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Weeding is very critical for agriculture due to its importance for reducing crop

yield loss. Accurate recognition of weed species is one of the major challenges

for achieving automatic and precise weeding. To improve the recognition

performance of weeds and crops with similar visual characteristics, a fine-

grained weed recognition method based on Swin Transformer and two-stage

transfer learning is proposed in this study. First, the Swin Transformer network is

introduced to learn the discriminative features that can distinguish subtle

differences between visually similar weeds and crops. Second, a contrastive

loss is applied to further enlarge the feature differences between different

categories of weeds and crops. Finally, a two-stage transfer learning strategy is

proposed to address the problem of insufficient training data and improve the

accuracy of weed recognition. To evaluate the effectiveness of the proposed

method, we constructed a private weed dataset (MWFI) with maize seedling and

seven species of associated weeds that are collected in the farmland

environment. The experimental results on this dataset show that the proposed

method achieved the recognition accuracy, precision, recall, and F1 score of

99.18%, 99.33%, 99.11%, and 99.22%, respectively, which are superior to the

performance of the state-of-the-art convolutional neural network (CNN)-based

architectures including VGG-16, ResNet-50, DenseNet-121, SE-ResNet-50, and

EfficientNetV2. Additionally, evaluation results on the public DeepWeeds dataset

further demonstrate the effectiveness of the proposed method. This study can

provide a reference for the design of automatic weed recognition systems.

KEYWORDS

deep learning, fine-grained weed recognition, Swin Transformer network, contrastive
loss, transfer learning
1 Introduction

Weeds are undesirable plants in the field because they usually compete with early-

growth crops in essential resources, such as light, water, and nutrients. If weeds are not

controlled in time, they will cause severe threats to food security by reducing crop

production. According to the estimation, approximately 34% of all crop losses globally
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are due to weeds (Oerke, 2006). Chemical weed control is the most

common and effective weeding form used by farmers in the current

period (Westwood et al., 2018). However, chemical weeding results

in serious herbicide waste and potential ecological pollution. In

addition, large doses of herbicide spraying can cause some weeds to

develop resistance, making them difficult to remove weeds

completely (Hawkins et al., 2019). To reduce the negative impact

of herbicides, it is necessary to implement precise weeding, i.e., site-

specific application of herbicides. Automatic weed recognition

based on computer vision technology can provide accurate weed

distribution information for weed control systems, which is the

primary prerequisite for precise weeding (López-Granados, 2011).

Early computer vision methods for automatic weed recognition

relied on hand-crafted features such as shape and texture. The

combination of these features with machine learning algorithms (e.g.,

support vector machines and artificial neural network) has yielded

good results in weed recognition (Tang et al., 2003; Guerrero et al.,

2012; Behmann et al., 2015). However, due to the limited ability of

manual features to distinguish weed species, the above methods only

performed well on weed images with large morphological differences

and were difficult to accurately identify weeds and crops in farmland

environments. Benefiting from significant advances in deep learning,

convolutional neural network (CNN) has achieved good performance

in agriculture image analysis (Saleem et al., 2021). Recently, the

researchers attempt to utilize CNN in weed recognition for its

powerful capability of feature learning. Dyrmann et al. (2016) built a

CNN-based model, i.e., ResNet, for classifying weed and crop species.

dos Santos Ferreira et al. (2017) directly used the AlexNet model to

identify soybean and its major associated weeds. Olsen et al. (2019)

constructed the DeepWeeds dataset, which is amulti-class weed dataset

containing 17,509 images and fine-tuned InceptionV3 and ResNet-50

directly on this dataset to recognize weeds in rangelands. Espejo-Garcia

et al. (2020) fine-tuned pre-trained CNN (Xception, Inception-Resnet,

VGGNet, Mobilenet, and Densenet) to extract weed features and

combined extracted features with machine learning classifiers to

identify weeds. Some recently emerged deep learning techniques,

such as graph convolutional network (GCN) and generative

adversarial network (GAN), are also employed to assist in weed

recognition. Jiang et al. (2020) employed GCN to enrich extracted

weed features and acquired high performance on four different weed

datasets. Espejo-Garcia et al. (2021) created amounts of synthetic weed

images through GAN for weed recognition.

Weed recognition in the field belongs to fine-grained image

recognition issue due to the lack of obvious visual characteristics

between a portion of sub-categories. For example, as shown in

Figure 1, in the weed recognition task, there exist low interclass

variance between weeds and crops due to the fact that their leaves

share similar attributes. Thus, it is a quite challenging task to deep-

learning methods achieving high-precision performance for fine-

grained weed recognition in field conditions. Most previous works

directly captured features in the whole image, without adequately

considering similar visual characteristics between weeds and crops.

