
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Haikou Wang,
Australian Plague Locust
Commission, Australia

REVIEWED BY

Tsan-Yu Chiu,
Beijing Genomics Institute (BGI), China
Abdullah Muhammad,
Sejong University, Republic of Korea

*CORRESPONDENCE

Xin Zhang

xzhang1@gzu.edu.cn

Xiaoyulong Chen

chenxiaoyulong@sina.cn

SPECIALTY SECTION

This article was submitted to
Sustainable and Intelligent Phytoprotection,
a section of the journal
Frontiers in Plant Science

RECEIVED 31 December 2022
ACCEPTED 27 January 2023

PUBLISHED 14 February 2023

CITATION

Lin J, Yu D, Pan R, Cai J, Liu J, Zhang L,
Wen X, Peng X, Cernava T, Oufensou S,
Migheli Q, Chen X and Zhang X (2023)
Improved YOLOX-Tiny network for
detection of tobacco brown spot disease.
Front. Plant Sci. 14:1135105.
doi: 10.3389/fpls.2023.1135105

COPYRIGHT

© 2023 Lin, Yu, Pan, Cai, Liu, Zhang, Wen,
Peng, Cernava, Oufensou, Migheli, Chen and
Zhang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 14 February 2023

DOI 10.3389/fpls.2023.1135105
Improved YOLOX-Tiny network
for detection of tobacco
brown spot disease

Jianwu Lin1,2,3, Dianzhi Yu1,2, Renyong Pan1,2, Jitong Cai1,2,
Jiaming Liu1,2, Licai Zhang1,2, Xingtian Wen1,2, Xishun Peng1,2,
Tomislav Cernava4, Safa Oufensou5, Quirico Migheli5,
Xiaoyulong Chen2,3* and Xin Zhang1,2*

1College of Big Data and Information Engineering, Guizhou University, Guiyang, China, 2Guizhou-
Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in
Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China,
3International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou
University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China,
4Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria, 5Dipartimento
di Agraria and Nucleo di Ricerca sulla Desertificazione - NRD, Università degli Studi di Sassari,
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Introduction: Tobacco brown spot disease caused by Alternaria fungal species

is a major threat to tobacco growth and yield. Thus, accurate and rapid detection

of tobacco brown spot disease is vital for disease prevention and chemical

pesticide inputs.

Methods: Here, we propose an improved YOLOX-Tiny network, named YOLO-

Tobacco, for the detection of tobacco brown spot disease under open-field

scenarios. Aiming to excavate valuable disease features and enhance the

integration of different levels of features, thereby improving the ability to detect

dense disease spots at different scales, we introduced hierarchical mixed-scale

units (HMUs) in the neck network for information interaction and feature

refinement between channels. Furthermore, in order to enhance the detection

of small disease spots and the robustness of the network, we also introduced

convolutional block attention modules (CBAMs) into the neck network.

Results: As a result, the YOLO-Tobacco network achieved an average precision

(AP) of 80.56% on the test set. The AP was 3.22%, 8.99%, and 12.03% higher than

that obtained by the classic lightweight detection networks YOLOX-Tiny network,

YOLOv5-S network, and YOLOv4-Tiny network, respectively. In addition, the

YOLO-Tobacco network also had a fast detection speed of 69 frames per

second (FPS).

Discussion: Therefore, the YOLO-Tobacco network satisfies both the advantages

of high detection accuracy and fast detection speed. It will likely have a positive

impact on early monitoring, disease control, and quality assessment in diseased

tobacco plants.

KEYWORDS

object detection, tobacco brown spot disease, YOLOX-Tiny network, hierarchical mixed-

scale units, convolutional block attention modules
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1 Introduction

Tobacco (Nicotiana tabacum L.) is an economically important

crop in China. Although it is well known “smoking is not good for

heathy”, the plant cultivation was dominant in some areas as one of

the main income sources for local farmers (Chen et al., 2020). In

addition, tobacco is a model plant in biotechnology research, as well

as a provider of secondary metabolites that could be used by human

being. For instance, Nicotine is widely used in pharmaceutical

industry, as well as pesticide innovation (Chen et al., 2021).

