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Design, execution, and
interpretation of plant
RNA-seq analyses

Racheal N. Upton, Fernando H. Correr, Jared Lile,
Gillian L. Reynolds, Kira Falaschi , Jason P. Cook
and Jennifer Lachowiec*

Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
Genomics has transformed our understanding of the genetic architecture of

traits and the genetic variation present in plants. Here, we present a review of

how RNA-seq can be performed to tackle research challenges addressed by

plant sciences. We discuss the importance of experimental design in RNA-seq,

including considerations for sampling and replication, to avoid pitfalls and wasted

resources. Approaches for processing RNA-seq data include quality control and

counting features, and we describe common approaches and variations. Though

differential gene expression analysis is the most common analysis of RNA-seq

data, we review multiple methods for assessing gene expression, including

detecting allele-specific gene expression and building co-expression networks.

With the production of more RNA-seq data, strategies for integrating these data

into genetic mapping pipelines is of increased interest. Finally, special

considerations for RNA-seq analysis and interpretation in plants are needed,

due to the high genome complexity common across plants. By incorporating

informed decisions throughout an RNA-seq experiment, we can increase the

knowledge gained.

KEYWORDS

differential expression, co-expression networks, allele-specific variation, QTL mapping,
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1 Introduction

The production and analysis of transcriptomic data has become the norm in plant

sciences. In 2022, over 5700 articles were identified from the search terms “plant

transcriptomics” on the PubMed database, and over 23% of the total data available in

the Sequence Read Archive is RNA-seq for algae and land plants (Julca et al., 2022). With

thousands of public datasets already available and the on-going generation of new

transcriptomes, deep knowledge of plant physiology, biochemistry, development,

evolution, and more can be gained through careful analysis.

Technologies are rapidly improving to study transcriptomes and becoming more cost

effective to be deployed across diverse plants species. While microarrays and RNA-seq are
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the most common approaches to assess transcriptomes, long-read

approaches including Iso-Seq (Schaarschmidt et al., 2020) and

Nanopore direct RNA sequencing (Liang et al., 2021; Jain et al.,

2022) can also be used to examine transcript isoforms and splicing

events. Single-cell RNA-seq (scRNA-seq) can be used to analyze the

entire mRNA profile of a single cell, allowing for discovery of new

cell types, understanding of cell-to-cell variability, and study of rare

cell types (Cuperus, 2022). This review focuses on mRNA

transcriptomics as it is the most widely used approach for

studying the transcriptome of plants.

For RNA-seq findings to be impactful, careful consideration in

the design and analysis of the experiments are critical. In this

review, we highlight considerations for new RNA-seq experiments

emphasizing experimental design and best practices for processing

RNA-seq data. Gene expression determined from RNA-seq

represents an endophenotype, molecular phenotypes intermediate

to genotype and organismal traits (Mackay et al., 2009). Relating

endophenotypes to the underlying genetics and more derived

phenotypes is a growing area of research (Mackay et al., 2009;

Guo et al., 2016). We therefore, lay out various analyses of gene

expression and describe approaches that integrate RNA-seq with

gene mapping approaches (Guo et al., 2019; Huang et al., 2022;

J iang et al . , 2022) with the intent of increasing the

information gained.
2 Experimental considerations for
successful RNA-seq studies in plants

Thoughtful RNA-seq experimental design is critical for the high-

quality data needed to answer complex biological questions.

Insufficient experimental design for RNA-seq experiments may lead

to makeshift analyses to circumvent inappropriate procedures. These

issues have been discussed extensively in human medical literature

(Leek et al., 2010; Fang and Cui, 2011; Robles et al., 2012; Williams

et al., 2014), but less so in plant sciences. In addition to the standard

considerations of experimental design, RNA-seq requires attention to

tissue sampling strategy and the impacts of sample processing batch

effects. Batch effects refer to the technical artifacts that may be present

across a set of samples processed simultaneously. Lack of consistency

in sample collection or inattention to batch effects can lead to many

complications including lack of statistical power, technical or

biological artifacts, and lack of conclusive results. Below we detail

considerations that can be instrumental to the success of RNA-seq.
2.1 Experimental design concerns

2.1.1 Replication
The definition of a single replicate can vary across laboratory

and field-based studies. The experimental unit can range from a

single cellular component to a single plant to a collection of multiple

plants within a plot, making the definition of sample replicates

highly dependent on the system of interest. Similarly, experimental

units in RNA-seq experiments can vary and may differ depending
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on the experimental goal (Conesa et al., 2016). In experimental

design parlance, a factor refers to a single categorical variable

manipulated in a study. If there is an experiment with one factor

with k levels, then the study has k treatments. When there is a

second factor with j levels applied in combination with factor k,

there are k x j treatments, and so on (Hoshmand, 2006). When

multiple experimental units receive the same treatment, they are

considered replicates, and contrasts can be made between varying

factor levels or treatments.

