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Verticillium wilt (VW) is often referred to as the cancer of cotton and it has a

detrimental effect on cotton yield and quality. Since the root system is the first to be

infested, it is feasible to detect VW by root analysis in the early stages of the disease.

In recent years, with the update of computing equipment and the emergence of

large-scale high-quality data sets, deep learning has achieved remarkable results in

computer vision tasks. However, in some specific areas, such as cotton root MRI

image task processing, it will bring some challenges. For example, the data

imbalance problem (there is a serious imbalance between the cotton root and the

background in the segmentation task) makes it difficult for existing algorithms to

segment the target. In this paper, we proposed two new methods to solve these

problems. The effectiveness of the algorithms was verified by experimental results.

The results showed that the new segmentation model improved the Dice andmIoU

by 46% and 44% compared with the original model. And this model could segment

MRI images of rapeseed root cross-sections well with good robustness and

scalability. The new classification model improved the accuracy by 34.9% over the

original model. The recall score and F1 score increased by 59% and 42%,

respectively. The results of this paper indicate that MRI and deep learning have the

potential for non-destructive early detection of VW diseases in cotton.

KEYWORDS
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1 Introduction

Cotton is an essential cash crop. Unfortunately, cotton’s growth can be affected by

numerous diseases, with Verticillium wilt (VW) being the most destructive (Billah et al.,

2021). VW is a systemic disease of the entire reproductive period, with symptoms typically

appearing after bud emergence and peaking during flowering and boll set (Li et al., 2021).

Verticillium dahliae (Vd), a soil-borne fungus with a wide range of hosts and high

pathogenicity, is the primary cause of VW disease in cotton regions (Shaban et al., 2018). It
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is worth noting that the Vd primarily infects cotton plants from the

root systems upward. Therefore, the detection of VW is of significant

importance for reducing the devastation and economic loss.

The traditional method, such as the polymerase chain reaction

procedure (Altaae, 2019), for detecting VW disease in cotton is the

chemical detection method. These methods are destructive and

relatively time-consuming. With the advancement of technology,

some non-destructive detection techniques have been brought up,

such as hyperspectral imaging and thermal imaging (Poblete et al.,

2021; Yang et al., 2022). However, they can only detect VW based

on symptoms in the above-ground parts of the plant. Since VW is

infested from the roots, detection from the roots can be better for

early detection.

Researchers have proposed various non-destructive methods to

study the root systems, such as hydroponics, water-cooled gel culture,

and computed tomography (CT) imaging. CT can detect roots in situ

in soils such as wheat (Gregory et al., 2003), corn (Lontoc-Roy et al.,

2006), and rice (Rogers et al., 2016). However, the similar absorption

coefficients of soil and roots made it difficult for CT to distinguish them

(Wu et al., 2018). In recent years, Magnetic Resonance Imaging (MRI)

has been applied to the non-destructive inspection of plant roots. The

principle of MRI is to obtain information by acquiring magnetic

resonance signals at various locations within a magnetic field and

then reconstructing the image of the object’s interior. The technique is

extremely effective at detecting hydrogen atoms within a substance.

During imaging, the signal intensity of spatial voxels is proportional to

the number of hydrogen atoms present in the sample (Kumar Patel

et al., 2015; Li et al., 2018; Lu et al., 2019). Both CT and MRI could

produce tomographic images, but the results of experiments indicated

that MRI provides greater root systems detail (Metzner et al., 2015).

MRI has a high resolution, a variety of imaging parameters, the ability

to choose any angle and dimension, and no radiation damage to the

sample. Compare to medical MRI instruments, low-field nuclear

magnetic resonance (LF- NMR) used in this paper is much cheaper.

LF- NMR instrument has been widely used in agricultural science,

including wheat(Chao et al., 2020), rice (Song et al., 2021), maize (Song

et al., 2022), etc. In addition, the imaging parameters of medical MRI

instruments are fixed parameters pre-set to obtain images of the inside

of the body, while the parameters of LF-MRI can be flexibly adjusted.

Therefore, LF-MRI technology is available for early, in situ detection of

plant root diseases.

