZH3
C. bodinieri	ZHMa 0423 (IBSC)	Lingchuan, Guangxi, China	MZH27
C. bodinieri	#	#	22401
C. bodinieri var. rosthornii	X.X. Huang 8418 (IBSC)	Longnan,Jiangxi, China	MZH66
C. brevipes	ZHMa 0130 (IBSC)	Dongguan, Guangdong, China	MZH44
C. brevipes	ZHMa 0331 (IBSC)	Ledong, Hainan, China	MZH46
C. brevipes	S. Tagane et al. V3825 (Kyushu University)	Ha Tinh, Vietnam	V3825
C. brevipes f. annamensis	T. Yahara et al. V2379 (Kyushu University)	Thua Thien Hue, Vietnam	V2379
C. brevipes f. annamensis	T. Yahara et al. V2723 (Kyushu University)	Thua Thien Hue, Vietnam	V2723
C. formosana	ZHMa 083 (IBSC)	SCBG, China	MZH1
C. formosana	G. Yao 261 (IBSC)	Shaoguan,Guangdong, China	MZH33
C. formosana	ZHMa 059 (IBSC)	Longnan, Jiangxi, China	MZH36
C. formosana	ZHMa 0104 (IBSC)	Xishuangbanna, Yunnan, China	MZH37
C. formosana var. longifolia	ZHMa 0107 (IBSC)	Xishuangbanna, Yunnan, China	MZH74
C. giraldii	LB 0233 (IBSC)	Yunnan, China	MZH12
C. giraldii	ZHMa 072 (IBSC)	Longlin, Yunnan, China	MZH21
C. giraldii	ZHMa 0122 (IBSC)	Kunming, Yunnan, China	MZH64
C. glandulosa	Leeratiwong 04-105 (KKU)	Loei, Thailand	38164
C. hainanensis	ZHMa 079 (IBSC)	SCBG, China	MZH22
C. japonica	K-LCD_1934-12904	#	14294
C. japonica	ZHMa 0160 (IBSC)	Korea	MZH35
C. japonica	#	#	25990
C. japonica	#	#	22402
C. japonica f. kiruninsularis	ZHM 002 (IBSC)	SCBG, China	MZH15
C. kwangtungensis	ZHMa 0124 (IBSC)	Xiangtan, Hunan, China	MZH73
C. mollis	# (K)	#	22403
C. mollis	S. Tagane et al. T4475 (Kyushu University)	Loei, Thailand	T4475
C. pauciflora	ZHMa 090 (IBSC)	Shaoguan,Guangdong, China	MZH80
C. rubella	S. Tagane et al. T4590 (Kyushu University)	Loei, Thailand	T4590
C. rubella	H. Toyama et al. V1867 (Kyushu University)	Lam Dong, Vietnam	V1867
C. rubella	T. Yahara et al. V5740 (Kyushu University)	Ha Tinh, Vietnam	V5740
C. rubella	Leeratiwong 05-252 (KKU)	Phetchabun, Thailand	38171
C. rubella	Nguyen et al. HNK106 (K)	Sa Pa, Vietnam	23188
C. rubella	ZHMa 089 (IBSC)	Shenzhen, China	MZH6
C. rubella	G. Yao 258 (IBSC)	Shaoguan,Guangdong, China	MZH32
C. rubella f. angustata	ZHMa 064 (IBSC)	Dawei mountain,Yunnan, China	MZH11
C. rubella f. angustata	W.W Nong VTN670 (IBSC)	Vietnam	MZH25
C. rubella f. angustata	LB 0241 (IBSC)	Yunnan, China	MZH30
C. rubella f. angustata	S. Tagane et al. V4086 (Kyushu University)	Lam Dong, Vietnam	V4086

TABLE 1 Continued

Taxon	Voucher	Locality	DNA No.
C. rubella f. crenata	W.W Nong VTN654 (IBSC)	Vietnam	MZH24
C. rubella f. crenata	W.W Nong VTN654 (IBSC)	Vietnam	MZH23
C. rubella f. crenata	ZHM 014 (IBSC)	Sanfang, Guangxi, China	MZH83
C. cathayana	X.X.Huang 8942 (IBSC)	Jiulian mountain,Jiangxi, China	MZH17
C. cathayana	X.X.Huang 8918 (IBSC)	Jinpanshan, Jiangxi, China	MZH54
C. prolifera	C.M.Tan 91152 (IBSC)	Wuyi mountain, Jiangxi, China	MZH82
C. erythrosticta	X.X.Huang 8700 (IBSC)	Jinpanshan, Jiangxi, China	MZH68
C. longipes	ZHMa 085 (IBSC)	Huizhou, Guangdong, China	MZH9
C. longipes	B. Li 0069 (IBSC)	Dongguan, Guangdong, China	MZH47
C. longipes	X.X. Huang 8919 (IBSC)	Yujiang, Jiangxi, China	MZH48
C. stapfii	Bramley et al. SAN147250 (K, SAN)	Silau Silau trail, Kinabalu NP, Malaysia	25529
C. stapfii	S. Tagane et al. SWK1216 (Kyushu University)	Sarawak, Malaysia	SWK1216
C. havilandii	S. Tagane & U. Shimizu-kaya SWK2627 (Kyushu University)	Miri, Malaysia	SWK2627
C. havilandii	T. Yahara et al. SWK473 (Kyushu University)	Sarawak, Malaysia	SWK473
C. havilandii	T. Yahara et al. SWK451 (Kyushu University)	Sarawak, Malaysia	SWK451
C. havilandii	Bramley et al. SAN1472 (K, SAN)	Bukit Silam, Malaysia	25524
C. hispida	Bramley et al. SAN1472 (K, SAN)	Danum, Malaysia	25525
C. pentandra	E. Suzuki et al. IK895 (Kyushu University)	Serimbu, Indonesia	IK895
C. pentandra	S. Tagane & U. Shimizu-kaya SWK2639 (Kyushu University)	Miri, Malaysia	SWK2639
C. pentandra	T. Yahara et al. SWK1024 (Kyushu University)	Sarawak, Malaysia	SWK1024
C. pentandra	Bramley et al. SAN1472 (K, SAN)	Bombalai Hill, Malaysia	25527
C. pentandra	Leeratiwong 06-333 (KKU)	Narathiwat, Thailand	38170
C. pentandra	C. Barker 131 (K)	Papua, Indonesia	42089
C. pentandra	T.M.A. Utteridge 701 (K)	Papua, Indonesia	42092
C. pentandra	Bramley GB60 (K)	Sumatra, Bolian, Indonesia	42093
C. pentandra	#	#	25526
C. scandens	Bramley et al. SAN1472 (K, SAN)	Danum Valley Field Centre, Malaysia	25528
C. acuminata	1936 (K)	Belize, Central America	1936
Outgroups			
Clerodendrum sp.	J. Liu LJ501	#	LJ501
Clerodendrum cyrtophyllum	J. Liu LJ9	#	LJ9
Gomphostemma chinense	J. Liu LJ510	#	LJ510
Vitex negundo	J. Liu LJ268	#	LJ268
Dasymalla teckiana	#	Australian National Botanic Gardens (ANBG), Australia	#
Dicrastylis parvifolia	#	Australian National Botanic Gardens (ANBG), Australia	#

trnD-trnT, *trnH-psbA*, *psbJ-petA*, *trnQ-5*'*rps16*, 3'*trnV-ndhC*, and *trnS* (*GCU*)-*trnG* intergenic spacer] regions were used in this study. Extracting total genomic DNA of the samples with silica dried leaf tissue followed the 2 × CTAB method of Doyle and Doyle (1987),

and the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) was used for herbarium materials following the manufacturer's instructions. Primer pairs used in polymerase chain reaction (PCR) amplification of the ten regions are listed in Table S1

TABLE 2 GeneBank accession numbers for Callicarpa and representation assigning fossil calibration.

Taxa	ITS accession	ETS	matk	psbJ_petA	rpL32_trnL	trnD_T	trnG_trnS	trnH_psbA	trnQ_rps16	trnV-ndhC
Callicarpa										
C. americana 14293	ON820115	ON931484	OP032108	#	#	OP734891	OP735028	OP735071	OP734977	OP744560
C. americana MZH76	OM333866	OM307559	OM630187	#	#	OM403780	OM403863	#	OM403947	OM307487
C. angusta 38159	OM333840	OM307533	OM630158	#	OM501607	OM403748	OM403831	OM473325	OM403915	OM307473
C. poilanei 23191	#	OM307603	OM530154	OM439786	OM501603	OM403792	OM403827	OM439784	OM403911	OM307462
C. angustifolia 38160	OM333834	OM307525	OM630159	OM460787	OM501608	OM403749	OM403832	#	OM403916	OM307467
C. arborea 23189	ON820116	ON931485	OP032109	OP081532	#	OP734892	OP735030	OP735074	OP734981	OP744564
C. arborea 38161	ON820117	ON931486	OP032111	OP081533	OP734844	OP734893	#	OP735046	OP734947	OP744536
C. arborea MZH5	ON820118	ON931487	OP032110	OP081534	#	OP734894	#	OP735078	OP734983	OP744568
C. arborea MZH41	OM333841	OM307534	#	OM460817	OM501611	OM403754	OM403837	OM489764	OM403921	OM307474
C. arborea MZH42	ON820119	ON931488	OP032112	OP032161	OP081584	OP734895	OP032171	#	OP734952	OP744540
C. arborea MZH75	ON820120	ON931489	OP032113	OP081535	OP734845	OP734896	OP735027	OP735070	OP734976	OP744559
C. arborea MZH29	#	#	#	OP081582	OP734890	OP734897	#	OP735077	#	OP744567
C. bodinieri MZH3	ON820121	#	OP032114	OP081536	OP734846	OP734898	OP735005	OP735052	OP734953	OP744541
C. bodinieri var. rosthornii MZH66	OM333842	OM307535	OM630167	OM460816	OM501612	OM403755	OM403838	OM489769	OM403922	OM403728
C. brevipes MZH27	ON820122	ON931490	#	OP081537	OP734847	OP734899	#	OP735079	#	#
C. brevipes MZH44	ON820123	ON931491	OP032115	#	OP081586	OP734900	#	OP032167	#	#
C. candicans 38162	ON820124	ON931492	OP032116	OP081538	OP734848	OP734901	OP735001	OP735047	OP734948	OP744537
C. candicans MZH61	ON820125	ON931493	OP032117	OP081539	OP734849	OP734902	OP735007	#	OP734955	OP744543
C. candicans MZH62	ON820126	ON931494	OP032118	OP081540	OP734850	OP734903	OP735008	#	OP734956	OP744544
C. candicans MZH20	OM333844	OM307537	OM630169	OM460814	OM501614	OM403757	OM403840	OM473348	OM403924	OM307476
C. erioclona 23190	OM333830	OM307521	OM530155	OM439785	OM439782	OM403744	OM403826	OM439783	OM403910	OM307461
C. erioclona 42085	ON820127	ON931495	#	#	#	OP734904	OP735035	OP735086	OP734989	OP744572
C. formosana MZH1	OM333848	OM307541	#	OM460811	OM501618	OM403761	OM403844	OM473337	OM403928	OM307479
C. formosana MZH33	ON820128	ON931496	OP032119	OP081541	OP734851	#	OP735011	OP735054	OP734959	OP744547
C. formosana MZH36	#	ON931497	#	OP081542	#	OP734905	#	OP735080	OP734984	OP744569
C. formosana MZH37	ON820129	ON931498	OP032120	OP081543	#	OP734906	OP735033	OP735081	#	#
C. formosana var. longifolia MZH74	OM333869	OM307562	OM630190	OM460790	#	OM403783	OM403866	OM489774	OM403950	OM403730
C. furfuracea 38163	OM638741	OM307526	OM630217	OM460819	OM501609	OM403750	OM403833	OM473326	OM403917	OM307468
C. giraldii MZH12	ON820130	ON931499	OP032121	OP032160	OP081585	OP734907	OP032170	OP032165	OP734966	OP744551