With certain experimental goals, like capturing shared patterns of

expression, it may be beneficial to more broadly define replicates. For

example, if multiple genotypes share the same direction of gene

expression change across the levels of another factor, it may be useful

to redefine replicates not by a single genotype (Figure 1A), but instead

across multiple genotypes (Figure 1B) (Kasirajan et al., 2018; Correr

et al., 2020). Kasirajan et al. (2018) assessed differential expression

(DE) between upper and lower sugarcane internodes of two groups of

genotypes defined by high or low fiber content, and they used

different genotypes within the same fiber content class as replicates.

Grouping genotypes with shared functional characteristics allowed

the identification of shared candidate regulatory mechanisms.

Once the composition of replicate is determined, the number of

replicates to examine is also important for a successful study. In

general, replicate number has been found to have a stronger impact

on differential expression analysis than sequencing depth (Lamarre

et al., 2018). When RNA-seq is used for hypothesis generation,

small numbers of samples—usually three—can be sufficient to

perform the statistical analysis (Van den Berge et al., 2019). An

extensive experiment, exploring the replication needed for RNA-

seq, advises 6-12 replicates for each treatment, especially if genes

with small changes in expression may be relevant (i.e., transcription

factors) (Schurch et al., 2016). Because outlying replicates with poor

correlations to other samples can be identified during processing,

higher replication can support removing these samples with

sufficient replication remaining for downstream analyses

(Gierliński et al., 2015).

2.1.2 RNA-seq sensitivity to batch effects
Next-generation sequencing data is highly sensitivity to

biological variation and technical artifacts, and RNA-seq is no

exception. Minimizing potential sources of unwanted variation

during sample collection and preparation enables meaningful

interpretation (Zhou et al., 2019). Technical processing of RNA-

seq is not only sensitive to the facility and instrument used, but also

can be sensitive to the reagent lot, date of sequencing and other

processing factors (Molania et al., 2022). Simple experimental

design approaches to overcome batch effects include

randomization of samples at the library preparation step and

across sequencing runs (Conesa et al., 2016). If batch effects are

unavoidable, additional experimental design elements can be added,

and analysis methods for Removing Unwanted Variation (RUV)

can detect and remove batch effects in experiments. RUV

approaches use known concentrations of spike-in controls (Risso

et al., 2014) to account for batch effects. Additionally, RUV for

batch effects can be possible without spike-ins based on presumed
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housekeeping genes (Risso et al., 2014; Zhang et al., 2020), in silico

pseudoreplication approaches (Molania et al., 2022), or modeling

known sample covariates (Risso et al., 2014).
2.2 Sample source considerations

Transcriptomes are highly sensitive, with widespread variability

among experimental units exposed to the same treatment detected

in even highly controlled environments (Cortijo et al., 2019).

Minimizing undesired transcriptional variation can maximize the

success of RNA-seq experiments.

2.2.1 Inter-generational impacts on
sample sources

It is best practice that all seed needed for an RNA-seq

experiment is produced in a common environment the
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generation prior to the experiment. The growth conditions of the

prior generation is an important consideration, as the environments

experienced by parental plants can have inter- and even

transgenerational effects (Lämke and Bäurle, 2017). A newly

formed seed is not a blank slate; the parental environment can

affect germ cells and supporting tissues, influence the resulting seed

and even the adult plant (Galloway, 2005; Donohue, 2009; Wulff,

2017). For example, parent plants of Arabidopsis thaliana grown

under higher temperature and radiance produced offspring with

higher shoot biomass than parents grown in the lower temperature

and radiance condition (Andalo et al., 1999). An RNA-seq

experiment designed to compare genotypes could suffer from

confounding factors if the environments from which the seed

were sourced varied. Another approach to avoid inter-

generational effects altogether is to use clones vegetatively

propagated from a single individual and apply treatments

across clones.
B

A

FIGURE 1

Contrasting definitions of replicates in experimental design. The high-fiber (HF) and low-fiber (LF) classes represent two levels of one factor in the
experimental design that are of interest to contrast. Unique genotypes are indicted with numbers. (A) Typical design in which the same treatment is
applied to multiple experimental units to comprise replicates. (B) Alternative design in which different genotypes comprise replicates. Design is from
Kasirajan et al. (2018).
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2.2.2 Considerations of composite tissues and
bulk RNA-seq

RNA-seq is generally performed on composite samples

comprised of multiple tissues or organs, termed bulk RNA-seq.

Different tissues and cell types can have varied expression of critical

genes that may be masked when measuring pooled transcript levels

thus “washing out” the signal of relevant genes in composite

samples, which can limit the usefulness of RNA-seq (Johnson

et al., 2013). Limitations to biological interpretation with

composite samples have been recognized for some time through

work focusing on microarray comparisons between cell types and

whole tissues. In root cell types identified through reporter gene

expression and isolated with fluorescence-activated cell sorting,

over 50% of genes with differential expression were repressed in

one root cell type and induced in another (Gifford et al., 2008).