Tobacco production is affected by various diseases that limit yields

and product quality. For example, tobacco brown spot disease (Xie

et al., 2021) caused by Alternaria fungal species is widely distributed

and frequent in China, where it causes heavy economic losses. Timely

detection and prevention of the disease provide effective means to

solve the problem (Lin et al., 2022a). The traditional crop disease

detection method mainly relies on hand-designed features. The

detection efficiency and detection accuracy of this method are low,

which can no longer meet the needs of modern agriculture (Singh and

Misra, 2017; Lin et al., 2022b).

With the rapid development of deep learning, object detection

techniques based on deep learning are widely used in computer

vision. Girshick et al. (2014) combined region proposal and

convolutional neural networks (CNNs) to design the first two-stage

network Regions with CNN features (R-CNN). Some researchers

improved R-CNN, and a faster and more accurate network called Fast

R-CNN (Girshick, 2015) was proposed. Subsequently, Ren et al.

(2015) proposed the Faster-RCNN network based on Fast-RCNN,

which was the first detection network to implement end-to-end. At

present, single-stage detection networks, such as single shot multibox

detector (SSD) (Liu et al., 2016), RetinaNet (Lin et al., 2017), and you

only look once (YOLO) series (Redmon et al., 2016; Redmon and

Farhadi, 2017; Redmon and Farhadi, 2018; Bochkovskiy et al., 2020;

Ge et al., 2021), are more widely used because they have faster

detection speed than two-stage detection networks. With the deep

integration between deep learning and agricultural production, smart

agriculture has become a major trend in the development of modern

agriculture in different countries (Kamilaris and Prenafeta-Boldú,

2018; Nguyen et al., 2020). The use of cameras mounted on hardware

devices to determine whether leaves are infected by pathogens has

been widely used in the field of smart agriculture, leading to the

automatic identification of crop diseases (Kulkarni et al., 2021; Gajjar

et al., 2022). In recent years, increasing studies were focused in this

field, Li et al. (2022) developed an improved YOLOv5-S network to

detect five vegetable diseases. The experimental results showed that

the mean average precision (mAP) of the improved YOLOv5-S

network reached 93.1%, which was higher than nanodet-plus,

YOLOv4-Tiny, and YOLOX-S. Wang et al. (2021) proposed a

YOLOv3-Tiny-IRB based on the YOLOv3-tiny network architecture

for detecting tomato diseases and pests. The experimental results

showed that the mAP under three conditions: (a) deep separation, (b)

debris occlusion, and (c) leaves overlapping reached 98.3%, 92.1%,

and 90.2%, respectively. Zhao and Qu (2018) used the YOLOv2

algorithm to detect healthy and diseased tomatoes with a mAP of

91%. Qi et al. (2022) utilized an improved SE-YOLOv5 to recognize

tomato virus disease: the mAP achieved 94.1%, which was 1.23%,
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16.77%, and 1.78% higher than that of the Faster R-CNN model, SSD

model, and YOLOv5 model, respectively. Fuentes et al. (2019)

proposed an improved Faster R-CNN algorithm, which can

effectively detect and locate plant abnormalities. An average

accuracy of 92.5% was achieved in the built tomato plant

abnormality description dataset. Zhang et al. (2022) combined the

YOLOv5 network with distance intersection over union non

maximum suppression (DIOU-NMS) to detect and record wheat

ears in images collected from field plots. In addition, they also used

HSV and CMYK color space to extract comprehensive color feature

(CCF) and used the Res-Net network to extract each wheat ear’s high

dimension feature. The average accuracies of counting total wheat

ears and diseased wheat ears were 96.16% and 81.66%, respectively.

Chen et al. (2022) proposed an improved YOLOv5 using a new

involution bottleneck module and SE modules for plant disease

recognition, The test results showed that the mAP of the improved

YOLOv5 network reached 70%. He et al. (2021) proposed an

improved SSD network for the detection of watermelon diseases.