Although the deep model can accurately distinguish image samples

with the complex background, illumination change, deformity, and

occlusion, the similar visual appearance and texture between
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different categories became the main cause of recognition errors

(Ferreira et al., 2017; Jiang et al., 2020). Hu et al. (2020) proposed a

graph weeds network (GWN) for recognizing multiple types of

weeds; this method can precisely capture discriminative weed

features by formulating weed images as multi-scale graph

representations, which achieved 98.1% accuracy on the

DeepWeeds dataset. However, the architecture of GWN has low

efficiency, thus making it difficult to achieve real-time weed

recognition. Rzanny et al. (2022) evaluated different combinations

of CNN-based feature extraction and classifiers to distinguish 31

Poaceae species with similar morphology; this work, through

combinations of six perspective images as input to provide more

information about weed species, achieved the best accuracy of

96.1%. However, it is difficult to acquire multiple perspective

images in weed control operations.

Vision Transformer (ViT) is an effective approach to solving fine-

grained image recognition problems (He et al., 2022; Zhang et al.,

2022). It applies self-attention mechanisms directly to image patch

sequences to capture important regions in images, and finally learns

significant features to improve the classification performance

(Dosovitskiy et al., 2020; Han et al., 2022). However, the self-

attention in the transformer is quadratic to the image size, and

directly applying pure transformer to weed recognition has a high

requirement for computational resources. The Swin Transformer is

one of the variants of ViT, which computes self-attention within small

windows to model local relationships and uses a window shift strategy

to gradually enlarge the receptive field, and can learn more powerful

and robust representations than CNN (Liu et al., 2021). Therefore, it is

suitable for fine-grained weed recognition where there are subtle

morphological differences between weeds and crops.

Considering the characteristics of the visual similarity between

weeds and crops, the Swin Transformer network is introduced to

learn fine-grained feature representation. Meanwhile, to further

enlarge the feature differences between different categories of weeds

and crops, a combination of contrastive loss and cross-entropy loss

is applied to guide model optimization. In addition, by adopting a

two-stage transfer learning strategy, the deep network can alleviate

the dependencies of a large amount of labeled data and is expected

to achieve higher accuracy. The main contributions of our work can

be summarized as follows:
(1) A fine-grained recognition method based on Swin

Transformer is proposed for weed recognition and a

contrastive loss is applied to improve the ability to

distinguish between weeds and crops. This method

achieves state-of-the-art performance on our private

MWFI dataset and public DeepWeeds dataset.

(2) A two-stage transfer learning strategy is proposed to solve

the problem of insufficient training data and improve weed

recognition accuracy.

(3) Evaluation results on MWFI and DeepWeeds datasets

demonstrate the ability of the proposed method to

accurately recognize weeds and crops with similar

morphology.
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Fron
(4) To the best of our knowledge, this study is the first to

introduce the Swin Transformer network to learn fine-

grained features of weeds and crops, which offers an

alternative to the dominating CNN-based architectures.
The rest of this study is organized as follows. Section 2

introduces our used datasets. Section 3 elaborates the proposed

fine-grained weed recognition method. Section 4 describes the

experimental setting. Section 5 reported experimental results and

discussion. Finally, we conclude the study and give our future work

in Section 6.
2 Datasets

2.1 MWFI dataset

The images in the MWFI (maize/weed field image) dataset were

taken from the maize field at Northeast Agricultural University located

in Harbin, Heilongjiang Province, China (126° 43′ 39″ E, 45° 44′ 38″
N). All images were vertically captured 60 cm above the ground by a

smartphone camera. Considering the importance of weed recognition

at the early growth stage, the image acquisition was conducted from 25

May 2021 to 5 June 2021 when maize is in the growth stage of two to

five leaves. When capturing images, only one kind of weed appeared in

the approximate middle of the images to ensure that each image

contains one target weed species. The captured images had a resolution

of 640 × 480 pixels. To reduce the computational burden of the deep

learning-based methods, the original images are center cropped to 400

× 400 pixels to ensure the same aspect ratio and then resized it to 224 ×

224 pixels by bilinear interpolation algorithm to build the dataset. The

constructed dataset contains 1,632 images belonging to a crop (Maize

seedling) and its associated weeds [Cyperus rotundus L., Amaranthus

retroflexus L., Abutilon theophrasti Medicus, Portulaca oleracea L.,

Chenopodium album L., Cirsium setosum and Descurainia sophia (L.)