TABLE 2	Continued
	continucu

Таха

C. giraldii var. giraldii MZH21	OM333868	OM307561	OM630189	OM460789	OM530213	OM403782	OM403865	OM473349	OM403949
C. giraldii var. subcanescens MZH64	#	ON931500	OP032122	OP081544	OP734852	OP734908	OP735034	OP735082	OP734985
C. glandulosa 38164	#	OM307604	OM630218	OM460796	OM530211	OM403778	OM403861	OM473327	OM403946
C. hainanensis MZH22	OM333849	OM307542	OM630173	OM460810	OM501619	OM403762	OM403845	OM473350	OM403929
C. hainanensis MZH46	OM333843	OM307536	OM630168	OM460815	OM501613	OM403756	OP032173	OM489765	OM403923
C. hispida 25524	OM333835	OM307527	OM530152	OM460821	OM501604	OM403745	OM403828	#	OM403912
C. hispida 25525	OM333836	OM307528	OM530153	OM460820	OM501605	OM403746	OM403829	#	OM403913
C. integerrima var. chinensis MZH19	OM333838	OM307530	OM630183	OM460802	OM501631	OM403773	OM403857	OM473347	OM403941
C. integerrima var. chinensis MZH60	ON820131	ON931501	OP032123	OP081545	OP734853	OP734909	OP735022	OP735066	OP734972
C. integerrima var. chinensis MZH59	ON820132	ON931502	OP032124	#	OP734854	OP734910	#	OP735084	OP734988
C. dichotoma MZH38	ON820133	ON931503	OP032125	OP081546	OP734855	OP734911	OP735010	OP735053	OP734958
C. dichotoma MZH2	OM333846	OM307539	OM630171	OM460812	OM501616	OM403759	OM403842	OM473338	OM403926
C. japonica 25990	#	ON931504	#	OP081547	OP734856	#	OP735032	OP735076	OP734982
C. japonica 22402	#	ON931505	#	OP081548	OP081587	#	OP735029	OP735073	OP734980
C. japonica f. kiruninsularis MZH15	OM333850	OM307543	OM630174	OM460809	OM501620	OM403763	OM403846	OM473345	OM403930
C. kochiana MZH10	OM333852	OM307545	#	OM473322	#	OM403820	OM403905	OM473341	OM403987
C. kochiana MZH49	ON820134	ON931506	OP032126	OP081549	OP734857	OP734912	OP735012	OP735055	OP734960
C. kochiana MZH50	ON820135	ON931507	OP032156	OP081550	OP734858	OP734913	OP735013	OP735056	OP734961
C. kochiana MZH51	#	OM307551	OP032127	#	OP734859	OP734914	#	OP735083	OP734986
C. kwangtungensis MZH73	OM333853	OM307546	OM630175	#	OM501622	OM403764	OM403848	OM489773	OM403932
C. loboapiculata MZH14	OM333854	OM307547	OM630176	OM460807	OM501623	OM403765	OM403849	OM473344	OM403933
C. loboapiculata MZH34	ON820136	ON931508	OP032128	OP081551	OP734860	#	OP735014	OP735057	OP734962
C. longifolia 38165	ON820137	ON931509	OP032129	OP081552	OP734861	OP734915	OP735002	OP735048	#
C. longifolia 21551	#	ON931510	OP032130	OP081553	OP734862	OP734916	OP734999	OP735044	OP734944
C. longifolia 42087	#	ON931511	#	#	#	OP734917	OP735036	OP735087	OP734990
C. longifolia MZH28	ON820138	ON931512	#	#	OP734863	OP734918	#	OP735058	#
C. longifolia MZH31	ON820139	ON931513	#	OP081554	OP734864	#	OP735015	OP735059	OP734963
C. longifolia MZH43	#	ON931514	OP032131	OP032162	#	OP734919	OP032172	OP032166	OP734987
C. longifolia var. lanceolaria 38166	ON820140	ON931515	OP032132	#	OP734865	OP734920	OP735003	OP735049	OP734949

OM307489

OM403725

OM307475

OM403737

OM403738

OM307470

OP744557

OP744546

OM307478

OP744566

OP744563

OM403724

OM307481

OP744548

OP744549

OP744570

OM307482

OM403723

OP744573

OP744550

OP744571

OM403721 (Continued)

OP744538

#

#

OM403935

#

#

#

C. longipes MZH9

OM333856

OM307549

OM630178

OM460805

OM501625

OM403767

OM403851

OM473340

TABLE	2	Continued

C. longipes MZH47 ON820145 ON931516 # OP081555 OP081583 OP734921 # OP735060 OP734964 # ON931517 OP032133 OP735016 C. longipes MZH48 ON820144 OP081556 OP734866 OP734922 # OP734965 # OM333857 OM307550 OM630423 OM501626 OM403768 OM403852 OM489772 OM403936 OM307484 C. longissima MZH72 # C. luteopunctata MZH52 ON820143 ON931518 OP032134 OP081557 OP734867 OP734923 OP735017 # OP734967 # C. luteopunctata MZH53 OM333858 OM307551 OM630179 OM460804 OM501627 OM403769 OM403853 OM489766 OM403937 OM403727 C. macrophylla 38168 ON820142 ON931519 OP032135 OP081558 OP734868 OP734924 OP735004 OP735050 OP734950 OP744539 C. macrophylla MZH18 ON820141 ON931520 OP032136 OP081559 OP734869 OP734925 OP735018 OP735061 OP734968 OP744552 C. macrophylla MZH56 OM333859 OM307552 OM630180 OM460803 OM501628 OM403770 OM403854 OM489767 OM403938 OM307485 C. macrophylla MZH57 ON820146 ON931521 OP032137 OP081560 OP734870 OP734926 OP735019 OP735062 OP734969 OP744553 C. macrophylla MZH58 ON820147 ON93152 OP032138 OP081561 OP734871 OP734927 OP735021 OP735065 OP734971 OP744556 C. macrophylla MZH71 ON820148 ON931523 OP032139 OP081562 OP734872 OP734928 OP735020 OP735064 # OP744555 C. maingayi 38169 OM333833 OM307524 OM630164 OM460786 OM403779 OM403835 OM473328 OM307466 # # C. mollis 22403 OM307532 OM460798 OM460785 OM403945 OM307472 # # # # # C. bodinieri 22401 # ON931524 # OP081563 OP734873 # # OP735072 OP734979 OP744562 OM333860 OM307553 OM630181 OM501629 OM403771 OM403855 C. nudiflora MZH69 OM460801 OM489771 OM403939 OM307486 C. nudiflora MZH70 ON820149 ON931525 OP032140 OP081564 OP734874 OP734929 # OP735063 OP734970 OP744554 C. pauciflora MZH80 # # # OM403822 # OM489776 # OM403732 # # OM333839 OM307531 OM403867 OM473331 C. pedunculata 42088 # OM460791 # OM403785 OM403951 OM307471 C. peichieniana MZH81 OM333861 OM307554 OM630182 # OM501630 OM403772 OM403856 OM489777 OM403940 # OP032141 OP032158 OP032164 OP734946 OP744535 C. pentandra 25527 ON820150 ON931526 OP081588 OP734930 OP032169 OM333837 OM307529 OM630165 OM460818 OM501610 OM403751 OM403829 OM473329 OM403918 OM307469 C. pentandra 38170 C. pentandra 42089 ON820151 ON931527 # OP081565 OP734875 OP734931 OP735037 # OP734991 OP744574 ON820152 ON931528 OP735088 OP734992 OP744575 # OP081566 OP734876 OP734932 OP735038 C. pentandra 42092 ON820153 ON931529 OP032142 OP081567 OP734877 OP734933 OP735089 OP734993 C. pentandra 42093 # # C. rubella 38171 ON820154 ON931530 OP032143 OP081568 OP734878 # # OP735051 OP734951 # C. rubella 23188 ON820155 ON931531 OP032155 OP081569 OP734879 OP734934 OP735000 OP735045 OP734945 # C. rubella MZH6 OM333864 OM307557 ON964474 OP032159 OM530212 OM403821 OM403906 OM473339 OM403988 # C. rubella MZH32 OP734880 OP734975 ON820156 OP032144 OP744558 ON931532 OP081570 OP734935 OP735026 # C. rubella f. angustata MZH11 OM333862 OM307555 # OM460800 OM501632 OM403774 OM403858 OM473342 OM403942 OM403722 C. rubella f. angustata MZH25 ON820157 ON931533 OP032145 OP081571 OP734881 OP734936 OP735023 OP735067 OP734973

TABLE 2 Continued

Таха	ITS accession	ETS	matk	psbJ_petA	rpL32_trnL	trnD_T	trnG_trnS	trnH_psbA	trnQ_rps16	trnV-ndhC
C. rubella f. angustata MZH30	ON820158	ON931534	OP032146	OP081572	OP734882	#	OP735024	OP735068	#	#
C. rubella f. crenata MZH24	ON820159	ON931535	OP032147	OP081573	OP734883	#	OP735025	OP735069	OP734974	#
C. rubella f. crenata MZH35	OM333851	OM307544	#	OM460808	OM501621	#	OM403847	OM489762	OM403931	OM307480
C. rubella var. subglabra MZH23	OM333863	OM307556	OM630184	OM460799	OM501633	OM403775	OM403859	OM489761	OM403943	OM403726
C. scandens 25528	OM333828	OM307520	#	#	OM501606	OM403747	OM403830	OM473324	OM403914	OM307463
C. sp1 38173	OM333832	OM307523	OM630166	#	OM530176	OM403752	OM403835	#	OM403919	OM307465
C. sp2 38174	OM333831	OM307522	OM630426	OM460822	OM530177	OM403753	OM403836	OM473330	OM403920	OM307464
C. yunnanensis MZH77	OM333865	OM307558	OM630185	#	OM501634	OM403776	OM403860	OM489775	OM403944	OM403731
C. bodinieri MZH40	ON820160	ON931536	OP032148	OP081574	OP734884	OP734937	OP735006	#	OP734954	OP744542
C. bodinieri MZH39	OM333867	OM307560	OM630188	OM460788	#	OM403781	OM403864	OM489763	OM403948	OM307488
C. prolifera MZH82	OM333870	OM307564	#	#	#	#	#	OM489778	#	#
C. rubella f. crenata MZH83	#	ON931537	#	OP081575	#	OP734938	#	OP735085	#	#
C. cathayana MZH54	ON820161	ON931538	OP032149	OP081576	OP734885	OP734939	OP735009	#	OP734957	OP744545
C. erythrosticta MZH68	OM333847	OM307540	OM630172	#	OM501617	OM403760	OM403843	OM489770	OM403927	OM403729
C. cathayana MZH17	OM333845	OM307538	OM630170	OM460813	OM501615	OM403758	OM403841	OM473346	OM403925	OM307477
C. japonica 14294	ON820162	ON931539	OP032150	#	#	#	OP032168	OP032163	OP734978	OP744561
C. stapfii 25529	OM333829	#	OM630186	OM460797	#	OM403777	#	#	#	#
C. pentandra 25526	#	ON931540	#	OP081577	#	#	OP735031	OP735075	#	OP744565
C. longifolia var. lanceolaria MZH65	#	OM307563	#	#	#	OM403784	#	OM489768	#	#
C. brevipes f. annamensis V2379	#	#	#	#	OM530190	OM403824	OM403908	OM489792	OM403990	OM403733
C. longifolia V2321	OM333881	OM307590	OM630162	#	OM530189	OM403786	OM403868	#	OM403952	OM307510
C. rubella V1867	#	OM307601	OM630216	OM489760	OM530188	OM403787	OM403869	OM489791	OM403953	OM307519
C. rubella V5740	#	OM307581	OM630191	OM489755	OM530201	OM403788	OM403870	OM489804	OM403954	OM307502
C. arborea T1412	OM333871	OM307569	OM630192	#	OM530202	OM403789	OM403871	OM489786	#	OM307492
C. furfuracea MY364	#	#	OM630193	OM489757	OM530181	OM403790	OM403872	#	OM403955	OM307498
C. rubella f. angustata V4086	#	OM307602	#	OM489756	OM530198	OM403791	OM403873	OM489801	OM403956	OM403735
C. longifolia 5830	OM333888	OM307599	OM630161	OM489754	OM530174	#	OM403874	OM460783	OM403957	OM307517
C. sp3 T3048	OM333872	OM307571	OM630422	OM460792	#	OM403793	OM403875	OM489787	OM403958	OM307494
C. nudiflora V3120	#	OM307582	OM630194	OM489753	OM530194	OM403794	OM403876	OM489796	OM403959	OM307503
C. longifolia V3294	#	OM307589	OM630195	OM460793	OM530196	OM403795	OM403877	OM489798	OM403960	OM307509

(Continued)

Cai et al.

TABLE 2	Continued
	continucu

Таха	ITS accession	ETS	matk	psbJ_petA	rpL32_trnL	trnD_T	trnG_trnS	trnH_psbA	trnQ_rps16	trnV-ndh0
C. brevipes V3825	OM333877	OM307583	OM630196	OM460794	OM530197	OM403796	OM403878	OM489799	OM403961	OM307504
C. mollis T4475	#	OM307580	#	OM460795	OM530185	#	OM403879	OM585503	OM403962	#
C. anguifolia 2221	#	OM307574	OM630197	OM460751	OM530170	#	OM403881	OM460779	OM403964	OM307497
C. anguifolia 1431	OM333874	OM307573	OM630160	#	#	OM403798	OM403882	OM460778	OM403965	OM307496
C. acutidens V5569	OM333878	OM307584	OM630163	#	OM530200	OM403799	OM403883	OM489803	OM403966	OM403736
C. furfuracea T4789	#	OM307575	OM630198	OM489750	OM530187	OM403800	OM403884	OM489789	OM403967	OM307499
C. longifolia 2227	#	OM307587	OM630200	OM489748	OM530171	OM403802	OM403886	OM460780	OM403969	OM307505
C. longifolia MY105	#	OM307598	OM630202	OM489746	OM530180	OM403804	OM403888	OM473336	OM403971	OM307516
C. albida IJ266	#	OM403739	#	OM473323	#	OM403823	OM403907	OM473332	#	OM403720
C. longifolia 2329	OM333883	OM307592	OM630203	OM489745	OM530172	OM403805	OM403889	OM460781	OM403972	OM307512
C. brevipes f. annamensis V2723	#	#	#	#	OM530193	OM403825	OM403909	OM489795	OM403991	OM403734
C. rubella T4590	#	OM307579	#	OM489743	OM530186	OM403807	OM403891	OM489788	OM403974	OM307501
C. longifolia S413	OM333882	OM307591	OM630204	OM489742	OM530182	OM403808	OM403892	OM489779	OM403975	OM307511
C. angustifolia 774	OM333873	OM307572	OM630205	OM489741	OM530204	OM403809	OM403893	OM460777	OM403976	OM307495
C. sp4 IK1596	OM333886	OM307596	OM630207	OM489739	OM530205	OM403811	OM403895	OM473335	#	OM307515
C. pentandra IK895	#	OM307577	OM630208	#	OM530179	OM403812	OM403896	OM473334	OM403978	#
C. longifolia IK133	OM333884	OM307594	OM630209	OM489738	OM530178	OM403813	OM403897	OM473333	OM403979	OM307513
C. pentandra SWK2639	OM333876	OM307578	OM630210	OM489737	OM530206	OM403814	OM403898	OM489785	OM403980	#
C. havilandii SWK2627	#	OM307567	OM630211	OM489736	OM530207	OM403815	OP735043	OP735094	OP734998	#
C. stapfii SWK1216	#	OM307565	#	OM489735	OM530208	#	OM403900	OM489783	#	#
C. pentandra SWK1024	OM333875	OM307576	#	OM489734	OM530184	OM403816	OM403901	OM489782	OM403982	OM307500
C. havilandii SWK473	#	OM307568	OM630212	OM489733	OM530209	OM403817	OM403902	OM489781	OM403983	OM307491
C. havilandii SWK451	#	OM307566	OM630213	OM473320	OM530183	OM403818	OM403903	OM489780	OM403984	OM307490
C. sp5. V2677	#	OM307570	OM630214	#	OM530192	OM403819	OM403904	OM489794	OM403985	OM307493
C. longifolia V1723	#	OM307593	OM630425	OM473321	#	#	#	OM489790	OM403986	#
Outgroup					I					
Clerodendrum sp.	ON820163	#	OP032152	OP081579	OP734887	OP734941	OP735040	OP735091	OP734995	OP744577
Clerodendrum cyrtophyllum	ON820164	#	OP032151	OP081578	OP734886	OP734940	OP735039	OP735090	OP734994	OP744576
Gomphostemma Chinese	ON820165	#	OP032153	OP081580	OP734888	OP734942	OP735041	OP735092	OP734996	OP744578
Vitex negundo	#	#	OP032154	OP081581	OP734889	OP734943	OP735042	OP735093	OP734997	OP744579