Pooling of composite cells and tissues may obscure the

identification of relevant and causal transcripts that could

contribute to improved quality and yield traits but is nearly

unavoidable (Schon and Nodine, 2017).

Additional sources of transcriptional variation in composite

samples complicate matters further. Varying cell types can simply

have different concentrations of total RNA (Baker et al., 1990;

Vennapusa et al., 2020; Walsh et al., 2020). For example, within

seeds, embryos have high transcriptional activity while the

endosperm are less active (Giacomello et al., 2017; Palovaara et al.,

2017). Further, RNA is more difficult to extract from some plant

tissues and species, such as those rich in polysaccharides or those

containing high concentrations of secondary metabolites (Salzman

et al., 1999; Gao et al., 2001). Therefore, composite samples with

starchy tissues may have transcripts that poorly represent these

components due to extraction difficulties. The sources of variation

in composite samples can limit the true utility of RNA-seq.

Regardless of the challenges of composite tissues studied with bulk

RNA-seq, pinpointing the choice of tissue to sample is best informed

by the scientific question of interest and hypothesized outcomes

supported by independent biological data.

2.2.3 Minimizing diurnal and circadian effects
Throughout the course of a day, temperature, sunlight, and water

potential all change, impacting plants (Hotta, 2021). Circadian

variation is of particular importance when considering

photosynthetic tissues. In plants, changes in the transcriptome due

to circadian rhythm can cause a 25% fluctuation in differentially

expressed genes (Hayes et al., 2010; Hudson, 2010), andmRNA decay

rates in Arabidopsis thaliana vary widely from just under four

minutes to over 24 hours with median half-lives of 2-4 hours

(Narsai et al., 2007; Sorenson et al., 2018). Therefore, the timing of

RNA-seq studies must be highly controlled during sample collection.

In studies where there are multiple treatments and circadian rhythm

is not the focus, samples need to be collected at the same time to avoid

confounding variance due to time of day. Similarly, for temporal

studies across multiple days, samples need to be taken at the same

time of day. For some species, a database of circadian controlled gene

expression is available for post-hoc correction (Li et al., 2016), but a

conscientious design is a superior approach.
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3 From reads to genetic features

After thoughtful RNA-seq experimental design, sample

collection, and generation of RNA-seq reads, it can be

overwhelming to approach the myriad of different tools available

for analysis. In this section we aim to provide a general overview of

the different approaches for quantifying the expression of genetic

features (genes or transcript isoforms) from raw sequencing reads.

The software available are categorized by purpose—quality control,

alignment, or quantification—and the genomic information

available for the organism. The software described below is

commonly used for RNA-seq pipelines; however, this is not a

complete list of all software as the tools available are numerous

and new software is being developed rapidly (Van den Berge

et al., 2019).
3.1 Preprocessing and quality control

Preprocessing comprises the first step for any sequencing

analysis. This stage involves the removal of technical artifacts such

as adaptors, PhiX sequence, rRNA sequences, assessing sequence

quality and if necessary, quality trimming. Commonly, sequencing

centers perform the preprocessing steps of the RNA-seq pipeline, but

it is best practice to perform a data quality check in-house. A

multitude of tools are available for the preprocessing steps. Quality

of raw sequences can be checked via tools such as FastQC (Andrews,

2010) and MultiQC (Ewels et al., 2016) or fastp (Chen S. et al., 2018).

Preprocessing tools such as such as Cutadapt (Martin, 2011),

Trimmomatic (Bolger et al., 2014), BBTools (Bushnell, 2022), and

fastp (Chen et al., 2018) can be used for contamination removal or

quality trimming. rRNA contamination can be identified and

removed with tools like BBTools and SortMeRNA (Kopylova

et al., 2012).

Preprocessing steps should be implemented with caution, as

they impact downstream analyses. A more stringent read trimming

shortens reads and thus influences mapping and the estimates of

expression levels for genes and their isoforms, ultimately impacting

the differential expression analysis (Williams et al., 2016). For de

novo transcriptome analysis, a stringent trimming strategy has also

been observed to produce incomplete transcriptome reconstruction

(MacManes, 2014; Mbandi et al., 2014). To ensure the greatest

amount of information is retained for analysis, employing less

stringent read-trimming, or no read-trimming at all is suggested

(Del Fabbro et al., 2013; MacManes, 2014; Mbandi et al., 2014;

Williams et al., 2016).
3.2 Alignment and reconstruction:
reference-based and de novo approaches

The next step in the RNA-seq analysis pipeline is to align reads

using a reference genome or de novo methods. Similar to

preprocessing steps, there are many bioinformatic tools available

for aligning reads, and they are categorized by whether they require
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a reference genome or a de novo transcriptome. In this section we

provide a brief overview of the different methods available for both

reference and de novo-based approaches, with a focus on the types

of biological questions each method can address and the limitations

of each approach.