Webb. ex Prantl]. Example images of maize seedling and weeds are

shown in Figure 2. This dataset is divided into 1,142 training images

and 490 testing images by a ratio of 7:3.
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In this work, data augmentation techniques are adopted to

improve the generalization ability of the method and address the

impact of uneven sample distribution on recognition performance.

Specifically, the number of samples of each category in the training

set was expanded by using brightness enhancement, random

rotation, adding salt and pepper noise, and Mosaic (Bochkovskiy

et al., 2020; Hasan et al., 2021). Example results of data

augmentation are shown in Supplementary Figure 1.

Supplementary Table 1 summarizes the full names of each

category, the abbreviation of each category, and the number of

training and testing images.
2.2 Plant seedlings dataset

The Plant Seedlings dataset includes 5,539 images of 12 plant

species (Giselsson et al., 2017), which were acquired from plant

seedlings belonging to three crops (maize, common wheat, sugar

beet) and nine weeds (Alopecurus myosuroides, Sinapis arvensis L.,

Galium aparine L., Stellaria media, Chenopodium album L.,

Polygonum persicaria L., Matricaria perforata M´erat, Capsella

bursa-pastoris, and Geranium pusillum). Because all images of

this dataset with simple backgrounds were taken under controlled

laboratory conditions, it is easy to achieve the high accuracy of weed

recognition on this dataset. Therefore, the Plant Seedlings dataset is

selected as an additional dataset for two-stage transfer learning.
3 The proposed method

This section describes the details of the proposed method of fine-

grained weed recognition. To accurately distinguish maize seedlings

and weeds with high appearance similarity, a Swin Transformer

network was introduced for the feature extraction network and a

contrastive loss was applied to expand the feature differences between

maize seedlings and weeds in this method. The overall structure is

illustrated in Figure 3; this method mainly consists of two stages. In the

first stage, a Swin Transformer network is fine-tuned on the Plant
A B

FIGURE 1

Example images belonging to different categories of crop and weed in the field. (A) Different categories of weeds with similar appearance. (B) Weed
and crop with similar appearance.
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Seedlings dataset to obtain a task-related pre-trained network. The

second stage aims to fine-tune the task-related pre-trained network on

our MWFI dataset and apply a contrastive loss to assist

network training.
3.1 Feature extraction network

The feature extraction network based on Swin Transformer

consists of five phases (Liu et al., 2021), as shown in Figure 4. The

network input is an RGB three-channel weed image of 224 × 224 × 3

size. In phase 1, the input image is divided into 4 × 4 × 3 non-

overlapping image patches by a patch partition module, and then the

set of image patches is projected into multi-channel single-pixel points

by a linear embedding layer. These two operations are realized by

convolution with a kernel size of 4 × 4, an output channel of 96, and a

step size of 4. The input image becomes a 56 × 56 × 96 feature map

after phase 1.

In phase 2, the feature map is sent to multiple stacked Swin

Transformer blocks for feature extraction and then downsampled

by a patch merging layer to generate a hierarchical feature

representation. Two consecutive Swin Transformer blocks are

applied for feature transformation to ensure that the network

learns global semantic features and local semantic features at the
Frontiers in Plant Science 04
same time. As shown in Figure 5, two consecutive Swin

Transformer blocks are made up of window-based multi-head

self-attention (W-MSA), shifted window-based multi-head self-

attention (SW-MSA), and multilayer perceptron (MLP) that

includes two fully connected layers and a GELU nonlinearity.

Specifically, a residual connection is used after each (S)W-MSA

module and each MLP, and a LayerNorm (LN) layer is used before

each module. The computations of two consecutive Swin

Transformer blocks can be formulated as follows:

Zl   =  MLPðLNðW�MSAðLNðZl� 1ÞÞ 

+  Zl� 1ÞÞ + W-MSAðLNðZl� 1ÞÞ + Zl� 1 (1)

Zl+1  =  MLPðLNðSW-MSAðLNðZlÞÞ  +  ZlÞÞ 

+  SW�MSAðLNðZlÞÞ + Zl (2)

where Zl-1 is the input features of the W-MSA module, Zl

represents the output features of the W-MSA module and the MLP

module for block l, and Zl+1 represents the output features of the

SW-MSA module and the MLP module for block l+1.