Experiments showed that the average accuracy of the improved SSD

network was 92.4%. Moreover, Bao et al. (2022) proposed an

improved RetinaNet network, named AX-RetinaNet, for the

automatic detection and identification of tea leaf diseases in natural

scene images.

In general, the findings of the abovementioned study confirm that

object detection technology has may advantages in crop disease

detection, leading to prompt adoption of targeted control measures.

The objective of this study was to examine tobacco brown spot disease

in real scenes with complex backgrounds. Images of tobacco brown

spot disease collected in natural conditions have three characteristics.

Usually, the distribution of spots is too dense and inconsistent in size,

the symptoms of some spots are not obvious, and the light

distribution is uneven in some images. Therefore, existing object

detection networks do not meet the demand for accurate and fast

detection of tobacco brown spot disease in natural environments.

Hence, we propose an improved detection network, named YOLO-

Tobacco, for the detection of tobacco brown spot diseases. The main

aims of this study are as follows:
(1) An improved detection network named YOLO-Tobacco is

proposed for the detection of tobacco brown spot diseases

under natural conditions based on the YOLOX-Tiny

network.

(2) To facilitate the effective fusion between different levels of

features, thus enhancing the detection of dense disease spots

at different scales, the hierarchical mixed-scale units (HMUs)

(Pang et al., 2022) were introduced in the neck network to

refine the critical disease features.

(3) To further enhance the ability to extract useful features,

thereby improving the robustness and the ability to detect

small objects of the model, the convolutional block attention

modules (CBAMs) (Woo et al., 2018) were implemented in

the neck network.
The rest of the study is organized as follows: Section 2 introduces

the collection and preprocessing of the dataset. Then, Section 3

introduces the proposed method. Subsequently, experimental results
frontiersin.org
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and analysis are present in Section 4. Lastly, the conclusion is

summarized in Section 5.
2 Materials

2.1 Image acquisition

We obtained tobacco leaf datasets from a tobacco research

demonstration site in Sinan County, Tong Ren City, Guizhou

Province, China. The period of image acquisition was from October

1 to October 7, 2021. The device used for image acquisition was an

iPhone 8 plus device. We collected a total of 340 images of tobacco

brown spot disease caused by Alternaria alternata. Representative

images are shown in Figure 1.
2.2 Image preprocessing

We used LabelImg (Tzutalin, 2015) to label 340 images of tobacco

brown spot disease. The process of labeling is shown in Figure 2.

Owing to the time, equipment, and location of the image acquisition
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site, the number of tobacco brown spot disease images was limited.

Thus, the dataset had to be augmented to increase the diversity of

training samples, reduce model overfitting, and improve the

generalization ability of the network. To ensure that the distributions

of the training set and test set are independent, the following

operations were carried out: firstly, the tobacco brown spot disease

datasets were divided into a training set and a test set in the ratio of 8:2;

then, the training set was augmented using rotation, brightness

enhancement, adding of Gaussian noise enhancement, and color

enhancement, while the test set was not augmented. The specific

data distribution is shown in Table 1.
3 Proposed method

3.1 YOLO-Tobacco network framework

YOLOX is one of the newest models in the YOLO series, which

consists of seven sub-models, YOLOX-Nano, YOLOX-Tiny,

YOLOX-S, YOLOX-L, and YOLOX-M. YOLOX-Tiny achieves a

trade-off between detection accuracy and detection speed. The
FIGURE 1

Examples of material that was collected for the dataset. Images of leaves of the tobacco plant (Nicotiana tabacum L.) affected by tobacco brown spot
disease were used to compile the dataset that was used in this study.
FIGURE 2

Process of tobacco brown spot disease symptom labeling with LabelImg.
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number of parameters of YOLOX-Tiny only accounts for 5.06

million, which is suitable for deployment on various agricultural

hardware devices. However, for the detection of dense small disease

spots on tobacco leaves, YOLOX-Tiny does not meet the

requirements in terms of detection accuracy and detection speed.