Alignment-based reconstruction occurs when a reference

genome is available. The approach is very similar to aligning

genomic reads, but splicing events need to be considered for

RNA-seq data (Mehmood et al., 2020). Some of the software

available to perform the reference-based alignment includes

HISAT2 (Kim et al., 2019) and STAR (Dobin et al., 2013).

Reference-based alignment is split into two parts: reference

genome indexing and alignment of reads to the indexed reference

genome. Additionally, some alignment tools can incorporate the

discovery of novel exon-exon junctions like HISAT2 (Kim et al.,

2019) and RsubRead (Liao et al., 2019).

One drawback to reference-based alignments is reference-bias:

if there are sequences present in the RNA-seq data that are not

present in the reference data, the data will not align and will be lost

for downstream analyses unless alternative mining is performed

(Yang et al., 2022). A reference-based transcript reconstruction can

be performed post-alignment by software like Cufflinks (Trapnell

et al., 2010), StringTie2 (Kovaka et al., 2019) and Bookend (Schon

et al., 2022). Alternatively, new approaches that align reads to

pangenomes are available. Pangenomes store population-level

genetic variation into a graph-based structure rather than a single

linear genome (Eizenga et al., 2020), allowing for improved read

alignment, including for haplotype-aware RNA-seq read alignment

(Sibbesen et al., 2023).

When a reference genome or pangenome is not available for

your species of interest, researchers can choose to perform a de novo

assembly transcriptome. De novo transcriptome assembly can be

performed by tools as Trinity (Grabherr et al., 2011) and TransLiG

(Liu et al., 2019). The same tools for a reference genome-based

approach are used to align RNA-Seq to a de novo transcriptome

with minor modifications – e.g., not using the splice-aware function

of the aligners.

The next step in the bioinformatics pipeline is counting reads

mapped. For reference-based approaches tools such as HT-Seq

(Anders et al., 2015) or featureCounts can be used (Liao et al.,

2014). Also, transcript quantification using a reference

transcriptome can be performed using alignment-free methods

like Kallisto (Bray et al., 2016) and Salmon (Patro et al., 2017). It

is worthwhile mentioning that RNA-Seq strandedness impacts

quantification, identification of isoforms and de novo

transcriptome assemblies. The concept refers to the strategy

employed in library construction, wherein stranded library

preparations maintain the transcript directionality. Hence,

researchers should be aware of the kit utilized for library

construction when performed the aforementioned steps of RNA-

seq analysis. When the information of strandedness and direction of

strandedness is not known, tools like how_are_we_stranded_here

(Signal and Kahlke, 2022) can help determine the strandedness of

paired-end libraries. Finally, tools like tximport (Soneson et al.,

2015) and tximeta (Love et al., 2020) can be used to summarize the
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quantification of transcript abundances into an expression matrix.

For a detailed review about alignment and quantification, we refer

the reader to Van den Berge et al. (2019).
4 DEGs and beyond: RNA-seq
analysis types

Once RNA-seq transcript abundance has been acquired, a

multitude of analyses are available to examine a transcriptome. Most

often, treatments are contrasted for the identification of differentially

expressed genes (DEGs). We also detail additional analyses that can be

performed to further understand transcriptional profiles.
4.1 Differential expression

Measuring plant phenotypic plasticity in extreme environments

can aid in knowledge to develop plants for future abiotic and biotic

environmental conditions arriving with climate change (Gage et al.,

2017; Monforte, 2020). Using various molecular mechanisms,

plants respond to changing environmental conditions by altering

their physiology and development (Lachowiec et al., 2015).

Molecular plant plasticity enables adaptation to climatic shifts

and predicts an individual’s survival success (Nicotra and

Davidson, 2010; Nicotra et al., 2010; Fox et al., 2019; Anderson

and Song, 2020; Pazzaglia et al., 2021), warranting further

investigation (Brooker et al., 2022).

Increasingly studies use RNA-seq to understand molecular

plant plasticity (Kumar et al., 2022; Sreeratree et al., 2022). The

primary approach analyzes differential expression (DE), which

evaluates the transcriptional abundance across conditions through

simultaneous statistical testing for significant changes in expression

levels in all detected genes, transcripts, or different usage of

transcripts/exons (Soneson et al., 2015; Van den Berge et al.,

2019). Software like edgeR (Robinson et al., 2010), DESeq2 (Love

et al., 2014), and limma (Ritchie et al., 2015; Stark et al., 2019) all

provide robust DE analyses. For reviews of the main aspects in the

differential expression analysis we refer the reader to Costa-Silva

et al. (2021); Stark et al. (2019) and Van den Berge et al. (2019).

Differential expression analysis incorporates a matrix of features’

expression levels and knowledge about the experimental design. Tests

for identifying differentially expressed genes (DEGs) rely on contrasting

conditions, such as different tissues, genotypes, and conditions.