The W-MSA module is used to compute self-attention within

local windows in which each window contains M × M patches
A B D

E F G H

C

FIGURE 2

Example images of maize seedling and weeds in the MWFI dataset. (A) Maize seedling, (B) Cyperus rotundus L., (C) Amaranthus retroflexus L.,
(D) Abutilon theophrasti Medicus, (E) Portulaca oleracea L., (F) Chenopodium album L., (G) Cirsium setosum, and (H) Descurainia sophia (L.)
Webb. ex Prantl.
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(M = 7). The W-MSA module significantly reduces the

computation compared with the standard multi-head self-

attention (MSA). The comparison of computational complexity

between the MSA and W-MSA is as follows:
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WðMSAÞ = 4hwC2 + 2ðhwÞ2C (3)

WðW�MSAÞ = 4hwC2+2M2hwC (4)
FIGURE 3

The proposed fine-grained weed recognition method.
FIGURE 4

The feature extraction network based on Swin Transformer.
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where h represents the height of the input feature map, w

represents the width of the input feature map, and C represents the

depth of the input feature map. The W-MSA module that has linear

computational complexity relative to image size is affordable for the

weed recognition tasks. Since W-MSA is only a local attention

mechanism, the SW-MSA module is proposed to introduce cross-

window communication, as shown in Figure 6. The SW-MSA module
Frontiers in Plant Science 06
through the shift window approach offers the connections of feature

maps that belong to neighboring non-overlapping windows to capture

global information. It is effective for image classification.

Since the self-attention mechanism cannot learn the positional

relationship between patches, i.e., disturbing the input order of

image patches will not affect the recognition results, positional

encoding is necessary to add positional information for patches.
FIGURE 6

An illustration of the shift window approach for computing self-attention in the Swin Transformer architecture.
FIGURE 5

Two successive Swin Transformer blocks.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1134932
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1134932
Following Liu et al. (2021) positional encoding method, relative

position bias is introduced when calculating the similarity between

the query and the key. Self-attention in Swin Transformer Block is

computed as follows:

AttentionðQ,K ,VÞ = SoftMaxðQKT=
ffiffiffi

d
p

+ BÞV (5)

where Q, K, and V represent the query, key, and value

metrics; d is the dimension of the query/key (d = 32); and B is

the relative position bias, which is used to characterize the

position information between image. The patch merging layer

is similar to a pooling operation. The 56 × 56 × 96 feature maps

are merged in 2 × 2 adjacent blocks, resulting in a feature map

with a size of 28 × 28 and a dimension of 384, and then the

feature dimension is reduced to 192 by a fully connected neural

network layer, thus halving the feature map size and doubling

the number of channels for downsampling. Phases 3 and 4 are

the same as phase 2, and the feature map size becomes 7 × 7 ×

768 after phases 3 and 4. Phase 5 consists of two consecutive

Swin Transformer blocks and a global average pooling layer, and

outputs a comprehensive feature representation with a

dimension of 768.
3.2 Loss function

Since the morphology differences in some weeds and maize

seedlings are small, a commonly used cross-entropy loss (Lcross) is

not sufficient to fully supervise the learning of discriminative

features. Therefore, a contrastive loss (Lcon) was introduced to

assist the Lcross to extract more discriminative features (He et al.,

2022). The contrastive loss is calculated based on cosine similarity

between each batch of output features that can expand the

difference corresponding to the features of different categories and

increase the similarity with features of the same category.

Meanwhile, to reduce the contrastive loss influenced by different

categories of samples with little similarity, a constant degree of

similarity a is introduced in which only two different categories of

samples with similarity greater than a act on the Lcon. The

contrastive loss is defined as:

Lcon =
1
N2o

N

i
½ o

N

j : yi=yj

(1� Sim(zi, zj)

+ o
N

j : yi ≠ yj

(max (Sim(zi, zj)�a), 0)� (6)

where N is the number of samples for a training batch, zi is the

feature of the ith image sample in the batch, zj is the feature of the

jth image sample in the batch, Sim(zi, zj) is thus the dot product of zi
and zj, yi is the label of the ith image sample and yj is the label of the

jth image sample, and zi and zj are pre-processed with l2

normalization. We enlarge the loss for different category samples

with large visual similarity. This loss forces the network to focus on

subtle differences between different categories as much as possible.