TABLE 2 Continued

Таха	ITS accession	ETS	matk	psbJ_petA	rpL32_trnL	trnD_T	trnG_trnS	trnH_psbA	trnQ_rps16	trnV-ndhC
Dasymalla teckiana	#	#	NC_058334	NC_058334	NC_058334	NC_058334	NC_058334	NC_058334	NC_058334	NC_058334
Dicrastylis parvifolia	GQ381162	#	NC_058335	NC_058335	NC_058335	NC_058335	NC_058335	NC_058335	NC_058335	NC_058335
Elsholtzieae										
Collinsonia canadensis	JQ669087	JQ669157	KY624850	#	JQ669291	#	#	DQ667358	#	#
Elsholtzia ciliata	MH117518	JQ669170	KY624860	NC_050945	JQ669306	#	NC_050945	MH117072	NC_050945	NC_050945
Mentheae										
Hyptis laniflora	JF301548	JF304259	KJ772845	#	JQ669317	JF301606	MH612795	#	#	#
Isodon dawoensis	KF855429	MG232701	JF954204	MW018469	#	KF855759	#	#	MW018469	#
Lavandula angustifolia	FJ593399	#	HE967430	NC_046835	JQ669323	KF855779	NC_046835	#	#	NC_046835
Melissa officinalis	JF301353	JF301325	KP172051	MT634148	JQ669335	#	MT634148	MK090069	MT634148	MT634148
Mentha arvensis	JQ669115	JQ669190	KP172052	NC_044082	JQ669336	#	NC_044082	MH753577	KC591690	#
Monarda citriodora	JQ669124	JQ669200	MG225355	#	JQ669346	#	#	AY943563	#	#
Neoeplingia leucophylloides	JF301354	JF301327	#	#	JQ669348	#	#	#	#	#
Nepeta cataria	JQ669126	JQ669202	KT176606	MT663220	JQ669349	#	#	MH753573	MT663220	MT663220
Ocimeae	1		1		1	1		1		
Ocimum basilicum	MT338842	#	KX096054	MN687904	JQ669350	KF855776	MN687904	JX262185	MN687904	MN687904
Plectranthus cremnus	JQ230965	#	MF694872	#	#	KF855755	MH612752	#	#	MH884564
Prunella vulgaris	JQ669130	JQ669206	KJ593074	NC_039654	JQ669358	#	NC_039654	MH117244	NC_039654	NC_039654
Rosmarinus officinalis	KJ584197	JF301329	KP172065	NC_027259	JQ669364	#	NC_027259	#	NC_027259	NC_027259
Salvia glutinosa	KJ584253	KF307496	KP852741	K344723	JQ669372	#	KP852867	KX247541	MK344723	MK344723

(White et al., 1990; Sun et al., 1994; Demesure et al., 1995; Sang et al., 1997; Baldwin and Markos, 1998; Beardsley and Olmstead, 2002; Tate and Simpson, 2003; Shaw et al., 2005; Andersson, 2006; Shaw et al., 2007; Dong et al., 2012). PCR products were assessed by electrophoresis on 2% agarose gel. The samples were sequenced on BGI's sequencing platform both strands of DNA with overlapping regions. The raw sequences were initially edited with Sequencher v5.4.5 (Gene Codes Corporation, Ann Arbor, MI, USA) and then aligned in MAFFT v7.450 (Katoh and Standley, 2013) with manual adjustment where necessary in MEGA v7.0 (Kumar et al., 2016) and BioEdit v7.250 (Hall, 1999).

2.3 Phylogenetic inference

Phylogenetic analyses of the data matrices -- two nuclear ribosomal DNA, eight chloroplast DNA and combined ten locus data -were conducted respectively using maximum likelihood (ML) and Bayesian inference (BI) methods. The ML phylogeny was reconstructed in the program Phylosuite v1.2.2 (Zhang et al., 2020a) with the Iqtree (Nguyen et al., 2015). The bootstrap (BS) percentage for each branch was estimated by running 1,000 bootstrap replicates. The BI analysis was conducted with MrBayes (Ronquist et al., 2012) in Phylosuite v1.2.2 (Zhang et al., 2020a) and implemented in CIPRES (http://www.phylo.org/) (Miller et al., 2010). For BI analysis, ModelFinder (Kalyaanamoorthy et al., 2017) was used for the selection of the most appropriate evolutionary model (nucleotide substitution model) (Edge-linked) using BIC criterion. The run with 10,000,000 generations was conducted. Four Markov chains with two runs were implemented and sampled every 1,000 generations, and the first 25% of all trees were regarded as 'burn-in'. The majority consensus of the remaining trees was generated to show posterior probability (PP) support for clades. Convergence was determined in Tracer v1.7.1 (Rambaut et al., 2018) and was considered to be attained when ESS > 200 or when the average standard deviation of the split frequencies was < 0.01. The best-fit partition model for Iqtree and Mrbayes analysis are listed in Table S2.

2.4 Molecular divergence time estimation

Lineage divergence time provides important information for understanding biogeographic history. As there are no known fossils for *Callicarpa*, molecular dating in this study relies on fossils from related clades in Lamiaceae. Although Lamiaceae are also not well represented in the fossil record, there are accepted fossils that can be used as calibration points in related studies within the family. We used the following two fossils as calibration points (Drew and Sytsma, 2012; Li et al., 2017). The first one was suggested conservatively to place at the crown of Nepetoideae. It was based on the hexacolpate and three-nucleate pollen fossil from Early Eocene sediments in India, which was identified as *Ocimum* (Kar, 1996). The second fossil calibration point was the fruit fossil of *Melissa* from the Early-Middle Oligocene (Martinez-Millan, 2010), which was assigned to constrain the most recent common ancestor (MRCA) of Melissa and Neoeplingia. We used a reduced dataset of 56 samples keeping one accession per species. Divergence times were estimated using BEAST2 (Bouckaert et al., 2014) in CIPRES (http://www.phylo.org/) with the nuclear and plastid concatenated matrix, and before that we got the appropriate XML file by Beauti (part of the BEAST package). A Yule tree prior and the relaxed exponential clock model were selected. The substitution model for each partition was determined within the Akaike information criterion (AIC; Akaike, 1974) as implemented in the program MrMtgui (Nylander, 2004) (Table S3). Two calibration points we all used a lognormal distribution model. Additionally, the first fossil had an offset at 49 million years ago (Ma), a mean of 2.6 Ma, and a standard deviation (SD) of 0.5 Ma while the latter had an offset at 28.4 Ma (mean: 2.6 Ma, SD: 0.5 Ma). Markov Chain Monte Carlo chains were run for 400,000,000 generations with sampling every 40000 generations. Convergence and the adequate effective sample size values (>200) for the BEAST analysis was evaluated in Tracer v1.7 (Rambaut et al., 2018). We ran each dataset four times respectively and combined the tree files in Logcombiner (part of the BEAST package). After burn-in of 20%, the maximum clade credibility (MCC) tree with median branch lengths and 95% highest posterior density (HPD) intervals on nodes was calculated using TreeAnnotator (part of the BEAST package). To get a simple temporal dynamics of diversification of Callicarpa, we generated standard lineage-through-time (LTT) plots for the maximum clade credibility (MCC) tree of sampled species in the R package 'ape' (Paradis et al., 2004). To convert stratigraphic ages into absolute ages, we used the geological timescale (Walker et al., 2018).

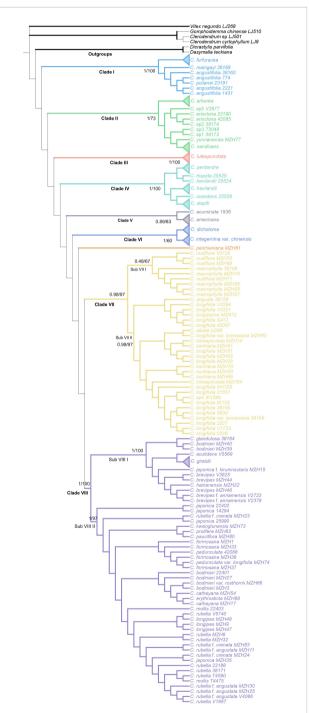
2.5 Ancestral area reconstruction

For biogeographic reconstruction, we assigned *Callicarpa* species to eight areas based on their distribution records acquired from the literature, our own fieldwork, and herbarium records: A) East Asia; B) South Asia; C) Southeast Asia; D) Oceania (including Australia, New Guinea, New Zealand; E) Temperate North America; F) Neotropics (Cuba, Columbia, Peru and Bolivia); G) Islands of India Ocean (Mascarene Islands and Reunion Island); H) Pacific Islands. The analysis was implemented by statistical dispersal extinction cladogenesis (S-DEC) in RASP (Yu et al., 2015; Yu et al., 2020). We used the maximum clade credibility (MCC) tree with fossils calibration produced in BEAST to estimate the ancestral geographic ranges of *Callicarpa*. The trees from BEAST were used as input trees, and other parameters were set to their default.

3 Results

3.1 Phylogenetic relationships between infrageneric species

Topologies derived from cpDNA (eight regions) and nrDNA (two loci) were broadly congruent (Figures S1-1, S1-2), but better


resolution and stronger branch support was achieved by combining the datasets. The phylogenetic trees using BI and ML analyses had nearly the same topology, only differing in the location of *C. peichieniana* (Figures S2-1, S2-2).

The combined analysis indicated that the genus Callicarpa was monophyletic (Posterior probability, PP=1.00; Bootstrap percentage, BP=100) with respect to the groups considered, and eight wellsupported primary clades of the genus were resolved (Figure 2). Clade I (PP=1.00, BP=100) branched off first in the genus and was composed of some tropical species native to Southeast Asia with large anthers and short filaments. Clade II was comprised of tropical species, small trees species of Callicarpa (PP=1.00, BP=73). Callicarpa luteopunctata split from the remaining species and formed a separate branch (Clade III, PP=1.00, BP=100). This species has an extremely narrow geographical distribution and is only found in high altitude mountains of the Yunnan-Guizhou Plateau located in Southwest China. In addition, the species with variable flower parts and initially being of the genus Geunsia Blume formed a strongly supported group Clade IV (PP=1.00, BP=100). Two species from America formed an independent clade V. In BI analyses (Figure S2-1), Clade VI consisted of C. dichotoma, C. integerrima var. chinensis with good support (PP=0.99, BP=97), which represented the rare lianas or slenderclimbing species of this genus, and C. peichieniana forming a single branch (PP=0.53), while in the ML tree (Figure S2-2), three species comprised Clade VI (BP=60). It's a pity that their positions weren't resolved well. Clade VII was also a well (moderately) supported clade (PP=0.98, BP=97) consisting of two subclades. Subclade VII₁ consisted of two subtropic species with robust cymes (C. macrophylla and C. nudiflora). Subclade VII_{II} was characterized by a conspicuous interpetiolar ridge and white baccate drupe, and the tree indicated the paraphyletic status of C. longifolia. Clade VIII was recognized as one broad clade, which was strongly supported as the largest group of Callicarpa investigated in the present study (PP=1.00, BP=100) and comprised some taxa with a broad range of variation in morphological characters. This clade mostly represented small shrubs with simple slender cyme and when more than one accession of a species was applied, they were either exclusive lineages or grouped together with more closely related species in a particular clade or more than one small group (e.g., C. brevipes, C. giraldii, C. bodinieri, C. formosana and C. rubella).