Exploring the up- or downregulation of genes under a stress

condition relative to a control condition indicates how a plant

combats a stressor and how the stressor harms the plant. For

example, in the sorghum lateral root apex, low levels of phosphorus

caused major expression changes in the lateral root apices, which

correlated with enhanced lateral root growth. Specifically, the low-

phosphorus-induced genes encoded proteins with functions in nutrient

responses and contribution to phosphorusmetabolism (Gladman et al.,

2022). Contrasting genotypes with different performances under stress

enables identifying potential mechanisms of stress resistance (Yue et al.,

2016; Zhao et al., 2021).
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4.2 Allele-specific expression

Allele-specific expression (ASE) describes the phenomenon

where alleles within a particular genetic feature (e.g. gene,

transcript) have significant differences in their expression levels

(Castel et al., 2015). The expression of alleles can be assessed by

comparing the expression of genes of a certain genotype with its

parents or by identifying polymorphisms and quantifying the

expression of each allele. ASE is especially informative in

understanding hybrid crops where different parental genotypes

are combined (Bell et al., 2013; Shao et al., 2019). ASE analysis

also reveals the processes of genetic imprinting, tissue- and stress-

specific alleles, as well as the evolution of species.

In wheat seeds, expression of homeologs and alleles is

differentially controlled and consideration of each copy of a gene

is relevant. In the endosperm, genes exhibited subgenome

dominance in particular functions (Pfeifer et al., 2014). Further,

imprinted genes were identified more frequently in developing

endosperm relative to other tissues, and imprinted gene

expression patterns were conserved through wheat evolution

(Yang et al., 2018). This imbalanced expression of maternal and

paternal alleles and subgenome dominance supports proper

seed development.

ASE analysis uncovered genes that were targets of selection

during domestication with implications for plant sciences. Lemmon

et al. (2014) identified that maize and teosinte diverged in gene

expression especially due to cis regulation, where the expression of

maize alleles is favored in F1 hybrids between the species. Genes

with cis and cis plus trans divergent regulation were enriched

among putative targets of selection. In rice, a F1 hybrid of

genotypes representing two major subpopulations exhibit

enrichment of genes ASE in genomic regions of signatures for

domestication or artificial selection (Shao et al., 2019). Moreover,

the limited ASE in sugarcane internodes predominates as genotype-

specific phenomenon, favoring high dosage alleles and purging the

expression of potentially deleterious alleles (Margarido et al., 2022).

Detecting ASE and regulatory mechanisms of ASE can inform our

understanding of plant evolutionary history.
4.3 Alternative splicing

Alternative splicing of precursor mRNAs leads to diversification

of the functions of a single gene. Transcriptional or isoform switching

refers to a shift in the presence or dominance of transcripts in

different samples, including across cell types, development,

genotypes, and environments. Within plants, the most common

form of alternative splicing is intron retention (Chamala et al.,

2015), in contrast to animals where exon skipping is most detected

(Kim et al., 2007). When the chosen alignment and counting

approaches (see Section 3.2) enable distinguishing transcripts,

examination of transcript switching is possible by utilizing the

differential expression of individual transcripts or using accessible

tools for assessing transcriptional switching (Qiu et al., 2021).

Genome-wide surveys of alternative splicing demonstrate the

potential impact of alternative splicing events, with tens of
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thousands of alternative splice forms detected that are

evolutionarily dynamic across angiosperms (Chamala et al.,

2015). Across a population of over 350 inbred maize lines,

variation in alternative splicing was detected, highlighting that

connecting genotype to phenotype can be better informed by

considering the expression of particular splice forms (Chen Q.

et al., 2018).
4.4 Co-expression networks

Co-expression summarizes large-scale transcriptomics to

infergene regulatory networks by identifying modules of genes

with similar expression patterns across multiple samples. Co-

expression analyses can suggest target genes of interest and

corroborate GWAS results and expand potential genetic markers

from those findings as well. Putative functions then can be assigned

to non-annotated genes if the majority of the genes in a module

share similar biological functions, the guilt-by-association principle

(Serin et al., 2016; Rao and Dixon, 2019). Co-expression network

analyses split into two main approaches: (i) non-targeted—a

network based on the topological structure using the relationship

of all pairs of genes or (ii) targeted—the use of bait genes as prior

information to define network connections. Varied inputs are used

to build networks, including replicates of multiple treatments,

averaging the expression of replicates grown for a treatment, or

defining networks separately to single levels of the experimental

factor (Cortijo et al., 2020).

A fundamental step for inferring the co-expression of genes

from large-scale transcriptomic data is the use of similarity

measures, including correlation and mutual information methods

(Ma and Wang, 2012; Huang et al., 2017). Correlation methods

selection is based on data type, and common coefficients include

Pearson’s, Spearman’s and Gini’s (Huang et al., 2017). Gini’s

correlation, for example, is advantageous for nonnormally

distributed RNA-Seq data, robust against outliers and small

sample sizes (Ma and Wang, 2012). A common pipeline to

construct a co-expression network involves the calculation of a

similarity matrix that is then filtered based on a threshold to select

gene pairs; then an adjacency matrix can be calculated and

subsequently a clustering algorithm is used to group genes into

modules (Serin et al., 2016).

