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A real-time smart sensing system
for automatic localization and
recognition of vegetable plants
for weed control

Jia-Le Li, Wen-Hao Su*, He-Yi Zhang and Yankun Peng

College of Engineering, China Agricultural University, Haidian, Beijing, China
Tomato is a globally grown vegetable crop with high economic and nutritional

values. Tomato production is being threatened by weeds. This effect is more

pronounced in the early stages of tomato plant growth. Thus weed management

in the early stages of tomato plant growth is very critical. The increasing labor

cost of manual weeding and the negative impact on human health and the

environment caused by the overuse of herbicides are driving the development of

smart weeders. The core task that needs to be addressed in developing a smart

weeder is to accurately distinguish vegetable crops from weeds in real time. In

this study, a new approach is proposed to locate tomato and pakchoi plants in

real time based on an integrated sensing system consisting of camera and color

mark sensors. The selection scheme of reference, color, area, and category of

plant labels for sensor identification was examined. The impact of the number of

sensors and the size of the signal tolerance region on the system recognition

accuracy was also evaluated. The experimental results demonstrated that the

color mark sensor using the main stem of tomato as the reference exhibited

higher performance than that of pakchoi in identifying the plant labels. The

scheme of applying white topical markers on the lower main stem of the tomato

plant is optimal. The effectiveness of the six sensors used by the system to detect

plant labels was demonstrated. The computer vision algorithm proposed in this

study was specially developed for the sensing system, yielding the highest overall

accuracy of 95.19% for tomato and pakchoi localization. The proposed sensor-

based system is highly accurate and reliable for automatic localization of

vegetable plants for weed control in real time.

KEYWORDS

crop signalling, computer vision, plant identification, automated weeding,
precision agriculture
1 Introduction

Tomato (Solanum lycopersicon) is one of the major commercial vegetable crops in the

world (Johansen et al., 2019). Tomato is considered to be beneficial to human health, and

they are widely grown and consumed all over the world (Chaudhary et al., 2018), with great

commercial and economic values (Brunetti et al., 2019). However, the production of this
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crop is being threatened by weeds (Qasem, 2019). The competition

between weeds and crops for resources such as sunlight and

nutrients is one of the main factors affecting crop yields (Hamuda

et al., 2016). Early weed control is one of the most important

initiatives to prevent significant crop yield losses (Su et al., 2020a).

The most prominent method of weed management is herbicide

spraying throughout the crop area (Pérez-Ortiz et al., 2016), but

large-scale spraying of herbicides has a negative impact on the

environment (Rodrigo et al., 2014). Moreover, incomplete

degradability of herbicides can leave residues in plants (Rojas

et al., 2017), creating health risks if the products with herbicide

residues were consumed by humans and animals (Manh et al.,

2001). Additionally, available herbicides for vegetable crops are very

limited (Westwood et al., 2018). As a conventional weeding

method, mechanical cultivating is not only able to loosen the soil

but also can remove weeds between rows (Wang et al., 2019).

Nevertheless, this method does not work for intro-row weeds.

Intro-row weeds have traditionally been removed by manual

weeding. However, manual weeding is inefficient and particularly

prone to errors (Slaughter et al., 2008). This approach is

increasingly costly, unsustainable and uneconomical in the long

run due to labor shortages (Fennimore et al., 2017).

With the increase of the global population and the

improvement of living standards, the demand for healthy food

continues increasing. Predicting biomass through various types of

sensing technologies has become the focus of precision agriculture

and smart farming in recent years (Johansen et al., 2020). Precision

weeding is considered as one of the most important measures for

sustainable vegetable production (Raja et al., 2020a). There is a need

to develop an efficient autonomous weeding robot that can

intelligently identify weeds and enable precise herbicide

application. The primary task of developing a smart weeder is to

identify the vegetable crops and weeds accurately and timely.