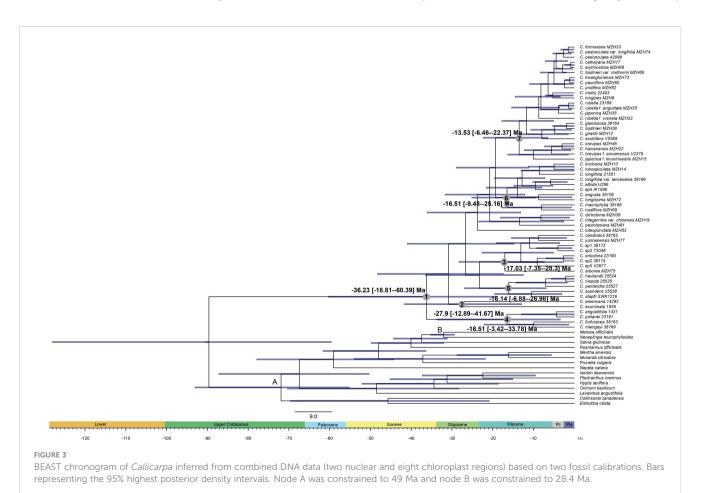
3.2 Divergence time estimation and biogeographical reconstruction

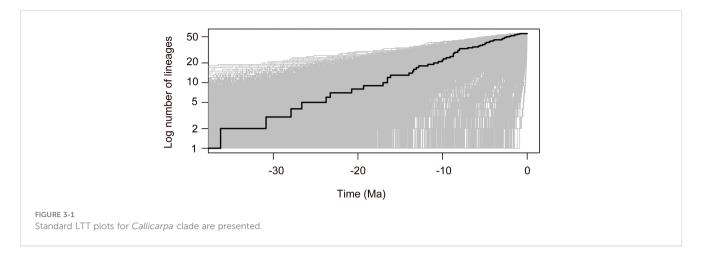
The divergence time estimates based on nrDNA+cpDNA datasets were here reported and used for further biogeographical analysis. The BEAST analysis indicated that the crown group age of *Callicarpa* was estimated at 36.23 Ma (95% HPD: 18.81–60.39 Ma) around the Late-Eocene and diversification within most clades concentrated in the Miocene and continued to the Pleistocene (Figure 3, node 1). Our dating suggested that *C. americana* was the first to split from the remaining species in the Middle-Oligocene, *ca.* 27.9 Ma (Figure 3, node 2). The crown age of the tropical occurring, small trees species of *Callicarpa* was inferred to be *ca.* 17.03 Ma (95% HPD: 7.35–28.3 Ma) (Figure 3, node 3). There was an early middle Miocene crown age for

several native species in Southeast Asia, *ca.* 16.51 Ma (95% HPD: 3.42– 33.78 Ma) and *ca.* 16.14 Ma (95% HPD: 6.88–26.98 Ma), respectively (Figure 3, node 4, node 5). The ages of the crown nodes of the two great groups were estimated to be at a similar time, *ca.* 16.51 Ma (95% HPD: 9.48-25.16 Ma) (Figure 3, node 6) and *ca.* 13.53 Ma (95% HPD: 6.46-22.37 Ma) (Figure 3, node 7). Furthermore, the divergence time of major species are listed in Table S4. The LTT plot for *Callicarpa* overall

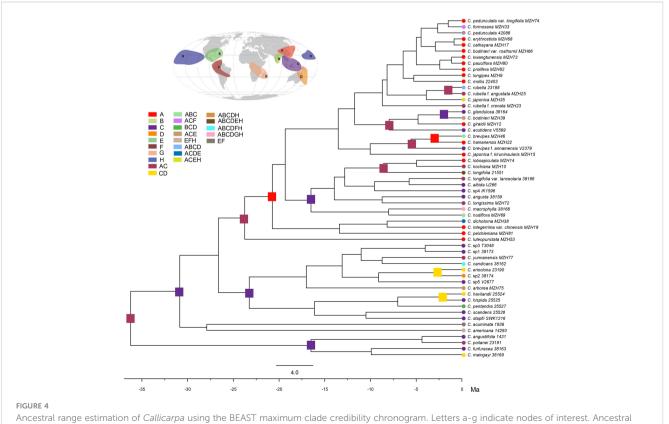
FIGURE 2

Bayesian consensus tree of *Callicarpa* based on the combined DNA data (two nuclear and eight chloroplast regions). Maximum likelihood bootstraps and Bayesian posterior probabilities of major clades are shown.

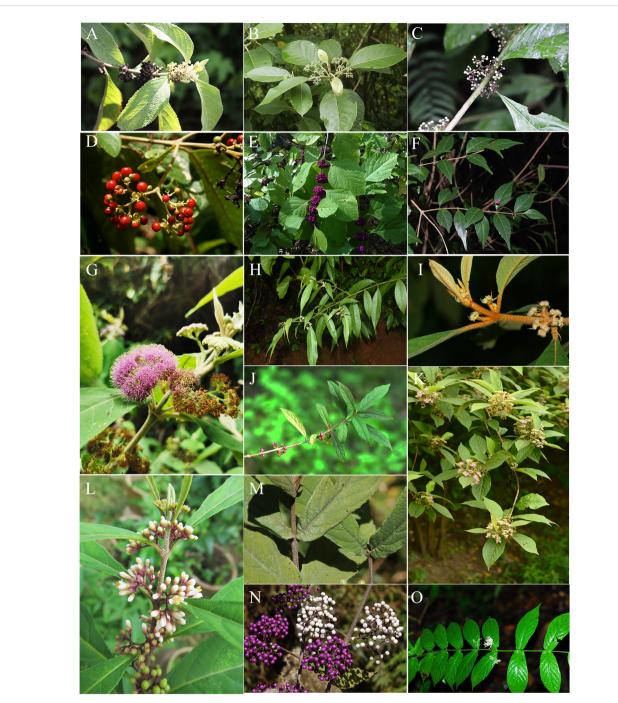

is shown in Figure 3-1. Before about the middle-Miocene (*ca.* 14 Ma), there was a relatively stable diversification rate and then a subsequently rapid diversification (accelerated lineage accumulation). This upward trend was maintained during the Pliocene and the Pleistocene.


The statistical dispersal extinction cladogenesis (S-DEC) model reconstructed a composite area of both East Asia and Southeast Asia as the likely ancestral areas for the recent common ancestor (MRCA) of Callicarpa at approximately 36.23 Ma in the Late-Eocene (Figure 4, node A). There was one dispersal event from East Asia to Southeast Asia and one extinction event in East Asia. The early diversification of a Callicarpa ancestor occurred at 30.86 Ma (95% HPD: 17.37-48.34 Ma) and the first extinction event was inferred to have occurred in East Asia (Figure 4, node B). During this period, this genus may have undergone an eastward dispersal from Asia to Pacific Islands and subsequently there could be dispersal, vicariance, and extinction events resulting in the split between the Old World Callicarpa clade and the New World Callicarpa clade (Figure 4, node C). Subsequently, there was the first dispersal from Southeast Asia to East Asia (Figure 4, node D, ca. 26.63 Ma). During the early-middle Miocene, there were the first dispersal event which led to the successful colonization of the genus in Oceania (Figure 4, node F, ca. 17.03 Ma) and similar dispersal events also occurred after middle Miocene. The dispersal from Asia into the Mascarene Islands and Reunion Island took place at 8.01 Ma (95% HPD: 0.68-17.71 Ma) (Figure 4, node G). After several vicariance and extinction events, some species endemic to China arose. The diversification of *C. luteopunctata* occurred around 23.75 Ma (95% HPD: 13.12-36.09 Ma). *Callicarpa hainanensis*, a new species discovered from Hainan, China, diverged at 3 Ma (95% HPD: 0.1-7.35 Ma) with a vicariance event during the boundary period of the Miocene and Pliocene. The RASP analysis suggested that the ancestral area of these species was East Asia and Southeast Asia, and under the influence of these events they were only occurring in China or Southeast Asia. In summary, multiple dispersal and vicariance events have occurred over the evolutionary history of *Callicarpa*.

4 Discussion


4.1 Phylogenetic inference

The combined analysis indicated that *Callicarpa* was monophyletic (PP=1.00, BP=100) with respect to the groups considered, and within *Callicarpa*, eight main subgroups were recognized (clade I-VIII) (Figure 2). Clade I, located at the bottom of the phylogenetic tree of *Callicarpa*, was composed of some Malaysian and Thai species: *C. poilanei*, *C. angustifolia*, *C. maingayi*, and *C. furfuracea*. After examining and comparing the type of specimens of *C. angustifolia* and *C. poilanei*, Leeratiwong et al. (2007) regarded *C. poilanei* as the synonym of *C. angustifolia* because they bear a resemblance in having a prominently



interpetiolar woody ridge at the stem nodes, grey to brownish-grey hairs on the abaxial surface of leaves, and being glabrous or with sparsely hairy ovary. In the present study, our result supported Leeratiwong's treatment (PP=1.00, BP=100). *Callicarpa furfuracea* and *C. maingayi* formed a robust clade, which suggested their closer relationship. Evidence from morphology (Leeratiwong et al., 2007; Leeratiwong et al., 2009) seemed to favor this clade. Clade II contained several small tree species, with tropical occurrences (Thailand, Vietnam, Indonesia, Malaysia, New Guinea), although *C. candicans, C. yunnanensis*, and *C. arborea* also occur in some narrow areas of southern China (south of Hainan Island and Xishuangbanna, Yunnan). In Bramley's study (Bramley, 2009), *C.* candicans formed a clade with *C. furfuracea, C. maingayi, C. angustifolia,* and *C. poilanei* (assigned into section Clade I in our study) without support rate. However, in the present study, *C. candicans* exhibited a closer sister relationship with *C. erioclona* and *C. yunnanensis* (PP=1.00, BP=71). Morphologically *C. candicans* is most easily confused with *C. erioclona,* but the indumentums on the outer surface of the ovary and fruit may be effective morphological markers to distinguish them. In *C. erioclona,* the ovary and fruit are covered with branched hairs while that of *C. candicans* is glabrous. In addition, the black fruit (when mature) of *C. candicans* (Figure 5A) allows it to be distinguished from *C. erioclona* (maturing purple). Within clade II, *C. arborea* (Figure 5B)

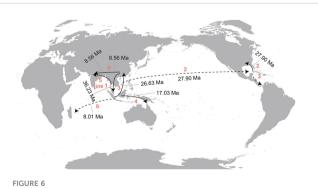
Ancestral range estimation of *Callicarpa* using the BEAST maximum clade credibility chronogram. Letters a-g indicate nodes of interest. Ancestral range reconstruction was performed by S-DEC in RASP. Map showing eight biogeographical regions in colors as defined in this study.

FIGURE 5

Morphological characteristics of *Callicarpa* for phylogenic discussion. (A) *C. candicans*; (B) *C. arborea*; (C) *C. luteopunctata*; (D) *C. pentandra*; (E) *C. americana*; (F) *C. peichieniana*; (G) *C. macrophylla*; (H) *C. longifolia*; (I) *C. kochiana*; (J) *C. brevipes*; (K) *C. bodinieri*; (L) *C. kwangtungensis*; (M, N) *C. rubella*; (O) *C. longipe*.

appeared at the top of the clade and as the sister of other tree species. Although *C. arborea* and *C. yunnanensis* are extremely similar and share an overlapped distribution, they appeared in different branches in clade II. Geographically, *C. arborea* is one of the most common species of the genus with a wide distribution (almost everywhere in Southeast Asia, Leeratiwong et al., 2009; Bramley, 2013), while Yunnan (Southwest China) is the edge of its northernmost distribution (Fang, 1982; Chen and Gilbert, 1994). Contrarily, *C. yunnanensis* is just narrowly distributed in the mixed

forests of valleys in southern Yunnan and northern Vietnam (Fang, 1982; Chen and Gilbert, 1994). For palynology, two species can be distinguished from each other by their different types of pollen exine ornamentation: the pollen of *C. yunnanensis* has an exine sculpture of rugosely reticulate while *C. arborea* has regulate exine ornamentation (Ma et al., 2016). *Callicarpa luteopunctata* (Figure 5C) formed an independent branch (Clade III) and this species has an extremely narrow geographical distribution, only found in high altitude mountains of the Yunnan-Guizhou Plateau


