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Introduction: Flower color is an ideal trait for studying the molecular basis for

phenotypic variations in natural populations of species. Epimedium

(Berberidaceae) species exhibit a wide range of flower colors resulting from

the varied accumulation of anthocyanins and other pigments in their spur-like

petals and petaloid sepals.

Methods: In this work, the anthocyanidins of eight different Epimedium species

with different floral pigmentation phenotypes were analyzed using HPLC. Twelve

genes involved in anthocyanin biosynthesis were cloned and sequenced, and

their expression was quantified.

Results: The expression levels of the catalytic enzyme genes DFR and ANS were

significantly decreased in four species showing loss of floral pigmentation.

Complementation of EsF3’H and EsDFR in corresponding Arabidopsis mutants

together with overexpression of EsF3’5’H in wild type Arabidopsis analysis

revealed that these genes were functional at the protein level, based on the

accumulation of anthocyanin pigments.

Discussion: These results strongly suggest that transcriptional regulatory

changes determine the loss of anthocyanins to be convergent in the floral

tissue of Epimedium species.
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Introduction

Accumulation of the secondary metabolite anthocyanin is

predominantly responsible for red, blue, and purple pigmentation

in angiosperms. Pigmentation is a major determinant of a species’

pollination syndrome, which refers to the selection of particular

floral traits caused by the preference of their pollinators (Fenster

et al., 2004). Flower color is intricately regulated by the specific

combinations of certain pigment metabolites produced, and is

subjected to ecological selection and convergent evolution.

Therefore, flower color is an ideal trait for examining ecological

and evolutionary selection processes. The anthocyanin biosynthetic

pathway (ABP) has been well established in many model species,

such as Arabidopsis, petunia (Petunia hybrida E. Vilm.), and

snapdragon (Antirrhinum majus L.) (Buer et al., 2010; Pollastri &

Tattini, 2011). Most of the knowledge of anthocyanin biosynthesis

in Arabidopsis has been obtained from the analysis of transparent

testa (tt) mutants, which show loss of seed pigmentation (Lepiniec

et al., 2006). In the early steps of the pathway, the key enzymes

chalcone synthase (CHS), chalcone isomerase (CHI), and flavanone

3-hydroxylase (F3H) condense and convert a phenylpropanoid

precursor, p-coumaroyl-CoA, along with three molecules of

malonyl CoA, to dihydrokaempferol (Lepiniec et al., 2006).

Parallel catalyzation by flavonoid-3’-hydroxylase, flavonoid-3’,5’-

hydroxylase , dihydroflavonol-4-reductase (DFR), and

anthocyanidin synthase (ANS) results in the production of
Frontiers in Plant Science 02
various types of anthocyanidin (Figure 1) (Holton & Cornish,

1995; Boss et al., 1996). The transcriptional regulators controlling

flavonoid biosynthetic enzymes have been extensively studied, and

include the MYB, the bHLH, and the WD-repeat proteins. Yeast-

three-hybrid protein interaction data suggested that a protein

complex of the MYB-bHLH-WD40 transcription factors binds

the regulatory promoter regions of the flavonoid pathway

enzymatic, or structural, genes, to regulate anthocyanin

biosynthesis (Gonzalez et al., 2008).

The evolutionary basis for the loss of anthocyanin pigments in

floral tissue has been investigated by characterizing major floral

pigmentation loci using controlled cross segregating populations

(Schwinn, 2006; Whittall et al., 2006; Hoballah et al., 2007; Streisfeld

and Rausher, 2009; Smith and Rausher, 2011). Evidence suggests

that flower color transition is affected by the transcriptional

regulation of several anthocyanin structural genes expression. For

example, altered activity of specific transcriptional factors accounts

for altered patterns of pigmentation in white Petunia axillaris and

some Antirrhinum species (Schwinn, 2006; Hoballah et al., 2007).

Cis-regulatory changes in the F3’H gene promoter cause down-

regulation of F3’H transcription and altered flux in the anthocyanin

pathway, resulting in increased production of the red pigment,

pelargonidin, instead of blue, in Ipomoea horsfalliae Hook. (Des

Marais & Rausher, 2010). Although it has been suggested that

mutations in structural genes may incur higher deleterious

pleiotropy than those in cis-regulatory elements or transcription
FIGURE 1

A model for flavonoid biosynthesis in Epimedium flowers based on classic investigation. Pathway enzymes are listed as an abbreviation beside
arrows, and include 4CL, 4-coumarate: coenzyme A ligase; ANS, anthocyanidin synthase; C4H, cinnamate-4-hydroxylase; CHS, chalcone synthase,
CHI, chalcone isomerase; DFR, dihydroflavonol 4-reductase; F3H, flavavone 3-hydroxylase; F3’H, flavonoid 3’-hydroxylase; F3’5’H, flavonoid 3’5’
hydroxylase; FLS, flavonol synthase; FNS, flavone synthase; LAR, leucoanthocyanidin reductase; UFGT, UDP flavonoid gulcosyl transferase; OMT, O-
methyltransferase; PAL, phenylalanine ammonia lyase; RT, rhamnosyl transferase. The products of each enzymatic reaction are listed below the
arrows. Colored circles indicate the presence of delphinidin and cyanidin anthocyanidins, X represents absence of pelargonidin.
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factors, the possibility that enzyme coding sequence variation is

involved in flower color transition cannot be excluded (Streisfeld

and Rausher, 2009).