Finally, our network is trained using the sum L of Lcross and Lcon,

as shown in the following:
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L = Lcross(y, p) + Lcon(z) (7)

where L is the total loss of network training, p is the predicted

label, and y is the true label.
3.3 Two-stage transfer learning

Transfer learning can improve the accuracy of weed recognition

and reduce the computational resources and data size required to

train deep neural networks (Suh et al., 2018; Espejo-Garcia et al.,

2020; Xu et al., 2021). It is especially important for the Swin

Transformer network that requires large-scale training data. To

achieve higher recognition accuracy on our weed recognition tasks

and further reduce the requirement for training data size, a two-

stage transfer learning strategy was proposed for network training

in this study, as shown in Figure 3. The input of two-stage transfer

learning is a Swin Transformer network pre-trained on the

ImageNet dataset. Firstly, all parameters of the Swin Transformer

network before the final fully connected layer are transferred to the

feature extraction network. Next, the feature extraction network is

fine-tuned on the Plant Seedlings dataset to obtain a task-related

pre-trained network that includes more useful knowledge for weed

identification tasks. Finally, the task-related pre-trained network is

again fine-tuned on our MWFI dataset to obtain the final weed

recognition network.
4 Experiment

4.1 Implementation details

In this study, all the experiments are performed with NVIDIA

Tesla T4 GPU and Intel(R) Core(TM) i7-12700H @ 2.70 GHz CPU

using the PyTorch toolbox. The training hyper-parameter settings

of seven methods in Section 5.1 are as follows. All the networks’

input size is 224 × 224 × 3. Each deep learning network is trained for

a total of 60 epochs. The batch size is set to 64. The learning rate is

initialized as 0.0001. The similarity a in the contrastive loss is set to

0.2. The optimizer for training the Swin Transformer network and

our method is AdamW, and the learning rate decayed with cosine

annealing. To train CNN for comparison in Section 5.1, the

stochastic gradient descent (SGD) optimizer with a momentum of

0.9 is adopted for network training, and the learning rate is divided

by 10 after every 20 epochs.
4.2 Evaluation metrics

In this study, the performance of the weed recognition method

is evaluated in terms of four widely used metrics: Accuracy,

Precision, Recall, and F1 score, which are defined as follows:

Accuracy = o
c
i=1TPi
m

� 100% (8)
frontiersin.org

https://doi.org/10.3389/fpls.2023.1134932
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1134932
Precision =
1
co

c

i=1

TPi
TPi + FPi

� 100% (9)

Recall =
1
co

c

i=1

TPi
TPi + FNi

� 100% (10)

F1 score = 2� Precision� Recall
Precision + Recall

(11)

where m is the total number of samples, c is the number of

categories, TP is the number of samples that are actually positive

cases and classified as positive by the method, FP is the number of

samples that are actually negative cases but classified as positive by

the method, and FN is the number of samples that are actually

positive cases and incorrectly classified as negative by the method.

To measure the real-time performance of the weed recognition

method, this study uses inference time as an evaluation metric,

which indicates the time required for the network to classify a single

testing image by using a CPU. To measure the computational cost

of the weed recognition method, the training time is also used as an

evaluation metric, which indicates the total training time of

two stages.
5 Results and discussion

5.1 Comparison of weed recognition
performance of different methods

To verify the performance advantages of the proposed method,

we compare our method against the well-performed CNN-based

architectures in previous weed recognition studies including VGG-

16 (Simonyan and Zisserman, 2014), ResNet-50 (He et al., 2016),

DenseNet-121 (Huang et al., 2017), SE-ResNet-50 (Hu et al., 2018),

EfficientNetV2 (Tan and Le, 2021), and the original Swin

Transformer network. All networks are trained by using the two-

stage transfer learning strategy. Network parameters corresponding

to the highest accuracy on the testing set are selected for testing the

performance. Table 1 shows the experimental results.

As can be seen from Table 2, among these comparative

methods, our method achieved the best performance in terms of
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accuracy, precision, recall, and F1 score. Specifically, our method

has a recognition accuracy of 99.19%, which is 1.83% better than

EfficientNetV2 and 1.22% better than the original Swin

Transformer network. The experimental results show the

effectiveness of our method in weed recognition. It is also

observed that the SE-ResNet-50 and EfficientNetV2 perform

better than other CNN-based architectures since they can capture

the discriminative feature with channel attention. Meanwhile, it can

be noticed that both our method and the original Swin Transformer

network exceed CNN counterparts on all evaluation metrics. This

phenomenon demonstrates that the Swin Transformer network is

more appropriate than CNN-based architectures for weed

recognition by considering the fine-grained characteristics of

weed images. In addition, the real-time performance and

computational burden comparison between seven methods is

shown in Table 1. It is observed that the inference time of our

method is only 56 ms, which is similar to SE-ResNet-50 and

EfficientNetV2, even better than VGG16. Our method is also less

time-consuming than VGG-16 and DenseNet-121. This result

shows that the Swin Transformer network does not bring a huge

increase in computational complexity and our method can meet the

real-time requirements of the weed recognition algorithm in

weeding operations.