Detection methods based on characteristics of crop plants and

weeds such as color (Gupta and Ibaraki, 2014), size (Lamm et al.,

2002), and spectral reflectance (Borregaard et al., 2000) have been

proposed to classify crops and weeds. Blasco et al. (2002) developed

a robotic system for weed control in transplanted lettuce, which

identified the plants with the accuracies of 84% and 99% for weeds

and lettuce based on the plant size, respectively. But the probability

of misidentification increases significantly when weeds and crops

are of similar size. Vrindts et al. (2002) developed a hyperspectral

machine vision system to identify weeds in sugar beet fields.

However, their method could not be directly used for the real-

time detection of the plants. Lin et al. (2017) established a method

combining plant spectrum, shape and texture features to

discriminate maize and weed with over 95% accuracy, but the

spatial location of the plant was not considered in their study. With

the development of computer vision technology, more sophisticated

object detection methods based on imaging and machine learning

have been developed to distinguish crops from weeds (Hall et al.,

2017; Lottes et al., 2017; Milioto et al., 2018; Tang et al., 2018;

Rehman et al., 2019; Li et al., 2022). Ahmed et al. (2012) proposed a

support vector machine method to classify crops and weeds, which
Frontiers in Plant Science 02
achieved above 97% accuracy. dos Santos Ferreira et al. (2017)

developed a ConvNets-based software for detecting weeds in

soybean, yielding an average accuracy of 99.5%. Subeesh et al.

(2022) applied the InceptionV3 model to identify weeds in sweet

peppers with an accuracy of 97.7%. However, the above methods

need to obtain a large number of samples in advance to label them

accurately for model training.

The up-to-date technology called crop signaling was proposed

to simplify weed identification (Raja et al., 2019b). This technology

creates a machine-readable signal on plants that allows the marked

crops to be readily identified by a computer vision system. Crop

signaling technology has been successfully used to identify different

target plants in weeds (Nguyen et al., 2017; Vuong et al., 2017; Raja

et al., 2019a; Su, 2020). For example, Raja et al. (2020b) developed a

device containing two cameras to automatically detect lettuce and

weeds based on crop signaling. The classification accuracies of

lettuce plants and weeds were 99.75% and 83.74%, respectively.

However, the use of two cameras to obtain the location information

of plants increased the complexity of image processing. In another

study, Su et al. (2020b) applied systemic signaling markers to

tomato and lettuce plants, allowing the treated plants to be

efficiently detected by a single imaging system. Although their

technology enabled the detection of exogenous signals applied to

crops, the development of the equipment that can be used for the

online detection of plant markers has not yet been reported.

In this study, an intelligent sensing system equipped with six

color mark sensors and a color camera is expected to be developed

for automatic identifications of weed and tomato plants. The color

mark sensor is a photoelectric sensor used to quickly detect a

specific color label based on the difference between the gray value

of the target label and the reference. The color mark sensor is a

reverse device, which realizes detection by receiving and analyzing

the scattered light of the detected object. The detection principle

of the color mark sensor mainly involves three steps. First, the

color mark sensor emits monochromatic light (or white light) with

the same intensity to the surface of the measured label. Then, it

receives the diffuse reflection from the surface of the measured

label. Finally, the label is identified according to whether the

intensity of the diffuse reflection is consistent with the preset

reference value. Prior to detection, the color mark sensor detects

and records the amount of the diffuse reflection from the reference

and target, respectively. This amount is used as the preset

reference value. When an equivalent amount is detected, the

object is the desired target. Although the color mark sensor has

been widely used in packaging, printing, spinning and other

industries (Yang et al., 2009), it has not been used in plant

recognition yet.

The captured images were converted from red-green-blue (RGB)

space to hue-saturation-value (HSV) space for color segmentation in

this study. The reason is that the images acquired in the natural

environment are sensitive to illumination variation, and all three

components of the RGB space are closely related to illumination. If

the illumination of the image changes, it may not be possible to

completely separate the plant pixels from the background using RGB
frontiersin.org
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space (Hamuda et al., 2016). In contrast, the HSV space is robust to

illumination changes (Siogkas and Dermatas, 2006). Additionally,

HSV space is more in line with human color perception (Saxe and

Foulds, 1996). This makes HSV space more suitable for segmenting

plants and backgrounds (soil and residues) and has been widely used

in various computer vision applications (Huang et al., 2015).