The basic structure of the YOLOX-Tiny network can be divided

into input, backbone, neck, and prediction. The input part enriches

the content augmentation of the dataset with mosaic data, and good

detection results are achieved using low-cost computational

resources. The backbone network consists of the focus module, the

cross-stage partial (CSP) (Wang et al., 2020) layers, and the spatial

pyramid pooling (SPP) module. The focus module slices the input

image before the feature extraction, to increase the depth of the

network and reduce the amount of computation in the network.

YOLOX-Tiny can extract rich image features through the CSP layers,

which are the residual edge of the convolutional layer, and then

concatenate them with the main branch. The SPP module extracts
Frontiers in Plant Science 04
image features at different scales by concatenating feature maps of

different pooling layers. Path aggregation networks (PAN) (Wang

et al., 2019) are used to aggregate the image feature in the neck

network. Finally, two prediction heads are used in the prediction part,

which performs the classification task and the regression

task, respectively.

In this study, we introduced the HMU modules in the neck

network. The HMU module can excavate important disease features,

refine disease features in different channels, and enhance information

interaction at different levels of the neck network, thus improving the

detection performance of dense multi-scale disease spots. In addition,

to enable the model to better focus on small objects and improve its

robustness, we also introduced three CBAM modules before the

prediction part. The architecture of the YOLOX-Tobacco network

is shown in Figure 3.
3.2 HMU

Low-level features are suitable for detecting small objects, middle-

level features are suitable for detecting medium-sized objects, and

high-level features are suitable for detecting large objects. The original

YOLOX-Tiny network incorporates features from different levels in

the neck network through a top-down and bottom-up network

structure. However, this plain approach did not extract the critical

and refined information between each layer, making the model

ineffective in detecting dense multi-scale disease spots. To do that,

we used the HMUmodule in the neck network to conduct an effective

fusion for the different levels of features. The structure of the HMU

module is shown in Figure 4. It is composed of two parts, namely

group-wise iteration and channel-wise modulation.

For the part of the group-wise iteration, given an input feature

map f̂ . First, a 1×1 convolution layer is used to increase the number of
TABLE 1 Sample distribution.

Dataset Training set Test set

Original images 272 68

Rotation 60 272 0

Rotation 90 272 0

Rotation 180 272 0

Rotation 270 272 0

Brightness enhancement 272 0

Add gaussian noise enhancement 272 0

Color enhancement 272 0

Total images 2176 68
FIGURE 3

The architecture of the YOLO-Tobacco network. It consists of the input part, the backbone network part, the neck network part, and the prediction
network part.
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channels of the feature map and then divided it into G groups fgjgGj=1
along the channel dimension. A convolution operation is used to divide

the first group {gj}into three sets of features a. The first set of features
fg 011g3k=1 interacts with the next group of features for feature

interaction, while the other two sets of features are utilized for

channel-wise modulation. For the j(1< j< G) group, the following

operations performed are carried out: first, the feature map gj and the

feature map g 0j−11 are cascaded, then the feature map is subjected to

convolution and split operations, and finally, the feature map is divided

into three feature sets.

For the part of channel-wise modulation, first, the features ½fg 0j2
gGj=1� yield the feature modulation vector a by a series of nonlinear

operations. Then, the vector a is weighted as weights to the feature

½fg 0j3gGj=1�. Finally, the final output ~f of the HMU module can be

written as:

~f = A(f̂ i +N (T (a · ½ g 0j3
� �G

j=1�))) (1)

Where A denotes the activation function, N denotes the batch

normalization, and T denotes the convolution operation.
3.3 CBAM

The CNN model can pay attention to valuable features and

suppress invalid features by the attention mechanism. In this study,

we used three CBAM modules in the neck network, thus making

YOLOX-Tobacco paymore attention to key features and improving the

detection ability of small disease spots. The structure of the CBAM

module is shown in Figure 5. It aggregates important information first

along the channel dimension and then along the spatial dimension.