The Epimedium genus (Berberidaceae), known as “Yinyang

Huo” by Chinese druggists, is one of the most popular traditional

Chinese medicinal herb genera (Sun et al., 2014; Zhang et al., 2021).

A monophyletic group of 50 species of Epimedium is found in

western and central China (Huang et al., 2013a; Huang et al., 2013b;

Huang et al., 2015; Huang et al., 2016). Epimedium species display a

vast range of flower colors; from white and yellow to rose, crimson,

and violet (Figure 2). These color pigments are distributed in

petaloid sepals or petals or both. In this study, we studied the

phenotypic variation of color in Epimedium species distributed in

the Hubei province of China. The expression of genes involved in

the anthocyanin biosynthetic pathway (ABP) was also analyzed for

the association with the different flower color polymorphisms. Our

study focused on answering two questions: (1) Has anthocyanin

pigment loss, or variation, in different species resulted from the

same mechanism? (2) Which candidate genes are involved in

anthocyanin pigmentation in E. sagittatum?
Results

Analysis of pigments and flavonoid
intermediates in different
Epimedium species

Using HPLC, the major pigments from the floral tissues of

anthocyanin species (A+) species were found to comprise

delphinidin and cyanidin, whereas no detectable anthocyanins

were found in the non-anthocyanin species (A-) flowers

(Figure 3). To further characterize the mechanism responsible for
Frontiers in Plant Science 03
the non-pigmentation of flowers in A- species, E. sagittatum was

used as a model for the enzymatic function.
Expression of ABP genes in floral
tissues of Epimedium

To determine whether changes in gene expression might be

involved in the non-pigmentation phenotype of A- species, the

transcript levels of putative anthocyanin biosynthetic enzymes were

examined in petal tissue (Figure 4; Supplementary Figure 1A).

Expression of CHS1 not CHS2 and CHS3 was found to be

significantly lower in E. wushanese (A-) than in other species.

Similarly, down-regulation of CHS2 was observed in E. frachetii

(A-), suggesting that loss of anthocyanin may result from low levels

of expression of different copies of CHS in E. wushanese and E.

franchetii. For CHI and F3H, we found no significant correlation

between expression level and the loss of anthocyanins in spur

tissues of all A- species. Among the structural genes, ANS was the

only ABP locus where all A- species had significantly lower

expression levels than that of A+ species. This suggests that the

lack of pigmentation production in all A- species could be caused

primarily by lower ANS expression. The expression level of DFR

was significantly lower in A- species than in A+ species, except for

E. lishihchenii. It has been reported that substrate competition

between FLS and DFR creates a metabolic flux of the flavonoid

biosynthetic pathway in Arabidopsis. In this study, low expression

of DFR in the A- species E. franchetii and E. wushanese was

correlated with increased accumulation of FLS expression. On the

other hand, up-regulation ofDFR was positively correlated with FLS

expression in E. lishihchenii but E. sagittatum showed no

correlation with DFR. In summary, these results suggest that the

loss of anthocyanin in E. frachetii, E. wushanese and E. sagittatum
FIGURE 2

Floral phenotypes of accessions of different species within the genus Epimedium. (A–D) are non-pigmentation species (A-); (E–H) are classified as
pigmentation species (A+). All photos were taken by W. S. (A) E. sagittatum, (B) E. lishihchenii, (C) E. franchetii, (D) E. wushanense, (E) E.
zhushanense, (F) E. epstenii, (G) E. acuminatum, (H) E. leptorrhizum.
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may be primarily related to alterations at the ANS locus, affecting

gene expression.

To further analyze the loss of anthocyanin in sepals (Figure 5;

Supplementary Figure 1B), gene expression was analyzed across five

Epimedium species using the same primers. Expression of DFR was

lowest in the three A- species and was correlated with ANS

expression, suggesting the expression of DFR and ANS could be

regulated by a common transcription factor. CHS1 transcripts were

not detected in the sepals of E. wushanese, which also had the lowest

CHS1 expression in petals. These observations suggest that negative

regulation of the DFR and ANS genes together was also correlated

with the lowest CHS1 in sepals and petals in E. wushanese.
Complementation analyses

To study the catalytic activity of E. sagittatum ABP gene

products, 35S::EsF3’H and 35S::EsDFR genes were individually

transferred into their respective Arabidopsis mutants; transparent

testa 7 (tt7) lacking flavonoid 3’-hydroxylase, and transparent testa3

(tt3) lacking dihydroflavonol reductase under the control of the

cauliflower mosaic virus 35S promoter (Peer et al., 2001).