The main objective of this study was to develop a novel

detection method for smart differentiation of tomato plants from

packchoi (Brassica chinensis L.) plants. The specific objectives were

1) developing a smart sensing system containing several color mark

sensors and a color digital camera, 2) comparing experimental

results of arranging color mark sensors and plant labels in different

schemes to determine the best combination. 3) evaluating effects of

the signal tolerance zone size on the performance of the system in

locating weeds and tomato plants to determine the final solution. As

far as we know, this was the first study to realize real-time

identification and localization of tomato from background plants

using a composite sensing system developed by combining

computer vision and color mark sensing.
2 Materials and methods

2.1 Plants and labels

A series of experiments were carried out in the laboratory of China

Agricultural University. 3 week-old tomato plants (height: 15 - 20 cm,

the maximum width of the canopy: 10 - 20 cm) were selected as crop

samples (300 plants). 1 week-old pakchoi plants (height: 2 - 10 cm, the

maximumwidth of the canopy: 3 - 8 cm) were selected and regarded as

control plant (weed) samples (1114 plants). Both plant seedlings

purchased from commercial nursery were transplanted into plastic

pots filled with moist soil and grown in a controlled environment

(temperature = 18–22°C, relative air humidity = 46–50%). Pakchoi

seedlings were planted between tomato plants. In this study, tomato

plants were labeled by plant labels and the control plants without plant

labels were considered as weeds in this study.

Two types of signaling markers including physical labels and

topical markers were selected as the plant labels. The physical label

(red, white and green) is an environmentally friendly straw (23 cm

in length) made of polylactic acid that can be degraded by

microorganisms. When the physical plant label was used to label

a tomato plant, it was inserted into the soil near the roots of the

tomato plant and attached to the main stem of the tomato plant, as

shown in Figure 1. The above-ground part of the physical label is

divided into three areas, including the lower part (0 - 6cm), the

middle part (6 - 12cm) and the upper part (12 - 18cm). The topical

marker (white) is an environmentally friendly paint. When the

topical marker was used to label a tomato plant, it was applied to the

lower main stem of the tomato plant, as shown in Figure 2. Tomato

plants were successively marked with different physical labels (red,

white, or green) and white topical markers.

Tomato plants with plant labels were placed on a conveyor belt

and detected by a color mark sensor 20 cm away from them. Weed
Frontiers in Plant Science 03
stems and tomato stems were successively set as the reference for color

mark sensor to determine the best reference for the color mark sensors

and the best color for the plant labels. Three areas of physical plant

labels and topical plant labels were detected by adjusting the mounting

height of the sensor to determine the most suitable detection area.

Immediately afterwards, Tomato plants marked with the topical

marker (1-6 weed samples were randomly distributed around each

tomato plant) was detected by combinations of different number of

color mark sensors (2, 4 and 6, as shown in Figure 3) to determine the

optimal number of color mark sensors for this system. Finally, the size

of the signal circular tolerance zone (r = 2.5mm, r = 5mm, r = 7.5mm,

r = 10mm and r = 12.5mm) on the performance of the system was

evaluated with tomato plants and weeds.
FIGURE 1

Physical plant label (white straw) and tomato plant.
FIGURE 2

Topical marker (white paint) and tomato plant.
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2.2 Plant sensing system