Studies use co-expression networks to find hubs—genes with

high network connectivity—and understand their role in biological

pathways. For example, sugarcane hub genes changed across four

stages of development in the networks of 10-month-old compared to

6-month-old apical culms (Hosaka et al., 2021), revealing candidates

related to cell wall and stress and three transcription factors (TFs)

potentially acting as regulators of those processes. Co-expression

networks may also uncover functions for uncharacterized proteins.

De Vega and colleagues (De Vega et al., 2021) inferred TF targets in

Miscanthus hybrids that were enriched with carbohydrate

metabolism, secondary metabolism, and the generation of

precursor metabolites. They also found two TF that linked a core

and a loop subnetwork, the last composed mostly by TFs linked to

uncharacterized genes. Thus, regulatory co-expression networks are
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useful tools to identify targets of TFs, which can be important targets

for biotechnology and propose functions for poorly understood

proteins (Simons et al., 2006; Fröschel et al., 2019).

Time-series expression data impose a challenge for

understanding the dynamics of the coregulation of genes. The

complex relationships arising due to time can be detected by gene

co-expression measures that account for local dependence

structures in the expression patterns (Wang et al., 2014). The

dynamic network biomarker approach (Chen et al., 2012) aims to

find a subnetwork of strongly correlated genes just before a critical

transition – identified as a tipping point. With this approach

researchers found genes at the tipping point for response to stress

or ripening of fruits (Wang and Zhang, 2021; Wang et al., 2022).

Co-expression networks can also provide additional data for

determining genes involved in regulatory networks. Co-expression

combined with ChIP-seq can also identify the targets of a TF.

Cortijo and colleagues (Cortijo et al., 2020) identified novel

regulatory targets in the Arabidopsis thaliana circadian clock by

combining modules with genes co-expressed with known TFs and

ChIP-seq data. Targets of PSEUDO-RESPONSE REGULATOR 5—

a core component of the circadian clock—were found in a module

showing enrichment for photosynthesis. For a complete review of

co-expression networks in plant biology, the reader is referred to

(Rao and Dixon, 2019) and (Serin et al., 2016).
4.5 Pathway enrichment

Enrichment analysis tests if any functional group is over- or

underrepresented by a list of genes of interest – e.g., DEGs, co-

expressed genes or ASE genes. Enrichment analysis of genes

identified by differential expression or modules in co-expression

networks are useful to understand if genes in the module are related

to similar functions. It can suggest that non-annotated genes likely

participate in the same biological pathways as known genes, which

can lead to the identity of causal genes (Serin et al., 2016).

Functional pathways are represented by ontologies in different

frameworks like Gene Ontology (GO) categories (Ashburner

et al., 2000), Kyoto Encyclopedia of Genes and Genomes (KEGG)

orthology (KO) (Kanehisa et al., 2017), and MapMan4 bin

categories (Schwacke et al., 2019), which all capture varied

functions of genes.

For plants with reference genomes, functional annotation is

provided by databases along with the nucleotide sequence and the

structural annotation. For de novo assemblies this procedure

requires comparisons with nucleotide or protein databases,

retrieving the functional categories from the hits and associating

them to genes/transcripts of the reference. While functional

annotation of a reference – genome or transcriptome – in terms

of GOs, Enzyme Codes (ECs) or KOs can be performed by tools like

OmicsBox (BioBam Bioinformatics, 2019) or Trinotate (Bryant

et al., 2017), Mercator4 provides the specific annotation for

MapMan (Schwacke et al., 2019). The KO/EC annotation can be

linked to molecular networks by KEGG Mapper (Kanehisa and

Sato, 2020) to visual representation of the pathways. MapMan4 also

has its own visualization of functional pathways where besides the
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category mapping file, fold change or expression values can be

provided as input.

Finally, tests for enrichment of categories—over or

underrepresentation—frequently make use of Fisher’s Exact test,

Hypergeometrical test, permutation, or variation of those methods.

There are many tools for functional enrichment analysis: goseq

(Young et al., 2010), GSEA (Subramanian et al., 2005), OmicsBox

(BioBam Bioinformatics, 2019), topGO (Alexa et al., 2006),

clusterProfiler (Yu et al., 2012), and agriGO (Du et al., 2010).
4.6 Viral discovery

Viruses are the most abundant biological entities on earth and

are strongly associated with all organisms (Rosani and Gerdol, 2017;

Mushegian, 2020). It is very common for viruses to contaminate

tissue when preparing samples for sequencing. One meta-analysis

found that over half of the 700 sequencing libraries examined had

viral contamination (Asplund et al., 2019). RNA-seq is susceptible

to viral contamination. However, most viral contamination is

filtered out during bioinformatic processing.