The top 5 predictions of different weed recognition methods on

two test images are illustrated in Figure 7. It can be seen that there is a

morphological similarity between the two test images. The results of

recognizing the Maize seedling image are shown in the first row of

Figure 7; DenseNet-121 and SE-ResNet-50 networks incorrectly

identified Maize seedling as Sedge (i.e., Cyperus rotundus L.). The

EfficientNetV2 network gives small differences in confidence, but

correctly identified the Maize seedling. Our method not only can

correctly classify the image as a Maize seedling, but also offers

significant differences in confidence. The results of recognizing

Sedge image are shown in the second row of Figure 7; DenseNet-

121, SE-ResNet-50, and EfficientNetV2 networks give higher

confidence to the Maize seedling than to Sedge, thus leading to the

misclassification of the Sedge image. The above results show that our

method can effectively learn discriminative fine-grained features

through the window-based self-attention mechanism of the Swin

Transformer network, and has better recognition performance in

distinguishing different categories with high appearance similarity.
TABLE 1 Comparison of the experimental results of different methods on the testing set.

Methods Accuracy/% Precision/% Recall/% F1 Score/% Model
sizes/MB

Inference
time/ms

Training
time/min

VGG-16 96.12 96.44 96.01 96.22 512 87 860

ResNet-50 96.33 96.63 96.19 96.41 90 45 270

DenseNet-121 96.73 97.02 96.78 96.90 26.9 47 990

SE-ResNet-50 96.94 97.19 97.01 97.10 147.5 61 310

EfficientNetV2 97.35 97.70 97.63 97.66 77.9 66 280

Swin
Transformer

97.96 98.20 98.23 98.21 105.3 56 350

Our method 99.18 99.33 99.11 99.22 105.3 56 380
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5.2 Comparison on different transfer
learning strategies

To evaluate the effect of the two-stage transfer learning strategy,

we compare the weed recognition performance with the different

training strategies on the testing set. The result of training on the

Plant Seedlings dataset can be found (Supplementary Table 2). As can

be seen from Table 2, all methods have a large margin of accuracy

improvement with the two-stage transfer learning strategy. It is worth

mentioning that our method can improve the accuracy by 19.18%

compared to that without transfer learning. The results show that

two-stage transfer learning is effective for our weed recognition task.

In addition, the two-stage transfer learning strategy produced higher

accuracy than the network only pre-trained on the ImageNet dataset.

This is because network pre-trained on Plant Seedlings dataset can

provide more meaningful patterns related to maize seedlings and

weeds. Therefore, it is necessary to adopt a two-stage transfer learning

strategy to achieve the best recognition performance when the dataset

is not large enough.
Frontiers in Plant Science 09
5.3 Evaluation of contrastive loss

We further evaluated the effect of contrastive loss on weed

recognition performance. We made comparisons of the recognition

accuracy with and without a contrastive loss for both

EfficientNetV2 and our method on the testing set.

As shown in Table 3, we observe that with the help of

contrastive loss, the method obtains a big performance gain.

Specifically, it increases the accuracy from 97.96% to 99.18% for

our method. A similar result can be seen by introducing contrastive

loss in which the accuracy is boosted from 97.35% to 97.75% for

EfficientNetV2. The experimental results illustrate that contrastive

loss is helpful to improve recognition performance. This is because

contrastive loss can effectively improve the distinguishing ability by

enlarging the distance of feature representations between similar

maize seedlings and weeds. In addition, we show the confusion

matrices of our method on the testing set in Figure 8. It can be seen

that major misclassifications occur within these categories with

similar visual appearance and texture, such as Maize seedling and
A B D EC

FIGURE 7

Two MWFI test images and the five categories are considered most probable by four methods. From left to right, (A) the test images, the results of
our fine-grained weed recognition method (B), EfficientNetV2 (C), SE-ResNet-50 (D), and DenseNet-121 (E). Confidence is the prediction probability
of weed recognition method for categories. C1–C8 is the abbreviation of maize seedling and weeds.
TABLE 2 Comparison of the recognition accuracy of different transfer learning strategies.