Therefore, the CBAMmodule can be divided into two modules, namely

the channel attention module and the spatial attention module.
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The structure of the channel attention module is shown in

Figure 6. Given an input feature map f , we can get the output of

the channel attention module:

Mc(f ) = s (W1(W0(f
c
avg ) +W1(W0(f

c
max)) (2)

Where s represents the sigmoid activation function, The MPL

weights (W1 and W0) are shared for both inputs and the ReLU

activation function.

The structure of the spatial attention module is shown in Figure 7.

Given an input feature map f, the output of the spatial attention

module can be written as:

Mc(f ) = s (T 7�7( Concat ½f cavg ; f cmax�)) (3)

Where s represents the sigmoid activation function, T7×7

represents a convolution layer with a filter size of 7.
4 Experimental results and analysis

4.1 Evaluation indexes

The precision, recall, F1-score, and average precision (AP) are

used as evaluation indexes. The used formulas are as follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 − score =
2TP

2TP + FP + FN
(6)
FIGURE 5

The structure of the CBAM module.
FIGURE 4

The structure of the HMU module.
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AP =
Z

precision*recall =
Z 1

0
p(r)dr (7)

Where TP is the number of true positive samples, FP is the

number of false positive samples, FN is the number of false negative

samples, and TN is the number of true negative samples. In addition,

the frames per second (FPS) is also used to evaluate the performance

of the model.
4.2 Experimental configuration and
hyperparameter setting

The experimental configuration is shown in Table 2. The

hyperparameters were set as follows. The stochastic gradient descent

(SGD) optimizer was used to optimize the model. The initial learning

rate was set to 0.01 with a momentum of 0.937 and a weight decay of

0.0005. We divided the training process into two stages. Specifically, in

the first stage, we froze the weights of the backbone and trained the

neck and prediction parts with training epochs of 50 and a batch size of

16. In the second stage, we trained all the parameters in the YOLOX-

Tobacco network with training epochs of 100 and a batch size of 8.

Remarkably, all networks used pre-trained weights of the backbone on

the MS COCO dataset for transfer learning.
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4.3 Ablation experiment

We performed ablation experiments to verify the effect of the

CBAM module and the HMU module on the original YOLOX-Tiny

network. The results are shown in Table 3. The experimental results

show that the YOLO-Tobacco network has a more comprehensive

performance than the original YOLOX-Tiny network. Next, we

analyzed each module in the YOLO-tobacco network.
4.4 Performance comparison
of each module

To visually demonstrate the impact of different modules on the

network, we used a histogram to visualize two main metrics, namely

AP and FPS. The comparison results of the four networks are shown

in Figure 8. We found that the AP of the original YOLOX-Tiny

network with the CBAM module reached 79.22%, which was 2.06%

higher compared to the original YOLOX-Tiny network. This may be

because the CBAM module can effectively reduce the influence of the

complex background of tobacco leaves and improve the detection

ability for small objects of tobacco brown spot disease. Subsequently,

the original YOLOX-Tiny network with the HMU module achieved

an AP of 79.99%, which was 2.76% higher than the original YOLOX-

Tiny network. This may be because the HMUmodule emphasizes the

critical information in the channel and enhances the fusion of

different levels of features, thereby effectively improving the

network’s ability to detect dense disease objects. Our proposed

YOLO-Tobacco network, which contains both CBAM and HMU

modules, achieved the highest detection accuracy with an AP of

80.45%, which was 3.22% higher than the original YOLOX-Tiny

network. The FPS of the YOLO-Tobacco network was also reduced by

10. Overall, the experimental results demonstrate that the YOLO-

Tobacco network achieves a better balance between detection

accuracy and inference speed.
FIGURE 6

The structure of the channel attention module.
FIGURE 7

The structure of the spatial attention module.
TABLE 2 Experimental configuration.