located in Southwest China. Their branchlets are cylindrical and there are no ridges or hair ring between the two petioles, and the peduncle is usually shorter than the petiole. In particular, both sides of the leaves have densely yellow glades. Clade IV contained several Indonesia-Malaysia-Thailand distributed species originally described as Geunsia (Figure 5D). Our results indicated that the 'Geunsia' group formed a well supported clade (PP=1.00, BP=100). The New World group was composed by C. americana (Figure 5E) and C. acuminate, which are ranging in North America and they formed a clade (Clade V, PP=0.89, BP=83). Old World and New World lineages also shows a complex phylogenetic relationship. In the present study, C. integerrima var. chinensis and C. dichotoma formed Clade VI, which represented the few lianas or slenderclimbing species of Callicarpa mainly distributed in China (Figures 1B, E). When carrying out a palynology study on Callicarpa in China, Ma et al. (2016) suggested that the distinct coarsely reticulate exine sculpture was found only in certain species - those that represented the climbing shrubs species of Callicarpa native to China (C. integerrima, C. integerrima var. chinensis and C. pilosissima). Based on the distinct, strongly curved hairs on the stem and extremely simple cymes (only 1-3 flowers, or one dichotomous, Figure 5F), Fang (1982) treated C. peichieniana as a monotypic subgenus (Subgen. Peiantha Chun et S. L. Chen) and other species constituted the subgenus Callicarpa. However, our phylogenetic result from ML analyses showed that C. peichieniana was mixed with other species (Subgen. Callicarpa), which does not support Fang's classification system (Fang, 1982). The traditional subgenus classification system of Callicarpa based on only two characters is unpredictable. Clade VII was further divided into two main subclades: subclade VIII and subclade VIIII. Subclade VIII consisted of C. nudiflora and C. macrophylla (Figure 1D; Figure 5G), and both species share a series of common characteristics. However, inflorescence width and peduncle length are different between the two species, while the most significant difference to distinguish the two species is that the calyx, corolla, and ovary of C. macrophylla are covered by stellate tomentose, while those of C. nudiflora are glabrous. In addition, it is worth bearing in mind that the leaves of C. nudiflora turn black after being dried while those of C. macrophylla do not. Subclade VII_{II} contained several species characterized by a conspicuous interpetiolar ridge resembling a stipule scar, and a white baccate drupe with an obviously softer fleshy exocarp than other species of Callicarpa. Yet the color and textures of the exocarp have never attracted the attention of previous taxonomic researchers working on Callicarpa. In Subclade VII_{II} (PP=0.98, BP=97), these species are primarily distributed in China, although C. longifolia is considered as a broadly distributed species (Figure 5H), and C. angusta is endemic in Vietnam. Based on C. kochiana tubular calyx (Figure 5I), Fang (1982) assigned C. kochiana as a monotypic section Tubulosae, and divided other species of the subgenus Callicarpa into Section Callicarpa. In the present study, C. kochiana is embedded in C. longifolia and C. loboapiculata, and together form a clade (PP=0.43, BP=56), which shares a series of synapomorphy: a conspicuous interpetiolar ridge and white baccate drupe. Increasing the number of samples of C. kochiana and more genetic data is all needed to confirm its species status (Chanderbali et al., 2001; Small et al., 2004; Guo and Ge, 2005; Liu et al., 2021). Clade VIII could be recognized as one broader clade which was strongly supported as the largest group of Callicarpa investigated in the present study (PP=1.00, BP=100), and comprised of some taxa with a broad range of morphological variation. The Subclade VIII_I was formed with good support (PP=1.00, BP=100). Among them, C. hainanensis and C. brevipes formed a small clade (Figures S2-1, S2-2, PP=0.96, BP=84) characterized by their lanceolate or obovatelanceolate leaves (Figure 5J), and the two species share a series of typical characters of Chang's (1951) section Verticirima, such as larger, oblong, apical pore dehiscent anthers and short filaments. However, C. hainanensis is obviously distinguished from the latter by its obovate-lanceolate leaves, long-cup-shaped or subtubular calyx dehisced as the fruits mature, and sharp triangular lobes (Ma and Zhang, 2012). Callicarpa bodinieri is easily distinguished by its red subsessile glands on stem, leaves, and flowers from other species (Figure 5K), and Leeratiwong et al. (2009) found that C. bodinieri and C. glandulosa are conspecific by examining their specimens. Therefore, Leeratiwong et al. (2009) reduced C. glandulosa to be a synonym of C. bodinieri. In this study, they also formed a very close relationship (Figures S2-1, S2-2, PP=1.00, BP=92). Within subclade VIII_{II}, C. pedunculata, C. formosana, and C. pedunculata var. longifolia clustered into one subclade (Figures S2-1, S2-2, PP=1.00, BP=100). During the taxonomic revision of Philippines Callicarpa, Bramley (2013) treated C. formosana as one of the numerous synonyms of C. pedunculata, a species with an extensive distribution and significant variation in leaf shape. As our molecular results suggest, C. pedunculata from Australia was nested within C. formosana, so we supported reduction of C. formosana to the synonym of C. pedunculata according to the rules of nomenclature. Bramley (2013) indicated that C. pedunculata was most likely to be confused with C. rubella, from which it differed by its typically relatively narrow leaves and lack of glandular hairs but with abaxially stellate tomentose, adaxially minute hispid, and an obtuse or rounded base. Their close relationship was also verified in the present phylogenetic study as two species appearing in close sister clades. It was unexpected that C. kwangtungensis (Figure 5L), designated as a typical species of section Verticirima in the Chang (1951) system, formed a sister clade to C. prolifera and C. pauciflora (Figures S2-1, S2-2, PP=0.95, BP=99). For C. rubella, morphologically, we found in our field investigation that white fruit populations of C. rubella always mix with purple fruit populations in the coinhabiting areas (Figures 5M, N). As a broadly distributed species, C. rubella is variable morphologically, especially in terms of its indumentum and the size and shape of the leaves. The significant difficulty in determining the identity of the complex group of C. rubella based on morphology and phylogenetic placement suggests this group may potentially represent hybrids, although we are unaware of the specific parental origin. It makes sense that identical repeated interspecies hybridization may occur in C. rubella and its infraspecific taxa. In Japanese Callicarpa, Tsukaya et al. (2003) reported the hybridization and introgression occurring between C. japonica and C. mollis in central Japan with molecular data, observing that both species were pollinated by bees (Kawakubo, 1990; Momose et al., 1998; Kato et al., 1999; Kato, 2000). Xu et al. (2013) investigated the cross breeding between C.

dichotoma and *C. bodinieri* in China and their result indicated that there was no crossing barrier between the two species, and they observed a high fruit setting ratio. *Callicarpa longipes* and the complex group of *C. rubella* formed a group morphologically well delimited with other species by a cordate leaf base (Figures S2-1, S2-2, PP=0.73, BP=94) (Figure 5O). The complex group of *C. rubella* has troubled researchers for a long time in terms of distinguishing each species due to their extremely ambiguous morphological circumscription. We have to pay attention to *C. japonica* which formed a close relationship with *C. rubella* f. *crenata* (Figures S2-1, S2-2, BP=100, PP=1.00). In Bramley's revision of Bornean *Callicarpa* (Bramley, 2009), the sister clade of *C. japonica* and *C. rubella* was also represented.

4.2 East Asia and Southeast Asia as the ancestral area and *Callicarpa*'s lineage diversification within Asia

The ancestral range reconstruction analyses indicated that Callicarpa most likely originated in East Asia and Southeast Asia (Figure 4, node A). With our time estimates, the S-DEC model inferred that the main diversification events in Callicarpa were dated to the Middle-Oligocene, mainly concentrated to the Miocene (Figure 4). Multiple dispersal events were likely responsible for the current biogeographic patterns of the genus. This biome began to rise in the early Miocene (ca. 20 Ma) and further diversified in the late Miocene, driven probably by the intensifying East Asian summer monsoon during these two periods (Guo et al., 2002; Sun and Wang, 2005). In later branching lineages the genus might have experienced more rapid diversification in the Middle-Miocene (Figure 3-1, LTT plot). It probably corresponded with one of the major uplifts of the QTP and subsequent aridification events (Yu et al., 2014). Before about 14 Ma, there was a relatively stable diversification rate and subsequently an accelerated lineage accumulation. This upward trend was maintained during the Pliocene and the Pleistocene, which had been attributed to topographic and climatic circumstances (Qian and Ricklefs, 2000). Since the middle-late Oligocene to the Miocene, the coverage of Antarctic glaciers shrunk owing to global warming, and there was a high point of temperature in the middle-Miocene (Gao et al., 2020). Donoghue and Smith (2004) once proposed that the Miocene was one of the active periods of species diversification. The occurrence of the monsoon was characterized by changes in the prevailing wind direction and severe precipitation. It was often accompanied by the rapid strengthening of atmospheric-energy and the water cycle, which directly affected the global hydrothermal cycle and heat distribution, and regulated global climate change (Webster et al., 1998; An et al., 2000; Jiang et al., 2017). Numerous studies have suggested that Southeast Asia is a 'museum' of early angiosperms, harboring tropical rain forests with the most pronounced monsoon climate and acting as an 'evolutionary front' for some tropical taxa, given that it has the largest archipelagos and probably has the most complex geological history in the world (Van Welzen et al., 2011; Tan et al., 2020). The extremely rich biodiversity in Southeast Asia hints not only to one of the birthplaces and refuges of early angiosperms (Buerki et al., 2014), but also to a meeting point for the long-distance spread of species (Gunasekara, 2004; Lohman et al., 2011), which profoundly affects the formation and evolution of global flora. The Sunxdaland (Malay Peninsula; Borneo; Sumatra) and the Philippines are two acknowledged biodiversity hotspots in Southeast Asia (Myers et al., 2000) and there appear to be two major centers of diversity in terms of numbers of Malesian species for *Callicarpa*: Borneo and the Philippines (Bramley, 2013). Moreover, our findings likewise suggested that East Asia and Southeast Asia are main sources of biodiversity of *Callicarpa*.

Around 23.75 Ma (95%HPD: 13.12-36.09 Ma), there occurred the third extinction event in Southeast Asia resulting in Callicarpa luteopunctata splitting from the remaining species (Figure 4, node E). This species has an extremely narrow geographical distribution and is found only in high altitude mountains of the Yunnan-Guizhou Plateau located in Southwest China. Coincidentally, C. kinabaluensis and C. clemensorum were also reported to be narrowly distributed at high altitude (1600-2500 m) on the peaks surrounding Mount Kinabalu in Malesia (Bramley, 2011). A set of common features shared by C. kinabaluensis and C. clemensorum was speculated to be an adaptation to the frigid environment: so dense hairs and an interesting inflorescence structure with distinct peduncles and almost globose cymes. In addition, their twigs have scattered warty growth and the lamina surface occurred vesiculose (Bramley, 2009). However, C. luteopunctata has the indumentum on the petioles and cymes obviously sparser than that of C. kinabaluensis and C. clemensorum. It is a pity that this study failed to contain the two Malaysian species and we still lack an understanding of the unambiguous mechanism of these specific high altitude species in the genus Callicarpa of typical near tropics originated (Bramley, 2009; Bramley, 2013; Ma et al., 2016). Further studies on how the mechanism developed are urgently needed in the future. However, the onset of the Asian monsoon around the Oligocene-Miocene transition created a connection between forests from the low to high latitudes of East Asia (Sun and Wang, 2005; Ji et al., 2019), which might provide some insights. Subsequently, more frequent exchanges took place in the Asian interior among species we investigated in the present study. At

Historical migrations in Callicarpa estimated from the ancestral area reconstruction. The estimated times for the first migration among areas are shown. The dotted line represents the guessed route according to the distribution of the genus.

36.23 Ma (95%HPD: 18.81-60.39 Ma) there was the first dispersal from East Asia to Southeast Asia (Figure 4, node A; Figure 6, line 1) and subsequently, after the Oligocene, several similar dispersals (from East Asia to Southeast Asia) happened again with higher probability in Callicarpa. At the Oligocene-Miocene boundary, the Tibetan Plateau experienced a rapid uplift and previous geological evidence indicated that different areas of the Plateau have experienced different degrees of uplift at different times (Neogene and Quatemary) (Royden et al., 2008; Wang, 2017). These uplifts since the early Miocene have created high mountains and deep valleys within the plateau, which could have accelerated the production of new allopatric species, and been partly responsible for the high local and regional species richness (Liu et al., 2006) and induced extreme drying and desertification in the Asian interior, strengthening the Asian monsoons with a shift occurring from arid/ semi-arid in the Asian continental interior (Guo et al., 2002; Sun and Wang, 2005). These factors probably effected the expansion of Callicarpa species within Asia regions later on (Figure 6, line 3, 5). Our study indicated that at 26.63 Ma (95%HPD: 14.72-41 Ma), there was first migration from Southeast Asia to East Asia (Figure 4, node D Figure 6, line 3) and during the Miocene-Pliocene boundary, two vicariance events occurred between Southeast Asia and East Asia, which influenced C. brevipes f. kiruninsularis, C. hainanensis, and C. giraldii all endemic to China. Under the influence of tectonic motion and climate fluctuation, dispersal and vicariant events occurred alternately, and habitats periodically isolated and merged, which may accelerate species differentiation in this process (Thomas et al., 2012). In Asia, East Asian monsoons, South Asian monsoons, and Northwest Pacific monsoons prevailed in summer (Jiang et al., 2017), which might have promoted the rapid differentiation and spread of Callicarpa and facilitate tropical species to spread northward (mainly to the area now China) by regulating rainfall. Apparently, the climate of Asia was controlled mainly by the monsoon system due to intense land-ocean thermal contrast, and the dynamics and thermal effects of the Tibet Plateau (Sun and Wang, 2005). The monsoon climate intensified from the late-Miocene, simultaneously bringing an East Asian subtropical humid climate and promoting the floristic expansion of Asia (Ji et al., 2019). We speculated that climatic change and global cooling since the mid-Miocene might have played a crucial role in the inferred onset of diversification of Callicarpa in Asia. During this time, several independent vicariance events between East Asia and Southeast Asia occurred, which accelerated some endemic species to form in China. Also, the S-DEC model revealed the divergence of C. dichotoma and C. japonica, two species distributed in Japan. The divergence times of them were 8.19 Ma (Miocene) and 3.9 Ma (Pliocene), and our results speculated that the opening of the Japan Sea corresponded roughly to their spread from continental East Asia to the Japan islands (Santosh and Senshu, 2011; Ji et al., 2019). Sea levels fluctuating alternately enabled alternate conditions for population fragmentation and admixture of temperate biota in this East China-Japan-Korea region (Qiu et al., 2011). It has long been recognized that the climatic changes of the Quaternary caused repeated shifts in the distribution of plants and animals presently found throughout the SJFR (Sino-Japanese Floristic Region). The RASP analysis also

suggested the last ancestral area of *C. giraldii* was East Asia and Southeast Asia, and under the influence of one vicariance event, the species occurred only in China. *C. giraldii* seems able to tolerate a relatively cool climate and is widely distributed from subtropical Southeast China (Jiangxi, Fujian, Hunan) to temperate areas (Henan, Shanxi). Morphologically, they are small shrubs with cabined, tight cyme.