The sensing system consists of an adjustable voltage power, a

relay, a micro control unit, a personal computer and an enclosed

chamber with black vinyl walls. The chamber mainly included a color

digital camera, six color mark sensors, four white light emitting

diodes (LEDs), as shown in Figure 4. The camera was placed on the

vertical centerline between the middle color mark sensors at a height

from the plant so that the top view of crop plants was visible. The

camera was controlled by the personal computer and was used to

capture images of tomato plants and the weeds around them. The

color mark sensors emitting red light with a long emission distance of

30 cm were used to detect plant labels. Two middle color mark

sensors were positioned parallel to the travel direction. The other

color mark sensors were positioned at an angle of 45° relative to the
Frontiers in Plant Science 04
middle sensors. The combination of six color mark sensors allowed

the sensing system to cope with situations where the signal was

obscured by weeds. The system could detect plant labels as long as

two sensors that not on the same detection line were not blocked. The

white LEDs were placed below the camera around the upper part of

the chamber to provide even illumination for imaging the plants. An

adjustable voltage power supply was used to control the brightness of

the LEDs. Each color mark sensor was equipped with a relay. When

the color mark sensor detected the plant label, it sent a signal to the

relay immediately. The microcontroller was connected to all the

relays to capture the signals of all the color mark sensors

simultaneously. The code received by the microcontroller was

interpreted by the software and transmitted to the personal

computer to calculate the location of the plant label. The entire

system was mounted on a conveyor belt with a speed of 0.91km/h.
A B C

FIGURE 3

(A) 2 color mark sensors were applied, (B) 4 color mark sensors were applied, (C) 6 color mark sensors were applied.
FIGURE 4

The mechanical structure of the detection device.
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2.3 Plant classification algorithm

An algorithm was especially developed to acquire images of

tomato and packchoi plants based on the signals of the smart

sensing system and classify them. The ultimate purpose of image

processing was to map weeds. The flow chart of the algorithm is

shown in Figure 5. The color mark sensors detect passing tomato

plants with plant labels while the conveyor is running. When the

color mark sensor detects a plant label, the image was captured by

the camera. With white LED illumination, the camera’s exposure

was set to -6 to obtain sufficient image intensity while eliminating

motion blur from the conveyor belt. The image captured by the

camera was shown in Figure 6A. Based on the RGB image obtained

under controlled illumination, the hue (H), saturation (S) and

luminance (V) values were calculated for each pixel and the HSV

space model of the image was generated. The HSV space was used

for color partitioning of all plants (both tomato plants and weeds)

from the background. The threshold of color segmentation was

determined based on the appearance of plant colors in the image.

The rules for color segmentation were shown in Equation 1.

Rt(x, y) =
255     

if ½Th�low ≤ ½Ohsv(x, y)�h ≤ ½Th�highand
½Ts�low ≤ ½Ohsv(x, y)�s ≤ ½Ts�highand
½Tv�low ≤ ½Ohsv(x, y)�v ≤ ½Tv�high

0                               otherwise                           

8>>>>><
>>>>>:

(1)
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Where Ohsv(x, y) represents the mapping of the captured

original image in the HSV space model. [Ohsv(x, y)]h,s,v are the

hue, saturation and value of Ohsv(x, y), respectively. [Th,s,v]low, are

the low thresholds for the H, S and V channel, respectively.

Correspondingly, [Th,s,v]high, are the high thresholds for the H, S

and V channel, respectively. The thresholds values were selected by

pre-experiments. Some images were acquired before the formal

experiments and these they were binarized with different

thresholds. The most suitable thresholds were selected by

comparing the results. The thresholds used in the research were

[Th]low= 10, [Th]high= 120, [Ts]low= 10, [Ts]high= 255,[Tv]low = 10,

[Tv]high= 255. Rt (x, y) represents the result of color segmentation, a

binary image consisting of pixel points in the threshold range.

A 3×3 square structuring element was used for the erosion

operation in the binary image. After, tomato plants and weeds in the

image were separated from the background. The processed image

was then dilated with the same structuring elements to restore the

connectivity of the connected domains while maintaining the

consistency of the object size. The binary image after

morphological operations is shown in Figure 6B. The contour of

each connected component was measured in the image and plotted

in yellow, as shown in Figure 6C.

As the plant labels pass through the detection area of the sensor

combination, they will be detected as positive by multiple sensors.