Methods Without transfer learning/% Pre-training on the ImageNet/% Two-stage transfer learning/%

VGG-16 87.55 95.31 96.12

ResNet-50 88.97 95.71 96.33

DenseNet-121 85.71 96.12 96.73

SE-ResNet-50 86.94 95.51 96.94

EfficientNetV2 87.76 96.33 97.35

Swin Transformer 79.59 97.55 97.96

Our method 80.00 98.57 99.18
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Sedge. However, with contrastive loss, the number of misclassified

samples in the recognition of Maize seedling and Sedge dropped

from 4 and 3 to 1, respectively. This phenomenon further proves the

advantage of contrastive loss in distinguishing subtle morphological

differences between maize seedlings and weeds.
5.4 Visualization analysis

The key to the fine-grained image classification task is to pay

attention to the most discriminative part of the image. To better

understand the parts of the plant emphasized by our proposed

method, we used the gradient-weighted class activation heatmap to

visualize our method (Selvaraju et al., 2017). The correct labels and

output feature maps of the feature extraction network were used in

generating the activation distribution. We randomly sample one

image from each category of the testing dataset and visualize them

as shown in Figure 9.

From Figure 9, we can find that our method can focus well on

the most important parts of the maize seedling and weed images

and meanwhile ignore some background regions. For example, in

the first and second column of Figure 9B, there are high activation

values in the region of the leaf in the visualization results of Maize
Frontiers in Plant Science 10
seedling and Sedge images, which can significantly help to

distinguish weeds from crops with similar morphology. For

example, in the second and third column of Figure 9D, it can be

seen that the overall heatmap obtained by our method can

accurately cover the area where the target category is located even

if there is interference from other categories of weeds in the images.
5.5 Experiment on the DeepWeeds dataset

Besides the MWFI dataset, we also conduct experiment on the

DeepWeeds dataset to further evaluate the effectiveness of our

method. The DeepWeeds dataset includes 17,509 images of eight

weed categories and a negative category (other plants except for 8

weeds) taken in rangeland environments, and Supplementary

Figure 2 provides an example image for each category. This

dataset is split following the setup in Olsen et al. (2019); 60% of

the dataset is used for training, 20% is used for validation, and the

remaining 20% is used for testing. The performance of our method

and existing methods are comparatively reported in Table 4. It can

be observed that our proposed method achieves the best

performance in terms of accuracy, precision, and recall. It is also

noted that GWN-DenseNet202 achieves higher precision and recall

than other compared methods. This is because GWN-DenseNet202

can locate the key parts of weed images to distinguish weeds with

high appearance similarity. Although GWN-DenseNet202 has the

same precision as our method, its recall is 0.3% lower than our

method. This phenomenon shows that capturing the discriminative

parts of images is useful to improve weed recognition performance,

and our method is more effective than GWN-DenseNet202 for

capturing key parts.

Figure 10 shows the confusion matrix of our method on

DeepWeeds. It can be seen that our method provides outstanding
A B

FIGURE 8

Comparison of the confusion matrices on the testing set. (A) Our fine-grained weed recognition method without contrastive loss. (B) Our fine-
grained weed recognition method with contrastive loss. Bluer colors indicate larger numerical values. C1–C8 denote the abbreviations of maize
seedling and weeds.
TABLE 3 Ablation study on contrastive loss on the MWFI (maize/weed
field image) dataset.

Methods Contrastive loss Accuracy/%

EfficientNetV2 Without 97.35

EfficientNetV2 With 97.75

Our method Without 97.96

Our method With 99.18
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performance for each category, even though some categories of

weeds are morphologically similar. Although Chinee apple and

Snake weed are easily confused in the DeepWeeds dataset, our

method is able to reduce misclassifications between them effectively.

Specifically, one Chinee apple sample was misclassified as Snake

weed and five Snake weed samples were misclassified as Chinee

apple by our method. Compared with the GWN-DenseNet202, our

method is superior in distinguishing Chinee apple and inferior in

distinguishing Snake weed. The analysis of the confusion matrices

further demonstrates that our method is a powerful architecture for

weed recognition.
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6 Conclusions

This study presents a fine-grained recognition method for

classifying maize seedlings and weeds in the field. We exploit the

Swin Transformer network to capture the most discriminative

regions in maize seedling and weed images. Meanwhile, our

method further expands the feature differences of similar image

samples between different categories by applying contrastive loss. In

addition, we use the two-stage transfer learning strategy to reduce

requirements for the amount of annotated data and improve

recognition accuracy. The experimental results on the MWFI and
A

B

D

C

FIGURE 9

Visualization results of our fine-grained weed recognition method. (A) The original images of the first four categories. (B) The visualization outputs of
the first four images. (C) The original images of the last four categories. (D) The visualization outputs of the last four images. The darker the color,
the more critical the region is to the recognition result.
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DeepWeeds datasets show the effectiveness of the proposed method.