4.3 The disjunct pattern between the Paleotropics and Neotropics in *Callicarpa*

Callicarpa also presents an amphi-Pacific distribution pattern. Our results revealed that during the Middle-Oligocene, floristic exchange in Callicarpa occurred between Southeast Asia and the Temperate North America-Neotropical region (Figure 4, node C). Nevertheless, our inferred date for migrations of Callicarpa from the Paleotropics to Neotropics is too young to have been caused by the breakup of Gondwana (Lomolino, 2010; Jin et al., 2020). The oft-stated view is that the North Atlantic Land Bridge (NALB) or Bering Land Bridge (BLB) has played a major role in this process (Wolfe, 1975; Tiffney, 1985; Tiffney and Manchester, 2001; Chen et al., 2020; Zhang et al., 2020b). The NALB generally functioned as a famous migration route for thermophilous plant taxa between Europe and eastern North America (Tiffney and Manchester, 2001; Ian, 2006; Jin et al., 2020). Tiffney and Manchester (2001) summarized biogeographic continuity across the North Atlantic Ocean during the Tertiary and pointed out that the bridge was broken by late Eocene. According to the lack of records of the extant or fossil species of Callicarpa from Europe, the route (by the NALB) seems infrequent for this originally tropical genus and it is also believable that the NALB was no longer available at the time for the dispersal of Callicarpa. Likewise, the way via Beringian connections seems unlikely owing to the mostly tropical affinities of Callicarpa (Chen et al., 2020; Li et al., 2020a). To explain this amphi-Pacific tropical and subtropical disjunction occurring in Callicarpa, the 'Long-distance migration across the Pacific Ocean' route was speculated herein, combined with our S-DEC inferences. Yang et al. (2018) reported that Kingsboroughia alba (Sabiaceae), with an amphi-Pacific tropical disjunct distribution, migrated from Central America to tropical Asia via long-distance dispersal during the time of the Neogene and Quaternary boundary. Similar transoceanic biogeographical patterns have been found in other plant groups, such as Nettles (Urticeae, Urticaceae) (Huang et al., 2019), Lardizabalaceae (Wang et al., 2020), and polystichoid ferns (Dryopteridaceae) (Le Pechon et al., 2016). In our results, owing to the taxa discovered from Western Pacific Islands and Hawaiian islands, a hypothesis could be proposed that during the Middle-Oligocene the ancestor of C. americana and C. acuminate dispersed for the first time from Southeast Asia to the Neotropics by trans-ocean routes (Figure 6, line 2) and subsequently further migrated northward to temperate North America and southward to South America (Figure 6, line 2), resulting in the amphi-Pacific disjunction pattern of the genus Callicarpa. The achievement of plant migration between North America and South America was also partly related to taking advantage of island stepping-stones

(island hopping) and stochastic long-distance dispersals (Gentry, 1982; Bacon et al., 2015). In late Tertiary, the colonization of Callicarpa in Pacific Islands, Temperate North America, and the Neotropics occurred again. Physical connections between affected areas provide inference about the biogeographic history. The uplift of the northern Andes and the rising of volcanic islands may have provided the conditions responsible for the exchange of Callicarpa between Central and South America (Li and Wen, 2013), and these islands eventually coalesced into today's lower Central America with a substantial land connection across the Isthmus of Panama (Gentry, 1982). The Panama Isthmus as the narrow strip of land connected North and South America and offered a channel for migration in the Pliocene after it closed (Keigwin, 1978). In the New World, 33 species of Callicarpa were recognized, particularly on the Caribbean Islands (24 species currently recognized in Cuba) (Bramley, 2013). Cuba possibly has broadly similar climates and floristic components to Southeast Asia (they are at similar latitudes) (Milne and Abbott, 2002) and Cuba appears to be another center of diversification of Callicarpa. In sum, a trans-Pacific dispersal between two regions is plausible (Wang et al., 2020) to explain the establishment of a New World distribution of Callicarpa, and this hypothesis requires further analysis and testing. Callicarpa successfully reached the Hawaii Islands, other oceanic islands and the Neotropics, to some extent reflecting efficient seed dispersal by birds, usually attracted by small and brightly colorful fruits (especially purple fruits) (Popp et al., 2011). Interestingly, in the progress of tracking the extraordinary migratory journeys and broad-scale habitat use of sooty shearwaters, Shaffer et al. (2006) found that this small seabird can fly right across the Pacific Ocean. Biotic seed dispersal is possibly correlated to large species range sizes and most biotically dispersed species with colorful berries (fleshy fruit) and endozoochorous seeds embedded in juicy pericarp were regarded more suitable for frugivorous birds to spread over long-distance (Loiselle and Blake, 1999; Kessler-Rios and Kattan, 2012; Tan et al., 2020). When the mode of dispersal of Cornus was studied, Lindelof et al. (2020) reported that 'Island hopping' was a possible mode of dispersal in bird-dispersed genera (producing fleshy, nutritious fruits). However, what kinds of birds are involved in the spreading of Callicarpa is still unknown, and further studies about dispersal agents and other driving factors are required to gain

4.4 Migrations between Southeast Asia and oceanic regions or islands of the Indian ocean

more insights into the patterns of diversification of Callicarpa.

During the early middle-Miocene, population exchanges of *Callicarpa* among Southeast Asia, Papua New Guinea, and Northern Australia may have occurred (Figure 6, line 4). Between the regions of East and Southeast Asia and Australasia multiple migrations of *Callicarpa* occurred during different geological periods (the Neogene and Quatemary). The Australian plate started to move northward at the beginning of the Paleogene, *ca.* 45 Ma and Northern Australia reached the tropics by the beginning of the Miocene,

progressively moving northwards each year subsequently (Li and Powell, 2001; Yuan et al., 2005), colliding with the Southeast Asian plate in the middle-Miocene (Lee and Lawyer, 1995; Tan et al., 2020), which quite possibly facilitated the flora exchanges among these regions. Furthermore, the onset of the New Guinean highland orogenesis in the late Miocene (Zachos et al., 2001) and putative island chain connections between Asia and Australia during mid to late Miocene (Baldwin et al., 2012; Wu et al., 2019; Li et al., 2020b) made migrations possible. The emergence of the land masses of the eastern Wallace's Line including Wallacea, Sulawesi, New Guinea, and a series of volcanic islands along the Sunda Arc, the Banda Arc, and the Halmahera Arc connecting these regions from the late Miocene onwards, probably offered a potential channel for dispersals between the two regions (Hall, 2009). Whereafter, the declining sea level during the maximum glacial period (Hantoro et al., 1995; Tan et al., 2020) undoubtedly provided more chances for the exchange of Callicarpa, including its spread westward -- the opposite dispersal from northern Australia and the island of New Guinea to Southeast Asia. The last common ancestor of C. macrophylla has experienced one westward dispersal to the Mascarene Islands and Reunion Islands (Figure 6, line 6). Molecular dating frames for the African-Asian disjunction ranged from the Cretaceous (Conti et al., 2002) to the Pleistocene (Li et al., 2009). Our divergence time estimates for Callicarpa appear too young to be explained by Indian rafting (Cretaceous). Researchers have built a strong argument that many tropical taxa could have migrated between Africa and Asia through Arabia (Zhou et al., 2012; Jin et al., 2020). However, this overland migration does not seem likely because there are no records of extant species of Callicarpa from Arabia. The best candidate for explaining the dispersal from Southeast Asia to Madagascar might be through transoceanic long distance dispersal (Les et al., 2003; Yuan et al., 2005; Yao et al., 2016).

As a consequence, this diversity is not evenly distributed and fairly closely follows the distribution of certain topographic and climatic conditions. Major biogeographic lines were crossed frequently and multiple past colonization events had left traces.

5 Conclusions

Our phylogenetic results indicated that *Callicarpa* is monophyletic with respect to the groups considered, and eight primary clades were well supported. We supported a two-species treatment of certain synonyms, regarding *C. poilanei* as the synonym of *C. angustifolia* and *C. formosana* as the synonym of *C. pedunculata*. Our biogeographic analyses suggested that the probable ancestor of the *Callicarpa* crown clade originated in the tropical regions of East Asia and Southeast Asia around the Late-Eocene. The early diversification of a *Callicarpa* ancestor occurred at 30.86 Ma and during that period this genus may have undergone an eastward dispersal from Asia to Pacific Islands by trans-ocean long-distance dispersal. Subsequently, there could be dispersal, vicariance, and extinction events resulting in the split between the Old World *Callicarpa* clade and the New World *Callicarpa* clade. Subsequently, Asian summer monsoons probably contributed to the diversification of the *Callicarpa* lineage within Asia.

Around the early middle-Miocene, the onset of the New Guinean highland orogenesis and putative island chain connections made migrations to Oceania possible. The dispersal from Southeast Asia to Madagascar might have been achieved through transoceanic long distance dispersal.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

Author contributions

ZM and HC designed the study. HC analyzed the data and wrote the manuscript. XL collected the geographical data of species and WW performed the experiments. ZM, BL and GB collected plant material and provided valuable advices for the manuscript. All authors revised the manuscript and approved the submitted version.

Funding

This work was funded by National Natural Science Foundation of China under Grant [31760045, 31970220 and 32260047] and Natural Science Foundation of Guangxi Province under Grant [2018GXNSFAA281132], and Foundation of Guangxi Key Laboratory of Sugarcane Biology [GXKLSCB-202004].

References

An, Z. S., Porter, S. C., Kutzbach, J. E., Wu, X. H., Wang, S. M., Liu, X. D., et al. (2000). Asynchronous Holocene optimum of the East Asian monsoon. *Quaternary Sci. Rev.* 19, 743–762. doi: 10.1016/S0277-3791(99)00031-1

Andersson, S. (2006). On the phylogeny of the genus *Calceolaria* (Calceolariaceae) as inferred from ITS and plastid matK sequences. *Taxon* 55, 125–137. doi: 10.2307/25065534

Bacon, C. D., Silvestro, D., Jaramillo, C., Smith, B. T., Chakrabarty, P., and Antonelli, A. (2015). Biological evidence supports an early and complex emergence of the isthmus of Panama. *Proc. Natl. Acad. Sci. United States America* 112, E3631–E3631. doi: 10.1073/pnas.1423853112

Baldwin, S. L., Fitzgerald, P. G., and Webb, L. E. (2012). Tectonics of the new Guinea region. *Annu. Rev. Earth Planetary Sci.* 40, 495–520. doi: 10.1146/annurev-earth-040809-152540

Baldwin, B. G., and Markos, S. (1998). Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: congruence of ETS and ITS trees of *Calycadenia* (Compositae). *Mol. Phylogenet. Evol.* 10, 449–463. doi: 10.1006/mpev.1998.0545

Beardsley, P. M., and Olmstead, R. (2002). Redefining phrymaceae: the placement of *Mimulus*, tribe mimuleae, and *Phryma. Am. J. Bot.* 89, 1093–1102. doi: 10.3732/ajb.89.7.1093

Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C. H., Xie, D., et al. (2014). BEAST 2: a software platform for bayesian evolutionary analysis. *PloS Comput. Biol.* 10, 6. doi: 10.1371/journal.pcbi.1003537

Bramley, G. L. C. (2009). The genus *Callicarpa* (Lamiaceae) on Borneo. *Botanical J. Linn. Soc.* 159, 416–455. doi: 10.1111/j.1095-8339.2009.00907.x

Bramley, G. L. C. (2011). Distribution patterns in malesian *Callicarpa* (Lamiaceae). *Gardens' Bull. Singapore* 63, 287–298. Available at: http://biostor.org/reference/140290

Bramley, G. L. C. (2013). The genus *Callicarpa* (Lamiaceae) in the Philippines. *Kew Bull.* 68, 369–418. doi: 10.1007/s12225-013-9456-y

Acknowledgments

We immensely appreciated the precious samples from DZ (South China Botanical Garden, CAS, China) and GB (The Royal Botanic Gardens, Kew, UK) and advices for the manuscript. We are also incredibly grateful to Pengcheng Fu (Luoyang Normal University, China) and Yongjia Zhan (Capital Normal University, China) for guiding and providing valuable advices for data analysis.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1133157/ full#supplementary-material

Buerki, S., Forest, F., and Alvarez, N. (2014). Proto-South-East Asia as a trigger of early angiosperm diversification. *Botanical J. Linn. Soc.* 174, 326–333. doi: 10.1111/boj.12129

Chanderbali, A. S., van der Werff, H., and Renner, S. S. (2001). Phylogeny and historical biogeography of lauraceae: evidence from the chloroplast and nuclear genomes. *Ann. Missouri Botanical Garden* 88, 104–134. doi: 10.2307/2666133

Chang, H. (1951). A review of the Chinese species of *Callicarpa. J. Systematics Evol.* 1, 269–312.

Chen, S., and Gilbert, M. (1994). Verbenaceae. Flora China 17, 1-49.

Chen, X. H., Xiang, K. L., Lian, L., Peng, H. W., Erst, A. S., Xiang, X. G., et al. (2020). Biogeographic diversification of *Mahonia* (Berberidaceae): implications for the origin and evolution of East Asian subtropical evergreen broadleaved forests. *Mol. Phylogenet. Evol.* 151, 11. doi: 10.1016/j.ympev.2020.106910

Conti, E., Eriksson, T., Schonenberger, J., Sytsma, K. J., and Baum, D. A. (2002). Early tertiary out-of-India dispersal of crypteroniaceae: evidence from phylogeny and molecular dating. *Evolution* 56, 1931–1942. doi: 10.1111/j.0014-3820.2002.tb00119.x

Demesure, B., Sodzi, N., and Petit, R. J. (1995). A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. *Mol. Ecol.* 4, 129–134. doi: 10.1111/j.1365-294X.1995.tb00201.x

Dong, W., Liu, J., Yu, J., Wang, L., and Zhou, S. (2012). Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. *PloS One* 7, e35071. doi: 10.1371/journal.pone.0035071

Donoghue, M. J., and Smith, S. A. (2004). Patterns in the assembly of temperate forests around the northern hemisphere. *Philos. Trans. R. Soc. B-Biological Sci.* 359, 1633–1644. doi: 10.1098/rstb.2004.1538

Doyle, J. J., and Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bull.* 19, 11–15.

Drew, B. T., and Sytsma, K. J. (2012). Phylogenetics, biogeography and staminal evolution in the tribe mentheae (Lamiaceae). *Am. J. Bot.* 99, 933–953. doi: 10.3732/ajb.1100549

Fang, W. (1982). Callicarpa l. (Verbenaceae). Flora Reipublicae Popularis Sinicae 65, 24–79.