Viral contamination in RNA-seq studies can provide

informative results as well. Kamitani et al. (2016) looked at both

plant-virus and virus-virus interactions in natural environments

using RNA-seq. Other studies have used RNA-seq to screen for viral

pathogens (Selitsky et al., 2020) and novel viral genome discovery

(Rosani and Gerdol, 2017). However, some virus types require

alternative rRNA depletion methods to be detected, such as non-

polyadenylated genomes (Nagano et al., 2015). To capture the full

range of viral genome varieties Nagano et al. (2015) optimized

rRNA depletion methods for mRNA focused RNA-seq to detect

varying types of viral signatures from natural environments. Viral

contamination in transcriptomic data may provide insight to

unknown biotic stressors or uncover novel defense mechanisms

related to a previously unknown viral pathogen. Accessible software

for identifying the species of origin allows for examining unmapped

sequencing reads and examining expression patterns for additional

species (Chen et al., 2020).
5 RNA-seq: from candidate to
causal gene

A major goal in plant genetics is to identify alleles or genes that

control a trait by associating genotype with phenotype, using both

reductionist and holistic approaches. In quantitative trait locus

(QTL) mapping, genetic loci that determine a trait are examined

one-by-one, typically focusing on loci of major effect to find

genotypes with a desired allele. In contrast, genomic prediction

collectively considers the impact of the entire genotype on a focal

trait, especially impactful for traits controlled by many loci of small

effect (Meuwissen et al., 2001).

Within a plant, the genotype is filtered through many levels of

endo- or molecular phenotypes to create phenotypes of interest

(Mackay et al., 2009). Integrating molecular phenotypes, such as

gene expression-, protein- or metabolite-level information with
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genotypes can improve understanding the association between

genotype and phenotype in QTL mapping.

RNA-seq supports fine mapping QTL, both by providing

additional evidence for the causal gene via differential expression

data and by allowing the discovery of new variants in the QTL

region, which can be used for marker development (Liu et al., 2016;

Habib et al., 2018; Jaganathan et al., 2020). A suitable situation for using

RNA-seq in a finemapping project is one designed in such a way that a

differentially expressed gene within the target QTL is the gene of

interest. One technique to maximize this possibility is by generating a

pair of near-isogenic lines (NILs) which are genetically identical except

for the QTL genotype, and by extension, gene expression and

phenotype (Szalma et al., 2007). Using NIL pairs will minimize

background genetic noise, so that differentially expressed genes

between the pair are likely associated with the trait of interest

(Keurentjes et al., 2007). Candidate genes are those occurring in the

QTL region that are differentially expressed between the NIL pair.

Subsequent analysis of each candidate gene can include using

molecular techniques such as gene silencing to observe phenotypic

changes as well as enrichment analysis to infer the genes’ function. In

addition to expression analysis, RNA-seq data can be used to identify

variants in the QTL region which can be used to develop new markers

to further increase the resolution of the region (Paritosh et al., 2013).

Taken together, the ability of RNA-seq to both provide evidence for the

causal gene through expression data and to allow for the identification

of new variants in the QTL region for marker development, means that

it can be a powerful tool for fine mapping applications.

Similarly, combining co-expression networks with genome-wide

association studies (GWAS) has prioritized candidate genes (Chan

et al., 2011). In contrast to biparental QTL mapping, GWAS relies on

diverse accessions that show phenotypic variation in a trait of interest.

Schaefer et al. (2018) developed a framework to integrate GWAS for

maize grain ionome traits and co-expression networks leading the

identification of two important genes expressed in roots (Schaefer

et al., 2018). The maize dwarf9 (d9) dominant allele D9-1 had higher

abundance of elements like iron, sulfur, and strontium compared to

the wild type. D9-1 did not influence cadmium accumulation, as

expected by the location of the cadmium GWAS QTL that contained

d9. Rather the dwarf allele –D8-mpl – of the paralog d8 identified

through co-expression analysis, recapitulated this effect. Co-

expression networks can also support extending understanding of

the genetic architecture of traits through the examination of epistasis.

A maize GWAS for senescence-controlling genes identified putative

epistatic interactions among QTL that were independently supported

with co-expression data (Sekhon et al., 2019). Co-expression

networks integrated with mapping approaches are proving to be

powerful for the identification of important genes and genetic

architecture (Rao and Dixon, 2019).
6 Genome complexity and RNA-seq in
plant sciences