Transgenic and mutant control seedlings were grown under

nitrogen stress to determine if the Epimedium genes could rescue

the Arabidopsis anthocyanin-null mutant phenotypes. Accumulation

of anthocyanins was observed in transgenic seedlings ectopically

expressing EsF3’H and EsDFR (Figure 6). However, the tt7 and tt3
Frontiers in Plant Science 04
mutant controls did not exhibit anthocyanin accumulation in

cotyledons. Thus the E. sagittatum genes showed catalytic activity

in Arabidopsis. Given the lack of an Arabidopsismutant for F3’5’H, in

order to determine whether EsF3’5’H can function in vivo, we

overexpressed 35S::EsF3’5’H in wild-type Arabidopsis. Under

normal conditions on 1/2 MS medium, the seedlings

overexpressing EsF3’5’H showed comparable anthocyanin

production to wild-type controls (Figure 6).
Discussion

The four Epimedium A- species (E. sagittatum, E. lishihchenii,

E. franchetii and E. wushanense) investigated in this study appeared

to exhibit anthocyanin loss at the phenotypic level via reduced

activity of the anthocyanin branch of the flavonoid pathway. In all

species, this appears to involve reduced transcriptional activity of

pathway genes, similar to studies inMimulus aurantiacus (Streisfeld

& Rausher, 2009). Interestingly, one A- species (E. lishihchenii)

expressed all ABP loci except for ANS at a high level.

While the data linking conserved gene regulation changes to

anthocyanin level changes are purely correlative, we found no

evidence for the role of coding-region mutations in determining

different anthocyanin levels. In A- specie E. sagittatum, the F3’H

and DFR enzymes were shown to rescue anthocyanin production in

their corresponding Arabidopsis mutants, suggestive of adequate

catalytic function (Huang et al., 2012). Accumulation of
A B

DC

FIGURE 3

High-performance liquid chromatograms of extracts from petals and sepals of anthocyanidin pigments from (A) E. acuminatum, (B) E. epstenii, (C) E.
zhushanense and (D) E. leptorrhizum. Peaks labeled represent the standards of each of the anthocyanin.
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anthocyanin in 35S::EsDFR in this study and 35S::EsMYBA1

transformed Arabidopsis indicated functionality of the EsDFR and

EsMYBA1 coding region (Huang et al., 2013a). Thus, we concluded

that the loss of flower color in E. sagittatum (A-) was due to a tissue-

specific regulatory change affecting EsDFR and EsANS transcription

and not coding-region mutations of EsDFR, EsANS, or EsMYBA1.

We also suggested that the changes responsible for the loss of

pigmentation in E. franchetii and E. wushanense flowers were

shared with E. sagittatum, based on similar correlative gene

expression patterns and anthocyanin production in leaves.

Functional assays of the putative cis-elements and trans-regulators

involved in DFR or ANS transcription were required to determine

the precise regulatory mechanisms resulting in reduced ANS and

DFR gene expression in A- species.

Downregulation of CHS was a major cause of white flowers in

natural populations of Aquilegia flavellata and Parrya nudicaulis

(Whittall et al., 2006; Dick et al., 2011). Although we found an

association between the A- phenotype and downregulation of CHS1

in yellow-flowered E. wushanese, DFR, and ANS were also

downregulated, which may also have contributed to the A-
Frontiers in Plant Science 05
phenotype. Therefore, the A- phenotype in four Epimedium

species was also proposed to be due to alteration at the regulatory

level, rather than functional mutations in ABP enzymes. The loci

regulating anthocyanin in Epimedium were currently being fine-

mapped and confirmed by transformation assays.
Materials and methods

Tissue harvest

Eight Epimedium species (E. acuminatum, E. franchetii, E.

leptorrhizum, E. epstenii, E. sagittatum, E. lishihchenii, E.