Moreover, the average recognition time of our method is only 56 ms

with CPU, which can meet the real-time requirement of field weed

control. In this study, we presented the idea of learning local and

global information in weed and crop images by using the Swin

Transformer network, which is beneficial for distinguishing the

images of appearance similarity and can be applied to other

agriculture image recognition. In our future work, we plan to

evaluate the effectiveness of the transformer-based methods in

multi-label prediction, object detection, and semantic

segmentation of weeds. Moreover, we will improve the real-time

ability of our proposed method and study the deployment in

edge devices.
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Recall 98.4
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FIGURE 10

Confusion matrix of our fine-grained weed recognition method on
the DeepWeeds dataset.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1134932
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1134932
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Plant Science 13
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1134932/

full#supplementary-material
References
Behmann, J., Mahlein, A. K., Rumpf, T., Römer, C., and Plümer, L. (2015). A review
of advanced machine learning methods for the detection of biotic stress in precision
crop protection. Agric. Precis. 16 (3), 239–260. doi: 10.1007/s11119-014-9372-7

Bochkovskiy, A., Wang, C. Y., and Liao, H. Y. M. (2020). Yolov4: Optimal speed and
accuracy of object detection. arXiv. Available at: http://arxiv.org/abs/2004.10934.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
et al. (2020). An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv. Available at: http://arxiv.org/abs/2010.11929.

Dyrmann, M., Karstoft, H., and Midtiby, H. S. (2016). Plant species classification
using deep convolutional neural network. Biosyst. Eng. 151, 72–80. doi: 10.1016/
j.biosystemseng.2016.08.024

Espejo-Garcia, B., Mylonas, N., Athanasakos, L., and Fountas, S. (2020). Towards
weeds identification assistance through transfer learning. Comput. Electron. Agric. 171,
105306. doi: 10.1016/j.compag.2020.105306

Espejo-Garcia, B., Mylonas, N., Athanasakos, L., Vali, E., and Fountas, S. (2021).
Combining generative adversarial networks and agricultural transfer learning for weeds
identification. Biosyst. Eng. 204, 79–89. doi: 10.1016/j.biosystemseng.2021.01.014

Ferreira, A. D. S., Freitas, D. M., Silva, G. G. D., Pistori, H., and Folhes, M. T. (2017).
Weed detection in soybean crops using convnets. Comput. Electron. Agric. 143, 314–
324. doi: 10.1016/j.compag.2017.10.027

Giselsson, T. M., Jørgensen, R. N., Jensen, P. K., Dyrmann, M., and Midtiby, H. S.
(2017). A public image database for benchmark of plant seedling classification
algorithms. arXiv. Available at: http://arxiv.org/abs/1711.05458.

Guerrero, J. M., Pajares, G., Montalvo, M., Romeo, J., and Guijarro, M. (2012).
Support vector machines for crop/weeds identification in maize fields. Expert Syst.
Appl. 39 (12), 11149–11155. doi: 10.1016/j.eswa.2012.03.040

Güldenring, R., and Nalpantidis, L. (2021). Self-supervised contrastive learning on
agricultural images. Comput. Electron. Agric. 191, 106510. doi: 10.1016/
j.compag.2021.106510

Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., et al. (2022). A survey on
vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 45 (1), 87–110. doi:
10.1109/TPAMI.2022.3152247

Hasan, A. M., Sohel, F., Diepeveen, D., Laga, H., and Jones, M. G. (2021). A survey of
deep learning techniques for weed detection from images. Comput. Electron. Agric. 184,
106067. doi: 10.1016/j.compag.2021.106067

Hawkins, N. J., Bass, C., Dixon, A., and Neve, P. (2019). The evolutionary origins of
pesticide resistance. Biol. Rev. 94 (1), 135–155. doi: 10.1111/brv.12440

He, J., Chen, J. N., Liu, S., Kortylewski, A., Yang, C., Bai, Y., et al. (2022). “Transfg: A
transformer architecture for fine-grained recognition,” in Proceedings of the AAAI
Conference on Artificial Intelligence (Vancouver, BC, Canada: AAAI), 852–860.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (Las Vegas, NV, USA: IEEE), 770–778.

Hu, K., Coleman, G., Zeng, S., Wang, Z., and Walsh, M. (2020). Graph weeds net: A
graphbased deep learning method for weed recognition. Comput. Electron. Agric. 174,
105520. doi: 10.1016/j.compag.2020.105520

Hu, J., Shen, L., and Sun, G. (2018). “Squeeze-and-excitation networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Salt Lake City, UT, USA: IEEE), 7132–7141.

Huang, G., Liu, Z., van der Maaten, L., andWeinberger, K. Q. (2017). “Densely connected
convolutional networks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (Honolulu, HI, USA: IEEE), 4700–4708.
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