Name Parameter

CPU AMD Ryzen 9 5900X

GPU NVIDIA GeForce RTX 3090

System Windows 10

Programming Language Python 3.7.13

Deep learning framework Pytorch 1.12.1
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4.5 Comparison of the results
with other tiny networks

To verify that the YOLO-Tobacco network has advantages over

other tiny networks, we chose several common tiny YOLO networks

to compare them with our proposed YOLO-Tobacco network. The

comparison results are shown in Table 4. It can be seen that the AP,

recall, precision, and F1-score of the original YOLOX-Tiny network

showed substantial improvements compared to the YOLOv4-Tiny

network and the YOLOv5-S network. The FPS of the original

YOLOX-Tiny network was only about half that of the YOLOv4-

Tiny network. This is because the structure of the YOLOv4-Tiny

network is relatively simple and the number of detection heads is

small, which improves its detection speed at the expense of detection

accuracy. Afterward, compared to the three tiny networks, our

proposed YOLO-Tobacco network achieved a state-of-the-art

detection accuracy with 80.45% AP, 69.27% recall, 86.25%

precision, and 0.7683 F1-score. Although the FPS of the YOLO-

Tobacco network had a small decrease compared to the original

YOLOX-Tiny network. Overall, the YOLO-Tobacco network

achieved a trade-off between detection accuracy and detection speed.
4.6 Analysis of the detection effect
of different tiny networks

For the detection of tobacco brown spot disease, the comparison

of different networks (YOLOv4-Tiny, YOLOv5-S, YOLOX-Tiny, and

YOLO-Tobacco) were shown in Figure 9. In the first column of

images, the scale differences and dense distribution among the spots
Frontiers in Plant Science 07
hamper the detection of spots. Our proposed YOLO-Tobacco

network shows the best detection performance with the least

number of missed spots.

In the second column of images, there are a small number of tiny

spots, which are not obvious symptoms and therefore difficult to

detect completely. Both the YOLOv4-Tiny network and the YOLOv5-

S network had missed detection, although the YOLOX-Tiny network

detected all targets but had false detection. YOLO-Tobacco

network correctly detected all spots. The experimental results

demonstrate that our proposed network has stronger feature

discrimination performance.

In the third column of images, there are not only a large number of

tiny spots but also uneven light distribution, which requires stronger

robustness of the detection network. YOLOv4-Tiny, YOLOv5-S, and

YOLOX-Tiny networks all had a large number of missed detections.

However, the YOLO-Tobacco network only missed four spots. This

demonstrates that the YOLO-Tobacco network shows more robustness

in the presence of uneven illumination.
5 Conclusions

The classical object detection network showed insufficient

performance in detecting images of tobacco brown spot disease with a

large number of dense spots, inconspicuous features, and complex

environments. Thus, we propose an improved object detection network,

called YOLO-Tobacco, for detecting tobacco brown spot disease. By

introducing HMU and CBAM modules into the original YOLOX-Tiny

network, this method improves the ability of the network to extract

features at different scales, refines discriminative features, and enhances

the robustness of the model to solve the problems of dense distribution of
TABLE 3 The results of ablation experiments with the confidence threshold is 0.5 and the IOU is 0.5.

YOLOX-Tiny CBAM HMU AP (%) Recall (%) Precision (%) F1-score FPS

√ 77.23 68.23 83.12 0.7494 79

√ √ 79.29 69.90 83.98 0.7629 75

√ √ 79.99 67.81 86.34 0.7596 74

√ √ √ 80.45 69.27 86.25 0.7683 69
frontiers
FIGURE 8

Comparison of the results of the four tested networks.
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disease spots in tobacco images, the inconsistent scale of disease spots,

inconspicuous symptoms of disease spots, and network instability in

complex condition. The experimental results demonstrate that the YOLO-

Tobacco network outperforms existing lightweight networks in terms of

detection accuracy, achieving an excellent balance between detection

accuracy and detection speed. However, due to the limited number of

datasets and the single plant disease used in this study, the proposed

model still has spaces to be further optimized for improvement.

In the next future, we will collect more plant disease datasets of

Solanaceae plants and develop further detection networks that can

detect most leaf plant diseases of Solanaceae plant. Furthermore,

optimizing works will be conducted to enhance the detection speed of

the proposed network and deploy it to mobile or embedded devices to

assist users quickly detect complex diseases of Solanaceae plant.
Frontiers in Plant Science 08
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