wushanense, and E. zhushanense) grown in the specialized

Epimedium nurseries of Wuhan Botanical Garden, Chinese

Academy of Sciences, Wuhan, China (Figure 2). All plants were

transplanted from wild populations and growing under the same

environmental conditions. Floral tissues including petaloid sepals

and spur-like petals were collected in the spring of 2011. The eight

species were separated into two groups corresponding to anthocyanin
FIGURE 4

Quantitative expression pattern of ABP structural genes from petal tissue of eight Epimedium species. Colored and empty bars represent A+ and A-
species, respectively. Le, Zh, Ep, Ac, Sa, Li, Fr and Wu represent E. leptorrhizum, E. zhushanense, E. epstenii, E.acuminatum, E. sagittatum, E.
lishihchenii, E. franchetii and E. wushanense. Data presented here are the mean values of three replicates with error bars indicating SE.
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(A+) (E. acuminatum, E. leptorrhizum, E. epstenii and E. zhushanense)

and non-anthocyanin (A-) (E. franchetii, E. sagittatum, E. lishihchenii,

E. wushanense) based on visual observation of the floral tissues. The

samples were weighed, packaged in aluminum foil, flash-frozen in

liquid nitrogen, and then stored at -80°C.
HPLC analysis of flavonoid intermediates
and anthocyanin

The profiles of anthocyanidins from the samples of A- species and

A+ species were analyzed usingHPLC. The precursors of anthocyanin

pigments were extracted from 100 mg of fresh corolla tissue. For each

sample, 20 mL of supernatant was injected into a Shimadzu LC-20 AT

liquid chromatograph (Shimadzu Corporation, Japan) and a 250×4.6

mm reverse phase C18 column (Sigma-Aldrich, USA) at a flow rate of

1mlmin-1. The organic solvent was composed of acetonitrile and 0.1%
Frontiers in Plant Science 06
trifluoroacetic acid, and the polar solvent was 0.1% trifluoroacetic acid

in HPLC-grade water. The anthocyanin was measured at 550 nm. The

chemical compounds cyanidin, delphinidin, malvidin, pelargonidin,

peonidin, and petunidin (Poypehenols Laboratories, Norway), were

used as anthocyanidin standards.
Transferring ABP candidate genes into
other Epimedium species

In total, 12 genes from E. sagittatum involved in the ABP were

cloned following RT-PCR amplification using degenerate primers

or specific primers based on our previous investigation(Zeng et al.,

2010; Huang et al., 2013a; Huang et al., 2013b; Huang et al., 2015).

These genes were CHS1, CHS2, CHS3, CHI1, CHI2, F3H1, F3H2,

F3’H, F3’5’H, FLS, DFR, ANS. In this study, all pairs of primer from

E. sagittatum were transferred to other Epimedium species.
FIGURE 5

Analysis of expression profiles of anthocyanin genes in petaloid sepals of five Epimedium species using real-time PCR. The cDNA templates are listed
as follows: Le, E. leptorrhizum; Zh, E. zhushanense; Ep, E. epstenii; Wu, E. wushanense and Ac, E. acuminatum. Data presented here are the mean
values of three replicates with error bars indicating SE.
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Gene expression

Total RNA was extracted from inner sepals and petals at

anthesis, at which time the biosynthesis of anthocyanin is

completed. First-strand cDNA was synthesized using PrimeScript

RT reagent Kit (Takara, Japan) following the manufacturer’s

instructions. In each 20 mL qRT-PCR reaction, 50 ng of cDNA

was amplified using SYBR® Premix Ex TaqTM II (Takara, Japan)

and 100 mM of primers in an ABI7500 Real-Time PCR machine

(ABI, USA) as per the manual. Actin was amplified as the control

gene. The samples from three tissues were used and three technical

replicates were performed for each sample. Data were analyzed

by ABI7500 software. In this study, all pairs of primer (CHS1, CHS2,

CHS3, CHI1, CHI2, F3H1, F3H2, F3’H, F3’5’H, FLS, DFR, and

ANS) from E. sagittatum were transferred in other Epimedium

species. All primers used in this manuscript are listed in the

supplementary database.
Complementation analysis

For functional analyses, the E. sagittatum (A-) genes EsF3’H

and EsDFR were overexpressed in their respective Arabidopsis

thaliana (ecotype Landsberg) mutants, each lacking anthocyanins

at the seedling stage. EsF3’5’H, The coding regions of EsF3’H,

EsF3’5’H, and EsDFR were cloned into pMD19-T (Takara, Japan).
Frontiers in Plant Science 07
The SalI and SacI digested fragment of each gene was purified and

ligated into the pMV plasmid (derived from pBI121) behind the

cauliflower 35S promoter. The plasmids were then transformed into

Agrobacterium strain EHA105. Arabidopsis wild-type and mutants

(tt3 and tt7) were transformed by the floral dip infiltration method

(Zhang et al., 2006). Transformants were selected on 1/2 Murashige

and Skoog medium supplemented with 50 mg/mL kanamycin.

Resistant seedlings were then transferred into the soil to harvest

seeds. T1 seedlings were screened on 1/2 MS medium minus

nitrogen for observation of anthocyanin accumulation.
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