The signals generated by two sensors that are not on the

same detection line are combined into a group of available

signals. The sensor numbers that make up the available signal are

sent to a personal computer as the basis for calculating the positions

of the plant labels in the images. According to the data output by the

sensor and the moving speed of the device, the detection lines of the

sensor were drawn in the captured image, as shown in Figure 6D.

The Cartesian coordinate system was established with the point at

the upper left of the image as the origin. The detection lines for each

sensor were represented by a function equation. The intersection of

the sensor detection lines was the position of the plant label in the

image, which was plotted on the binary image, as shown in

Figure 6E. The rules for calculating the coordinates of the plant

labels were shown in Equation 2. Then, a circular tolerance zone

was determined. All pixels within the tolerance zone were

considered as plant labels, as shown in Figure 6F.

if  (Ser_1 == 1 or Ser_1 == 4)  (Ser_2 == 2 or Ser_2 == 5):

        point_signal = (round(360 � dt * v), round(360 � dt * v))

elif  (Ser_1 == 1 or Ser_1 == 4)  (Ser_2 == 3 or Ser_2 == 6):

       point_signal = (round(360 � (dt * v) = 2), round(360 � (dt * v) = 2))

elif  (Ser_1 == 2 or Ser_1 == 5)  (Ser_2 ==1 or Ser_2 == 4):

       point_signal = (360, round(360 + dt * v))

elif  (Ser_1 == 2 or Ser_1 == 5)  (Ser_2 == 3 or Ser_2 == 6):

        point_signal = (360, round(360 � dt * v))

elif  (Ser_1 == 3 or Ser_1 == 6)  (Ser_2 == 1 or Ser_2 == 4):

        point_signal = (round(360 � (dt * v) = 2), round(360 + (dt * v) = 2))

elif  (Ser_1 == 3 or Ser_1 == 6)  (Ser_2 == 2 or Ser_2 == 5):

        point_signal = (round(360 � dt * v), round(360 + dt * v))

(2)

The tolerance zone of the plant labels was integrated with the

plant contour, as shown in Figure 6G. The pixel coordinates of each
FIGURE 5

Flow chart of the machine vision algorithm for weeds and tomato
plants classification.
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connected area in the image were retrieved. Then, the connected

region with the plant labels was considered as tomato plants, which

was marked in red. In this study, only one tomato plant was

included in each image. The connected region without plant

labels was considered as weeds, which was marked in green, as

shown in Figure 6H. Based on detection results, the prescription

map for the distribution of weeds and crop plants was drawn as

shown in Figure 6I.
3 Results

3.1 Selection of references for color
mark sensor

The effect of two references (the packchoi stem and tomato

stem) for color mark sensors on the detection accuracy of physical

plant labels of three colors (red, white, and green) was evaluated. As

shown in Table 1, the average accuracy of the color mark sensor for

plant label recognition was 31.00% when the weed stem was used as
Frontiers in Plant Science 06
the reference. When the tomato stem was used as the reference,

48.89% of the plant labels were successfully identified overall. As

can be seen, the color mark sensor with the tomato stem as the

reference achieved better recognition performance on plant labels in

red or white than that using the weed stem as the reference. Thus,

the tomato stem was selected as the reference for color mark sensor

for further study.
3.2 Determination of optimal plant
label color

The optimal plant label color was selected using the tomato

stem as the sensor reference. The detectability of plant labels in red,

white, and green was evaluated. As shown in Table 1, the detection

accuracy of red, white, and green plant labels was 55.33%, 91.33%

and 0.00%, respectively. Compared to green plant labels, both red

and white plant labels can be detected by the color mark sensor.