Aspects of plant genome biology complicate the use of RNA-seq

data, especially relative to the organisms for which many of the
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bioinformatics tools were developed, though efforts to produce

specific tools for polyploid crops are expanding (Foster et al.,

2019). The genomes encoding many plants are polyploid with

multiple subgenomes (Meyer et al., 2012). Additionally, plants

can harbor massive levels of repetitive sequences (Zimin

et al., 2014).
6.1 Polyploidy

One feature of plant genomes that can influence the use of

RNA-seq is the prevalence of polyploidy (Fu et al., 2016). A study of

203 modern crops identified that 17% have undergone

polyploidization (Meyer et al., 2012). Of these, wheat and

sugarcane are among the most cultivated crops globally (Weeks,

2017). The pairing of polyploid chromosomes during

recombination varies along a spectrum from allopolyploidy to

autopolyploidy, along with the presence of aneuploid

chromosomes. Within allopolyploids, often formed through

hybridization, chromosome copies behave in a diploid fashion

and pair and segregate corresponding to species of origin, within

subgenomes (Edger et al., 2018; Kuo et al., 2020). In contrast,

homologous autopolyploid chromosomes pair at random, even

between subgenomes (Spoelhof et al., 2017). The type of

polyploidy can also vary along the length of a single

chromosome. Polyploidization impacts the bioinformatic

pipelines used to assess RNA-seq data, both at the level of

processing reads and subsequent analyses. The presence of

polyploidy can be problematic for RNA-seq analysis, from both a

computational and biological standpoint.

Polyploidy increases computation complexity due to an

increase in genome size, relative to a diploid genome and the

increased repeat content. The increase in genome size, resulting

from the presence of two or more subgenomes, means more

memory is required to index and store the reference genome or

transcriptome prior to read alignment. As such, analyzing large,

polyploid genomes, such as wheat, may be prohibitive to those

without expansive compute resources.

The degree of similarity among polyploid subgenomes is a

driving force for how RNA-seq analyses may need to proceed

differently compared to diploid genomes (Voshall and Moriyama,

2020). In the cases of subgenomes with low levels of divergence at

the nucleotide level, little functional divergence may be expected

across homeologs, the genes homologous to one another on each

subgenome (Wang et al., 2017; Sigel et al., 2019). However, the

phenomenon of subgenome dominance, or the tendency for genes

to be expressed from a particular subgenomes, is commonly

observed across plants (Schnable et al., 2011; Wang X. et al.,

2016; Khan et al., 2020). For example, nonbalanced expression

was identified in approximately ~30% of wheat homeologs,

primarily through suppression of a single homeolog (Ramıŕez-

González et al., 2018). Isolating the expression of homeologous

genes may be particularly useful when using RNA-seq to

complement QTL mapping studies (Yang et al., 2014). Therefore,

distinguishing homeolog expression enables specific studies.
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6.2 Repetitive sequences

High levels of repeat content are also problematic from a

computational viewpoint to interpret RNA-seq data. Repeat

content can refer to both biological repeats (e.g., transposable

elements, short sequence repeats) or genomic regions shared

between subgenomes. Significant portions of widely grown cereals

are comprised of repetitive sequences, excluding homeologs and

duplicated genes: wheat-85% (Wicker et al., 2018), maize-85%

(Schnable et al., 2009), barley-80% (Wicker et al., 2017), and rice-

41% (Li et al., 2021). In the cases when these regions are expressed

(Cavrak et al., 2014), they create issues computationally as there

may be no way to confidently align reads to regions that are present

more than once, resulting in a high number of multi-mapping

reads. Multi-mapping reads are discarded by default by popular

read counting programs. As such, the RNA-seq analysis of

polyploid genomes may be hampered by the loss of a significant

portion of data without explicit intervention.

Data loss due to repetitive sequences is problematic as repetitive

elements can have important biological functions. For example,

screening A. thaliana T-DNA insertion lines at the locations of

transposable elements for seedling morphological responses to

stresses uncovered functional roles of for over 90% of those tested

(Joly-Lopez et al., 2017). Outside of transposable elements, short

tandem repeats contribute to the repetitive content of the genome

with functional consequences. The length of the short tandem

repeat encoding a polyglutamine span in the protein EARLY

FLOWERING 3 influenced flowering time across A. thaliana

accessions (Undurraga et al., 2012). Inability to assign reads to

these repeats means that functional polymorphisms are missing

from analyses. Longer read technologies will improve reference

genomes (Jiao et al., 2017; Michael et al., 2018; Kamal et al., 2022)

and transcriptomes to enable study (Wang B. et al., 2016) of

currently poorly characterized sequences.
7 Conclusions

The ever-increasing need to support a growing global

population requires increases in plant productivity and access.

New crops and varieties are needed to adapt to challenging
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abiotic and biotic environmental conditions globally. With the

growing affordability and accessibility of RNA-seq, this

technology can be leveraged to study any plant species of interest.

The most impactful RNA-seq studies are carefully designed and

control many sources of unwanted variation. During analysis, much

research concludes by examining DEGs between conditions;

however, we have outlined additional forms of analysis to extend

the usefulness of RNA-seq data, even data already publicly available.

The intent of this review is to provide plant-focused guidelines,

strategies, and examples for supporting new users of RNA-seq and

inspiration for new applications by established researchers.
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