Fritsch, P. W., Manchester, S. R., Stone, R. D., Cruz, B. C., and Almeda, F. (2015). Northern hemisphere origins of the amphi-pacific tropical plant family symplocaceae. *J. Biogeography* 42, 891–901. doi: 10.1111/jbi.12442

Gao, J., Yu, T., and Li, J. (2020). Phylogenetic and biogeographic study of *Acer* (Sapindaceae) based on three chloroplast DNA fragment sequences. *Acta Ecologica Sin.* 40, 5992–6000. doi: 10.1038/s41598-020-78145-0

Gaynor, M. L., Fu, C. N., Gao, L. M., Lu, L. M., Soltis, D. E., and Soltis, P. S. (2020). Biogeography and ecological niche evolution in diapensiaceae inferred from phylogenetic analysis. *J. Systematics Evol.* 58, 646–662. doi: 10.1111/jse.12646

Gentry, A. H. (1982). Neotropical Floristic diversity: phytogeographical connections between central and south America, pleistocene climatic fluctuations, or an accident of the Andean orogeny? *Ann. Missouri Botanical garden* 69, 557–593. doi: 10.2307/ 2399084

Gunasekara, N. (2004). Phylogenetic and molecular dating analyses of the tropical tree family dipterocarpaceae based on chloroplast matK nucleotide sequence data. Masters thesis. (Montreal: Concordia University).

Guo, Y. L., and Ge, S. (2005). Molecular phylogeny of oryzeae (Poaceae) based on DNA sequences from chloroplast, mitochondrial, and nuclear genomes. *Am. J. Bot.* 92, 1548–1558. doi: 10.3732/ajb.92.9.1548

Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., Wu, H. B., Qiao, Y. S., Zhu, R. X., et al. (2002). Onset of Asian desertification by 22 myr ago inferred from loess deposits in China. *Nature* 416, 159–163. doi: 10.1038/416159a

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Ser. 41, 95–98.

Hall, R. (2009). Southeast asia's changing palaeogeography. *Blumea* 54, 148–161. doi: 10.3767/000651909X475941

Hantoro, W., Faure, H., Djuwansah, R., Faure-Denard, L., and Pirazzoli, P. J. (1995). The sunda and sahul continental platform: lost land of the last glacial continent in SE Asia. *Quaternary Int.* 29, 129–134. doi: 10.1016/1040-6182(95)00015-B

Higgins, S. I., Nathan, R., and Cain, M. L. (2003). Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal? *Ecology* 84, 1945–1956. doi: 10.1890/01-0616

Huang, X. H., Deng, T., Moore, M. J., Wang, H. C., Li, Z. M., Lin, N., et al. (2019). Tropical Asian origin, boreotropical migration and long-distance dispersal in nettles (Urticeae, urticaceae). *Mol. Phylogenet. Evol.* 137, 190–199. doi: 10.1016/j.ympev.2019.05.007

Ian, M. R. (2006). Northern hemisphere plant disjunctions: a window on tertiary land bridges and climate change? Ann. Bot. 98, 465-472. doi: 10.1093/aob/mcl148

Ji, Y. H., Yang, L. F., Chase, M. W., Liu, C. K., Yang, Z. Y., Yang, J., et al. (2019). Plastome phylogenomics, biogeography, and clade diversification of *Paris* (Melanthiaceae). *BMC Plant Biol.* 19, 14. doi: 10.1186/s12870-019-2147-6

Jiang, C., Tan, K., and Ren, M. (2017). Effects of monsoon on distribution patterns of tropical plants in Asia. *Chin. J. Plant Ecol.* 41, 1103–1112. doi: 10.17521/cjpe.2017.0070

Jin, J. J., Yang, M. Q., Fritsch, P. W., Van Velzen, R., Li, D. Z., and Yi, T. S. (2020). Born migrators: historical biogeography of the cosmopolitan family cannabaceae. *J. Systematics Evol.* 58, 461–473. doi: 10.1111/jse.12552

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A., and Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods* 14, 587–589. doi: 10.1038/nmeth.4285

Kar, R. (1996). On the Indian origin of *Ocimum* (Lamiaceae): a palynological approach. *Palaeobotanist* 43, 43-50.

Kato, M. (2000). Anthophilous insect community and plant-pollinator interactions on amami islands in the Ryukyu archipelago, Japan. *Kyoto Univ.* 29, 157–254. Available at: http://hdl.handle.net/2433/156116

Kato, M., Shibata, A., Yasui, T., and Nagamasu, H. (1999). Impact of introduced honeybees, *Apis mellifera*, upon native bee communities in the bonin (Ogasawara) islands. *Res. Population Ecol.* 41, 217–228. doi: 10.1007/s101440050025

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol. Biol. Evol.* 30, 772–780. doi: 10.1093/molbev/mst010

Kawakubo, N. (1990). Dioecism of the genus Callicarpa (Verbenaceae) in the bonin (Ogasawara) islands. botanical magazine= Shokubutsu-gaku-zasshi 103, 57–66. doi: 10.1007/BF02488411

Keigwin, L. D. (1978). Pliocene closing of the isthmus of Panama, based on biostratigraphic evidence from nearby pacific ocean and Caribbean Sea cores. *Geology* 6, 630-634. doi: 10.1130/0091-7613(1978)6<630:PCOTIO>2.0.CO;2

Kessler-Rios, M. M., and Kattan, G. H. (2012). Fruits of melastomataceae: phenology in Andean forest and role as a food resource for birds. *J. Trop. Ecol.* 28, 11–21. doi: 10.1017/S0266467411000642

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* 33, 1870–1874. doi: 10.1093/molbev/msw054

Latham, R. E., and Ricklefs, R. E. (1993). Continental comparisons of temperatezone tree species diversity. *Species Diversity Ecol. communities: historical geographical Perspect II*, 294–314.

Lavin, M., and Luckow, M. (1993). Origins and relationships of tropical north America in the context of the boreotropics hypothesis. *Am. J. Bot.* 80, 1–14. doi: 10.1002/j.1537-2197.1993.tb13761.x

Lee, T. Y., and Lawver, L. A. (1995). Cenozoic Plate reconstruction of southeast Asia. Tectonophysics 251, 85–138. doi: 10.1016/0040-1951(95)00023-2

Leeratiwong, C., Chantaranothai, P., and Paton, A. (2007). Notes on the genus *Callicarpa* (Lamiaceae) in Thailand. *Thai For. Bull.* 37, 73–79. Available at: https://li01. tci-thaijo.org/index.php/ThaiForestBulletin/article/view/24203

Leeratiwong, C., Chantaranothai, P., and Paton, A. J. (2009). A synopsis of the genus *Callicarpa* L.(Lamiaceae) in Thailand. *Thai For. Bull.* 35, 36–58. Available at: https://li01.tcithaijo.org/index.php/ThaiForestBulletin/article/view/24334

Le Pechon, T., Zhang, L., He, H., Zhou, X. M., Bytebier, B., Gao, X. F., et al. (2016). A well-sampled phylogenetic analysis of the polystichoid ferns (Dryopteridaceae) suggests a complex biogeographical history involving both boreotropical migrations and recent transoceanic dispersals. *Mol. Phylogenet. Evol.* 98, 324–336. doi: 10.1016/j.ympev.2016.02.018

Les, D. H., Crawford, D. J., Kimball, R. T., Moody, M. L., and Landolt, E. (2003). Biogeography of discontinuously distributed hydrophytes: a molecular appraisal of intercontinental disjunctions. *Int. J. Plant Sci.* 164, 917–932. doi: 10.1086/378650

Li, B., Cantino, P. D., Olmstead, R. G., Bramley, G. L., Xiang, C. L., Ma, Z. H., et al. (2016). A large-scale chloroplast phylogeny of the lamiaceae sheds new light on its subfamilial classification. *Sci. Rep.* 6, 34343. doi: 10.1038/srep34343

Li, Y. Q., Dressler, S., Zhang, D. X., and Renner, S. S. (2009). More Miocene dispersal between Africa and Asia-the case of *Bridelia* (Phyllanthaceae). *Systematic Bot.* 34, 521–529. doi: 10.1600/036364409789271263

Li, Z. Z., Lehtonen, S., Martins, K., Gichira, A. W., Wu, S., Li, W., et al. (2020b). Phylogenomics of the aquatic plant genus *Ottelia* (Hydrocharitaceae): implications for historical biogeography. *Mol. Phylogenet. Evol.* 152, 106939. doi: 10.1016/ j.ympev.2020.106939

Li, H. W., Liu, B., Davis, C. C., and Yang, Y. (2020a). Plastome phylogenomics, systematics, and divergence time estimation of the *Beilschmiedia* group (Lauraceae). *Mol. Phylogenet. Evol.* 151, 13. doi: 10.1016/j.ympev.2020.106901

Li, Z. X., and Powell, C. (2001). An outline of the palaeogeographic evolution of the Australasian region since the beginning of the neoproterozoic. *Earth-Science Rev.* 53, 237–277. doi: 10.1016/S0012-8252(00)00021-0

Li, P., Qi, Z. C., Liu, L. X., Ohi-Toma, T., Lee, J., Hsieh, T. H., et al. (2017). Molecular phylogenetics and biogeography of the mint tribe elsholtzieae (Nepetoideae, lamiaceae), with an emphasis on its diversification in East Asia. *Sci. Rep.* 7, 12. doi: 10.1038/s41598-017-02157-6

Li, R., and Wen, J. (2013). Phylogeny and biogeography of *Dendropanax* (Araliaceae), an amphi-pacific disjunct genus between tropical/subtropical Asia and the neotropics. *Systematic Bot.* 38, 536–551. doi: 10.1600/036364413X666606

Lian, L., Ortiz, R. D. C., Jabbour, F., Zhang, C. F., Xiang, X. G., Erst, A. S., et al. (2020). Phylogeny and biogeography of pachygoneae (Menispermaceae), with consideration of the boreotropical flora hypothesis and resurrection of the genera *Cebatha* and *Nephroia*. *Mol. Phylogenet. Evol.* 148, 106825. doi: 10.1016/j.ympev.2020.106825

Lindelof, K., Lindo, J. A., Zhou, W. B., Ji, X., and Xiang, Q. Y. (2020). Phylogenomics, biogeography, and evolution of the blue- or white-fruited dogwoods (*Cornus*)-insights into morphological and ecological niche divergence following intercontinental geographic isolation. *J. Systematics Evol.* 58, 604–645. doi: 10.1111/jse.12676

Linnaeus, C. (1753). Species plantarum. 1st edn (Stockholm, Sweden: Laurentius Salvius).

Liu, J. Q., Wang, Y. J., Wang, A. L., Hideaki, O., and Abbott, R. J. (2006). Radiation and diversification within the *Ligularia-Cremanthodium-Parasenecio* complex (Asteraceae) triggered by uplift of the qinghai-Tibetan plateau. *Mol. Phylogenet. Evol.* 38, 31–49. doi: 10.1016/j.ympev.2005.09.010

Liu, C., Yang, J., Jin, L., Wang, S., Yang, Z., and Ji, Y. (2021). Plastome phylogenomics of the East Asian endemic genus *Dobinea*. *Plant Diversity* 43, 35–42. doi: 10.1016/j.pld.2020.05.002

Lohman, D. J., De Bruyn, M., Page, T., Von Rintelen, K., Hal, R., Ng, P. K. L., et al. (2011). Biogeography of the indo-Australian archipelago. *Annu. Rev. Ecology Evolution Systematics* 42, 205–226. doi: 10.1146/annurev-ecolsys-102710-145001

Loiselle, B. A., and Blake, J. G. (1999). Dispersal of melastome seeds by fruit-eating birds of tropical forest understory. *Ecology* 80, 330–336. doi: 10.1890/0012-9658(1999) 080[0330:DOMSBF]2.0.CO;2

Lomolino, M. V. (2010). Four Darwinian themes on the origin, evolution and preservation of island life. J. Biogeography 37, 985–994. doi: 10.1111/j.1365-2699.2009.02247.x

Ma, Z., Bramley, G. L. C., and Zhang, D. (2016). Pollen morphology of *Callicarpa* l. (Lamiaceae) from China and its systematic implications. *Plant Systematics Evol.* 302, 67–88. doi: 10.1007/s00606-015-1244-8

Ma, W. J., Su, Z. W., and Ma, Z. H. (2022). Chemical constituents of *Callicarpa integerrima*. *Guihaia* 42, 1–11. doi: 10.11931/guihaia.gxzw202202008

Ma, Z. H., and Zhang, D. X. (2012). Callicarpa hainanensis: a new species of Callicarpa from hainan, China. J. Systematics Evol. 50, 573-573. doi: 10.1111/j.1759-6831.2012.00229_1.x

Manos, P. S., and Donoghue, M. J. (2001). Progress in northern hemisphere phytogeography: an introduction. Int. J. Plant Sci. 162, S1-S2. doi: 10.1086/324421

Martinez-Millan, M. (2010). Fossil record and age of the asteridae. *Botanical Rev.* 76, 83–135. doi: 10.1007/s12229-010-9040-1

Miller, M., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees in proceedings of the gateway. *New Orleans: Computing Environments Workshop (GCE)* 1–8. doi: 10.1109/GCE.2010.5676129

Milne, R. I., and Abbott, R. J. (2002). The origin and evolution of tertiary relict floras. *Adv. Botanical Res.* 38, 281–314. doi: 10.1016/S0065-2296(02)38033-9

Momose, K., Yumoto, T., Nagamitsu, T., Kato, M., Nagamasu, H., Sakai, S., et al. (1998). Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. *Am. J. Bot.* 85, 1477–1501. doi: 10.2307/2446404

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. *Nature* 403, 853–858. doi: 10.1038/35002501

Nguyen, L. T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.* 32, 268–274. doi: 10.1093/molbev/msu300

Nylander, J. (2004). *MrModeltest v.2.* (Sweden: Evolutionary Biology Centre, Uppsala University).