Although the red labels were able to be used as plant labels, the color

mark sensor was more sensitive to the white labels (91.33%). This
A B C

D E F

G H I

FIGURE 6

(A) Image of tomato plant and weeds captured by the system, (B) binary image after morphological operations, (C) binary image with plants
contours (yellow), (D) position of the crop signal in the RGB image, (E) position of crop signal in the binary image, (F) crop signal tolerance bands in
the binary image, (G) the contours of plants (yellow) and the crop signal tolerance bands (red) in the binary image, (H) the contours of tomato plant
(red) and the contours of weeds (green), (I) pixel mapping of weeds (green) and crop plants (red).
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shows that the white plant label is the best label recognized by the

color mark sensor, followed by the red plant label. Thus, the white

plant labels were selected for further study.
3.3 Determination of optimal detection
area and category for plant label

The detectability of the color mark sensor to the upper, middle

and lower regions of the white plant label was analyzed. The

feasibility of detecting the three areas of the plant label in the

horizontal direction by sensors placed at three heights (lower area:

0-6cm, middle area: 6-12cm and upper area: 12-18cm) was

investigated. As shown in Figure 7A, the color mark sensors

identify the lower area of the plant label with an accuracy of

90.00%. In contrast, the color mark sensor has lower detection

accuracy for the middle and upper areas of the plant labels. This

indicated that the lower area of the plant label was the optimal

detection area. In order to eliminate the occlusion of plant labels by

tomato stems, a new topical label was used in this study, in which

white topical markers were applied directly to the tomato stems

instead of the use of white physical labels. The sensor detected the

white topical marker on the tomato stem with 100% accuracy.

Therefore, the white topical marker was chosen as the most

appropriate plant label for weed and tomato localization.
Frontiers in Plant Science 07
3.4 Determination of optimal number for
color mark sensor

The effect of the number of selected sensors on the recognition

of white topical marker was evaluated. Several weeds were randomly

placed around each tomato plant. According to the algorithm

developed in this study, the detection of a plant label was

considered valid only if it was detected by two or more sensors

that were not on the same symmetrical centerline. As shown in

Figure 7B, the detection accuracy for plant labels increases as the

number of sensors increases from 2 to 6. When 2 color mark sensors

were used to detect plant labels, only 20.67% of the plant labels were

successfully detected. When 4 color mark sensors work together,

63.33% of the plant labels were effectively detected by this sensing

system. When the number of color mark sensors increased to 6, the

sensing system detected all plant labels. Therefore, the combination

of six color mark sensors was considered as the best solution for the

number of sensors in the system.
3.5 Effect of the size of tolerance zone on
plant localization

The effect of the size of the tolerance zone of estimated plant

label locations on plant identification was evaluated. Five different
A B

FIGURE 7

(A) Accuracy of detecting different areas, (B)accuracy of different number of sensors being applied.
TABLE 1 The results of detecting different physical plant labels based on different reference.

Reference Color of physical plant label Samples Correct detection Accuracy Average accuracy

Weed stem

Red 300 73 24.33%

31.00%White 300 206 68.67%

Green 300 0 0.00%

Tomato stem

Red 300 166 55.33%

48.89%White 300 274 91.33%

Green 300 0 0.00%
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sizes of circular tolerance zones (r = 2.5 mm, r = 5 mm, r = 7.5 mm,

r = 10 mm and r = 12.5 mm) were set up as a basis for evaluating

plant locations. As the radius of the tolerance zone increased from

2.5 mm to 12.5 mm, the accuracy of identifying tomato plants

increased from 89.00% to 100.00%, while the accuracy of identifying

weeds decreased from 95.42% to 93.72%, as shown in Table 2. To

quantitatively evaluate all detected plants, the overall accuracy was

calculated as shown in Equation 3.

Overall accuracy =
Tomato plants correctly detection + weeds correctly detection

Tomato plants samples + weeds samples
(3)

With the increase of the tolerance zone radius, the

identification accuracy of all plants first increased then

decreased. When the radius was 7.5 mm, the accuracy reached

the maximum value of 95.19%. Figure 8 shows data on the number

of weeds and tomato plants present and detected in 300 images

collected based on a circular tolerance zone with a radius of

7.5 mm. Among the 300 tomato plants and 1114 weed plants

used in this experiment, a total of 294 tomato plants and 1052

weed plants were successfully located, which demonstrated that
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the system proposed in this study can effectively distinguish weeds

from tomato plants.
4 Discussions

In this study, color mark sensors and cameras were combined in

a pioneering way for plant detection. The development of an

integrated sensing system that detects plant labels and calculates

their location is the main innovation of this study. In order for the

developed system to reliably classify different plants, the parameters

of the color marker sensors and plant tags need to be determined,

which is very important and necessary. The tomato plants were

labeled using plant labels to give them a machine-readable signal.

Thus, the algorithm to distinguish tomato plants from another

unlabeled plant was simplified to improve the efficiency of

computer execution. The system successfully located tomato and

packchoi plants in real-time by using integrated sensing technology.

However, there are also a few plants that are not correctly

localized by this system. The tomato plants were classified as
TABLE 2 The results of detecting tomato plants based on different radius of the tolerance zone.

Radius of the tolerance zone Detection object Samples Correct detection Accuracy Overall accuracy (%)

2.5mm
Tomato plants 300 267 89.00%

94.06%
Weeds 1114 1063 95.42%

5mm
Tomato plants 300 291 97.00%

95.12%
Weeds 1114 1054 94.61%

7.5mm
Tomato plants 300 294 98.00%

95.19%
Weeds 1114 1052 94.435

10mm
Tomato plants 300 295 98.33%

95.12%
Weeds 1114 1050 94.25%

12.5mm
Tomato plants 300 300 100.00%

95.05%
Weeds 1114 1044 93.72%
FIGURE 8

The weed and crop analysis per image: the number of weed/crop present in each image and the weed/crop in each image actually detected by
the algorithm.
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weeds probably due to the low frame rate of the camera used in

this system. After detecting a plant label, the next frame in the

video stream was acquired by the computer as the image for

calculating the plant location. Thus, the camera shutter did not

open at the same moment as the sensor detected the plant labels in

this image. The desynchronization between the camera shutter

and the sensor caused incorrect predicted position of the plant

label, as shown in Figure 9. In the future, high-speed cameras

should be considered to improve the accuracy of plant

classification. The errors introduced by the low frame rate of the

camera and the delay of the command transmission were

compensated by tolerance zones. The suitable size of tolerance

zone facilitates the system to classify weeds and tomato plants

precisely, as shown in Figure 10. In addition, weeds incorrectly

classified as tomato plants possibly due to the occlusion caused by

the tomato leaves and stem or weeds located too close to the

tomato plants, as shown in Figure 11. In the future, an algorithm

for segmenting overlapping weeds and tomato plants in the image

should be developed to improve the accuracy of weed detection.

The color mark sensor selected in this study distinguished the

target from other objects by using the difference in their reflection of

red light. Based on this photometric principle, the color mark sensor

showed different detection capabilities for objects of different colors or

materials (Yang et al., 2008). Due to significant optical differences, the

red light emitted by the color mark sensor can hardly be reflected by

the stems of tomatoes and weeds, while it can be reflected by special

plant labels. Thus, the plant labels were more easily detected by color

mark sensors. Further, the weed stem is slightly lighter in color than the

tomato stem, so it can reflect more red light. This might be the reason
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for the lower recognition accuracy of red and white plant labels when

weed stem was used as a reference. When the tomato stem was used as

the reference, the white plant labels weremore readily detected than red

and green plant labels. The reason for this may be that white labels

reflect any wavelength of red light, while tomato stems reflect little red

light. Although red labels can reflect red light, the wavelength range of

the red light reflected did not exactly match the wavelength range of

filter in the sensor, so only a portion of the red light reflected by the red

labels received by the photosensitive element of the color mark sensor

(Bayer-Krucsay, 1937). There was no significant difference in the light

reflected by the green label and the green tomato stem, thus the color

mark sensor could not distinguish between them.

A comparative analysis of the various weed and crop

classification systems that have been developed are presented in

Table 3. Comparison of crops, sensors, methods, detection speed

and accuracy was performed to evaluate the performance of this

system. Although only tomato plants were studied in this paper, the

methods proposed in the study are applicable to most of the crops

that need to be transplanted. Furthermore, although the studies

presented in Table 3 targeted different crops, they all used computer

vision to identify tomato and packchoi plants. Thus, it is of great

interest to compare the results of the present study with them.