Paradis, E., Claude, J., and Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in r language. *Bioinformatics* 20, 289–290. doi: 10.1093/bioinformatics/ btg412

Popp, M., Mirre, V., and Brochmann, C. (2011). A single mid-pleistocene longdistance dispersal by a bird can explain the extreme bipolar disjunction in crowberries (*Empetrum*). Proc. Natl. Acad. Sci. United States America 108, 6520–6525. doi: 10.1073/ pnas.1012249108

Qian, H., and Ricklefs, R. E. (2000). Large-Scale processes and the Asian bias in species diversity of temperate plants. *Nature* 407, 180–182. doi: 10.1038/35025052

Qiu, Y. X., Fu, C. X., and Comes, H. P. (2011). Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of quaternary climate and environmental change in the world's most diverse temperate flora. *Mol. Phylogenet. Evol.* 59, 225–244. doi: 10.1016/j.ympev.2011.01.012

Rambaut, A., Drummond, A. J., Xie, D., Baele, G., and Suchard, M. A. (2018). Posterior summarization in bayesian phylogenetics using tracer 1.7. *Systematic Biol.* 67, 901. doi: 10.1093/sysbio/syy032

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., et al. (2012). MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. *Systematic Biol.* 61, 539–542. doi: 10.1093/sysbio/sys029

Royden, L. H., Burchfiel, B. C., and van der Hilst, R. D. (2008). The geological evolution of the Tibetan plateau. *Science* 321, 1054–1058. doi: 10.1126/science.1155371

Sang, T., Crawford, D. J., and Stuessy, T. F. (1997). Chloroplast DNA phylogeny, reticulate evolution, and biogeography of *Paeonia* (Paeoniaceae). *Am. J. Bot.* 84, 1120–1136. doi: 10.2307/2446155

Santosh, M., and Senshu, H. (2011). History of supercontinents and its relation to the origin of Japanese islands. *J. geography-chigaku zasshi* 120, 100–114. doi: 10.5026/ jgeography.120.100

Shaffer, S. A., Tremblay, Y., Weimerskirch, H., Scott, D., Thompson, D. R., Sagar, P. M., et al. (2006). Migratory shearwaters integrate oceanic resources across the pacific ocean in an endless summer. *Proc. Natl. Acad. Sci. United States America* 103, 12799–12802. doi: 10.1073/pnas.060371510

Shaw, J., Lickey, E. B., Beck, J. T., Farmer, S. B., Liu, W. S., Miller, J., et al. (2005). The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. *Am. J. Bot.* 92, 142–166. doi: 10.3732/ajb.92.1.142

Shaw, J., Lickey, E. B., Schilling, E. E., and Small, R. L. (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. *Am. J. Bot.* 94, 275–288. doi: 10.3732/ ajb.94.3.275

Small, R. L., Cronn, R. C., and Wendel, J. F. (2004). Use of nuclear genes for phylogeny reconstruction in plants. *Aust. Systematic Bot.* 17, 145–170. doi: 10.1071/SB03015

Smith, A. B., and Peterson, K. J. (2002). Dating the time of origin of major clades: molecular clocks and the fossil record. *Annu. Rev. Earth Planetary Sci.* 30, 65–88. doi: 10.1146/annurev.earth.30.091201.140057

Sun, Y., Skinner, D. Z., Liang, G. H., and Hulbert, S. H. (1994). Phylogenetic analysis of *Sorghum* and related taxa using internal transcribed spacers of nuclear ribosomal DNA. *Theor. Appl. Genet.* 89, 26–32. doi: 10.1007/BF00226978

Sun, X., and Wang, P. (2005). How old is the Asian monsoon system? – palaeobotanical records from China. *Palaeogeography Palaeoclimatology Palaeoecol.* 222, 181–222. doi: 10.1016/j.palaeo.2005.03.005

Tan, K., Malabrigo Pastor, L., and Ren, M. (2020). Origin and evolution of biodiversity hotspots in southeast Asia. *Acta Ecologica Sin.* 40, 3866-3877. doi: 10.5846/stxb201904160762

Tate, J. A., and Simpson, B. B. (2003). Paraphyly of *Tarasa* (Malvaceae) and diverse origins of the polyploid species. *Systematic Bot.* 28, 723–737. doi: 10.1043/02-64.1

Thomas, D. C., Hughes, M., Phutthai, T., Ardi, W. H., Rajbhandary, S., Rubite, R., et al. (2012). West To east dispersal and subsequent rapid diversification of the megadiverse genus *Begonia* (Begoniaceae) in the malesian archipelago. *J. Biogeography* 39, 98–113. doi: 10.1111/j.1365-2699.2011.02596.x

Tiffney, B. (1985). The Eocene north Atlantic land bridge: its importance in tertiary and modern phytogeography of the northern hemisphere. *J. Arnold Arbor.* 66, 243–273. doi: 10.5962/bhl.part.13183

Tiffney, B. H., and Manchester, S. R. (2001). The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the northern hemisphere tertiary. *Int. J. Plant Sci.* 162, S3–S17. doi: 10.1086/323880

Toussaint, E. F. A., Hendrich, L., Hajek, J., Michat, M. C., Panjaitan, R., Short, A. E. Z., et al. (2017). Evolution of pacific rim diving beetles sheds light on amphi-pacific biogeography. *Ecography* 40, 500–510. doi: 10.1111/ecog.02195

Tsukaya, H., Fukuda, T., and Yokoyama, J. (2003). Hybridization and introgression between *Callicarpa japonica* and *C. mollis* (Verbenaceae) in central Japan, as inferred from nuclear and chloroplast DNA sequences. *Mol. Ecol.* 12, 3003–3011. doi: 10.1046/j.1365-294X.2003.01961.x

Tu, Y. H., Sun, L. N., Guo, M. L., and Chen, W. S. (2013). The medicinal uses of *Callicarpa* 1. @ in traditional Chinese medicine: an ethnopharmacological, phytochemical and pharmacological review. *J. Ethnopharmacology* 146, 465–481. doi: 10.1016/j.jep.2012.12.051

Van Damme, K., and Sinev, A. Y. (2013). Tropical amphi-pacific disjunctions in the cladocera (Crustacea: branchiopoda). J. Limnology 72, 209–244. doi: 10.4081/ jlimnol.2013.s2.e11

Van Der Pijl, L. (1982). "Principles of dispersal in higher plants," in *Springer*, vol. 214. (Berlin: Verlag).

Van Welzen, P. C., Parnell, J., and Slik, J. W. F. (2011). Wallace's line and plant distributions: two or three phytogeographical areas and where to group Java? *Biol. J. Linn. Soc.* 103, 531–545. doi: 10.1111/j.1095-8312.2011.01647.x

Walker, J., Geissman, J., Bowring, S., and Babcock, L. (2018). Geologic time scale v. 5.0. *Geological Soc. America*. Available at: https://www.geosociety.org/.

Wang, Z. (2017). Geological features, the formation and the evolution of the qinghai-Tibetan plateau. *Sci. Technol. Rev.* 35, 51–58. doi: 10.3981/j.issn.1000-7857.2017.06.005

Wang, W., Xiang, X. G., Xiang, K. L., Ortiz, R. D. C., Jabbour, F., and Chen, Z. D. (2020). A dated phylogeny of lardizabalaceae reveals an unusual long-distance dispersal across the pacific ocean and the rapid rise of East Asian subtropical evergreen broadleaved forests in the late Miocene. *Cladistics* 36, 447–457. doi: 10.1111/cla.12414

Webster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M., et al. (1998). Monsoons: processes, predictability, and the prospects for prediction. *J. Geophysical Research-Oceans* 103, 14451–14510. doi: 10.1029/97JC02719

Wei, R., Xiang, Q. P., Schneider, H., Sundue, M. A., Kessler, M., Kamau, P. W., et al. (2015). Eurasian Origin, boreotropical migration and transoceanic dispersal in the pantropical fern genus *Diplazium* (Athyriaceae). *J. Biogeography* 42, 1809–1819. doi: 10.1111/jbi.12551

Wen, J. (1999). Evolution of eastern Asian and eastern north American disjunct distributions in flowering plants. *Annu. Rev. Ecol. Systematics* 30, 421–455. doi: 10.1146/annurev.ecolsys.30.1.421

Wen, J. (2001). Evolution of eastern Asian-Eastern north American biogeographic disjunctions: a few additional issues. Int. J. Plant Sci. 162, S117–S122. doi: 10.1086/322940

Wen, J., Nie, Z. L., and Ickert-Bond, S. M. (2016). Intercontinental disjunctions between eastern Asia and western north America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to neogene. *J. Systematics Evol.* 54, 469–490. doi: 10.1111/jse.12222

White, T. J., Bruns, T., Lee, S., and Talyor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *PCR protocols: guide to Methods Appl.* 18, 315–322. doi: 10.1016/B978-0-12-372180-8.50042-1

Wolfe, J. (1975). Some aspects of plant geography of the northern hemisphere during the late Cretaceous and tertiary. *Ann. Missouri Botanical Garden* 62, 264–279. doi: 10.2307/2395198

Wu, Z., Chen, J., Xu, F., and Wang, H. (2018). Research progress on *Callicarpa* plants. J. Guangdong Pharm. Univ. 34, 808–813. doi: 10.16809/j.cnki.2096-3653.2018102101

Wu, X. K., Liu, X. Y., Kodrul, T., Quan, C., and Jin, J. H. (2019). *Dacrycarpus* pattern shedding new light on the early floristic exchange between Asia and Australia. *Natl. Sci. Rev.* 6, 1086–1090. doi: 10.1093/nsr/nwz060

Wu, S., and Wu, Z. (1996). A proposal for a new floristic kingdom (realm): the Asiatic kingdom its delineationand characteristics. *Floristic Characteristics*, 3–42.

Xu, L., Chen, F., and Xie, Y. (2013). Cross-breeding between two species of *Callicarpa. J. Huazhong Agric. Univ.* 32, 23–27. doi: 10.3969/j.issn.1000-2421.2013.04.005

Yang, Y., Li, Z. Y., Shao, J. J., Wang, G., Wen, R., Tian, J. Z., et al. (2021). *Callicarpa* nudiflora hook. & am.: a comprehensive review of its phytochemistry and pharmacology. *J. Ethnopharmacology* 264, 113123. doi: 10.1016/j.jep.2020.113123

Yang, M. Q., Li, D. Z., Wen, J., and Yi, T. S. (2017). Phylogeny and biogeography of the amphi-pacific genus *Aphananthe*. *PloS One* 12, e0171405. doi: 10.1371/journal.pone.0171405

Yang, T., Lu, L. M., Wang, W., Li, J. H., Manchester, S. R., Wen, J., et al. (2018). Boreotropical range expansion and long-distance dispersal explain two amphi-pacific tropical disjunctions in sabiaceae. *Mol. Phylogenet. Evol.* 124, 181–191. doi: 10.1016/ j.ympev.2018.03.005

Yao, G., Drew, B. T., Yi, T. S., Yan, H. F., Yuan, Y. M., and Ge, X. J. (2016). Phylogenetic relationships, character evolution and biogeographic diversification of *Pogostemon* s.l. (Lamiaceae). *Mol. Phylogenet. Evol.* 98, 184–200. doi: 10.1016/ j.ympev.2016.01.020

Yu, Y., Blair, C., and He, X. (2020). RASP 4: ancestral state reconstruction tool for multiple genes and characters. *Mol. Biol. Evol.* 37, 604–606. doi: 10.1093/molbev/msz257

Yu, Y., Harris, A. J., Blair, C., and He, X. J. (2015). RASP (Reconstruct ancestral state in phylogenies): a tool for historical biogeography. *Mol. Phylogenet. Evol.* 87, 46–49. doi: 10.1016/j.ympev.2015.03.008

Yu, X. Q., Maki, M., Drew, B. T., Paton, A. J., Li, H. W., Zhao, J. L., et al. (2014). Phylogeny and historical biogeography of *Isodon* (Lamiaceae): rapid radiation in southwest China and Miocene overland dispersal into Africa. *Mol. Phylogenet. Evol.* 77, 183– 194. doi: 10.1016/j.ympev.2014.04.017

Yuan, Y. M., Wohlhauser, S., Möller, M., Klackenberg, J., Callmander, M. W., and Küpfer, P. (2005). Phylogeny and biogeography of *Exacum* (Gentianaceae): a disjunctive distribution in the Indian ocean basin resulted from long distance

dispersal and extensive radiation. Syst. Biol. 54, 21-34. doi: 10.1080/ 10635150590905867

Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 ma to present. *Science* 292, 686–693. doi: 10.1126/science.1059412

Zhang, D., Gao, F. L., Jakovlic, I., Zou, H., Zhang, J., Li, W. X., et al. (2020a). PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. *Mol. Ecol. Resour.* 20, 348–355. doi: 10.1111/1755-0998.13096

Zhang, M. H., Wang, C. Y., Zhang, C., Zhang, D. G., Li, K. G., Nie, Z. L., et al. (2020b). Phylogenetic relationships and biogeographic history of the unique *Saxifraga* sect. *Irregulares* (Saxifragaceae) from eastern Asia. *J. Systematics Evol.* 58, 958–971. doi: 10.1111/jse.12547

Zhou, L. L., Su, Y. C. F., Thomas, D. C., and Saunders, R. M. K. (2012). Out-of-Africa' dispersal of tropical floras during the Miocene climatic optimum: evidence from *Uvaria* (Annonaceae). *J. Biogeography* 39, 322–335. doi: 10.1111/j.1365-2699.2011.02598.x

Zhou, W. B., Xiang, Q. Y., and Wen, J. (2020). Phylogenomics, biogeography, and evolution of morphology and ecological niche of the eastern Asian-eastern north American Nyssa (Nyssaceae). J. Systematics Evol. 58, 571–603. doi: 10.1111/jse.12599