The performance of the system is mainly reflected in speed and

detection accuracy. Lee et al. (1999) earlier proposed a Bayesian-

based classifier to classify tomato plants and weeds, which achieved a

speed of 344ms f-1. However, its accuracy was low, with only 47.6% of

the weeds and 75.8% of the crops being successfully classified. Lamm

et al. (2002) developed a machine vision system to classify crops and

weeds in commercial cotton fields based on their sizes, which
FIGURE 10

Weeds too close to tomato plants (red circles).
FIGURE 9

Misclassification due to low camera frame rate.
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improved the weed identification accuracy. Bakhshipour and Jafari

(2018); Ma et al. (2019) proposed a weed detection method based on

the SegNet semantic segmentation method and achieved a high

accuracy rate (93.9% for weeds and 93.6% for crops), but the speed

of their method was slow (604 ms f-1). A method for distinguishing

weeds in maize fields based on Mahalanobis distance was proposed

by Garcia-Santillan and Pajares (2018). The method achieved an

accuracy of 91.8% and a processing speed of 280 ms f-1, but this

method must obtain crop row information in advance. Then, Raja
Frontiers in Plant Science 10
et al. (2020b) developed a machine vision system based on crop

signaling technology to detect weeds in lettuce rows. The system

achieved 83.74% weed detection accuracy and 99.75% crop detection

accuracy at a processing speed of 160 ms f-1. The crop classification

accuracy and speed of this system met the requirements of real-time

weeding, but the weed classification accuracy of this system was low.

The method proposed in this study achieved the highest weed

detection accuracy (98.00%) and the second highest crop detection

accuracy (94.44%), which proves the effectiveness of the method. In
FIGURE 11

Five sizes of circular tolerance zones (red dots).
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addition, the system established in this study takes only 30 ms to

process an image, which is much faster compared to the existing

systems that take at least 160 ms to process an image.

5 Conclusions

An automatic real-time localization system was developed,

which successfully located tomato and packchoi plants using

integrated sensing techniques based on the crop signaling. With

the plant labels applied to tomato plants, the information acquired

by a color camera and six color marker sensors integrated by the

developed image recognition algorithm. The results demonstrated

that tomato stem was a reliable reference for higher accuracy. The

detection accuracy of the white physical plant label was significantly

higher than that of the red label and the green label. The lower part

of the label was identified with the highest accuracy compared to the

upper and middle part of the white physical plant label. The topical

marker directly applied to the lower part of the plant stem can be

more readily detected than the physical plant label. The

combination of six color mark sensors is the best solution for

detecting plant labels. A tolerance zone with a radius of 7.5 mm

maximizes the accuracy of plant classification. Based on the

established systematic method, the identification accuracy of

tomato plants was 98.00%, and the accuracy of weeds was

94.44%. In addition, the system took only 30ms to process an

image, which was faster than existing detection systems.Therefore,

the system developed in this study had strong performance for weed

and tomato identifications, which could provide prescription maps

for weed control in transplanted vegetables at a faster rate.
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TABLE 3 Comparison of various weed and crop classification method.

Study Sensors Crop Method Speed
(ms f-1)

Accuracy (%)

Weed Crop

Lee et al. (1999) Color camera Tomato Machine vision 344 47.6 75.8

Lamm et al. (2002) RGB, 3-CCD scan camera Cotton Machine vision 160 88.8 78.7

Ma et al. (2019) Canon IXUS 1000 HS camera Rice SegNet 604 93.9 93.6

Garcia-Santillan and Pajares
(2018)

Panasonic DMC-SZ8 color
camera

Maize On-line discrimination by Mahalanobis
distance

280 91.8 n/a

Raja et al. (2020b) RGB Basler 5 MP camera Lettuce Machine vision 160 83.74 99.75

Proposed method Color mark sensor & camera Tomato Machine vision 30 98.00 94.44
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