Since the morphology of plant roots changes after being affected by

pathogens and external stresses, the morphological characteristics of

roots in MRI images can be used to detect plant root diseases. Si mone

Schmittgen et al. found by MRI that the volumetric growth of the

taproot had already started to decrease on the fourteenth day after

foliar Cercospora inoculation (Schmittgen et al., 2015). C.Hillnhütter

et al. used MRI to non-invasively detect subsurface symptoms of sugar

beet crown and root rot caused by sugar beet cyst nematodes and

rhizobia. Lateral root development and sugar beet deformation were

evident on MRI images of beet cyst nematode-infected plants 28 days

after inoculation compared to uninfected plants (Hillnhuetter et al.,

2012). Nowadays, some scholars have used deep learning and transfer

learning to segment the plant root system and detect plant disease

based on leaf image data. With a public dataset of 54,306 diseased and

healthy plant leaves that were collected under controlled conditions,
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Sharada P.Mohanty et al. trained deep convolutional neural networks

(CNN) and employed transfer learning to identify 14 crops and 26

diseases (or lack thereof) (Mohanty et al., 2016). Both (Wang et al.,

2022) and (Guo et al., 2022) works of literature improved Swin

Transformer (SwinT) to achieve the detection of plant diseases with

an accuracy of 98.97% and 98.2%, respectively.

Compared with existing models, there were two difficulties in

this paper. First, this paper studied the transverse section of the root

system, which was different from the features of the longitudinal

pictures of the root system in previous works. These segmentation

models could not directly extract the features of root system cross-

section in MRI images well. And the ratio of pixels occupied by the

root system and soil studied in this paper was too disparate, which

made the existing advanced segmentation models only segment the

soil correctly and unable to capture the features of the root system.

Second, existing disease detection models were mainly for RGB

images of leaves and stems. However, in this paper, MRI images

were grayscale images, which had less information than RGB

images. Moreover, the disease features of leaves and stems were

more numerous and obvious than those of roots. The MRI images

of cotton roots could not provide so many features information on

which the existing classification models were based. And the

number of images of healthy and diseased samples is different,

which can lead to a large loss in the model training process.

In this paper, the main purpose was to investigate the feasibility

of MRI-based detection of VW infestation from cotton roots

system. The specific objectives included the following: (1) denoise

MRI images of cotton root to improve the signal-to-noise ratio of

the images; (2) modify the MRI images segmentation model for

obtaining the root target; (3) improve the image classification model

to classify root MRI images between healthy and infected by Vd.

The main contributions include the following:
• The influence of pre-processing methods of cotton root

MRI images was compared.

• We proposed the segmentation model and early disease

detection model applicable to the MRI images of cotton

roots. These models addressed the problems of unbalanced

soil and root pixel scales and small data sets.

• Compared with other advanced models, our new models

showed better robustness and extensibility. This

demonstrated that early detection of cotton VW based on

cotton root MRI images and deep learning was feasible.
The structure of the remaining portion of this paper is as

follows: Section 2 describes the materials and methods. Section 3

explains the results and provides a discussion, and finally,

conclusions are given in Section 4.
2 Materials and methods

2.1 Sample preparation

In May 2022, the experiment was conducted at the college of

Biosystems Engineering and Food Science at Zhejiang University in
frontiersin.org
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Hangzhou, Zhejiang province, China. The cultivar of cotton and

oilseed rape were tested: Xinluzao 45 and Zhongshuang11,

respectively. Cotton and oilseed rape seeds and the conidia

solution of Vd were provided by the Agricultural College of

Shihezi University, China. The concentration of conidia of Vd in

the solution was 106 conidia per ml. The cotton was divided into two

groups: an experimental group and a control group of 20 plants each.

These two groups received identical quantities of watering and

fertilization. Each cotton plant in the experimental group was

injected with 40 ml of a conidia solution. The control group was

replaced with an equal amount of sterile water. After inoculation, the

cotton was transferred to a greenhouse with daytime temperatures of

26°C and nighttime temperatures of 24°C and 60% humidity. MRI

images of the root systems of 10 healthy and 10 infected cotton

plants were collected on both day 15 and day 45 after inoculation. To

avoid the effect of high soil moisture content on MRI imaging, the

cotton was not watered for 48 hours before the formal MRI

experiment. If the soil has high water content, it will be difficult to

distinguish between the soil and tiny lateral roots. As shown in

Figure 1B, a low-field magnetic resonance instrument (MesoMR23-

060V-I, Niumag Co., Ltd., Suzhou, China) was utilized to acquire

MRI images of cotton root systems. The low-fieldMRI device cannot

collect images of targets smaller than 1 mm. The instrument relies

primarily on the moisture signal for imaging. The more moisture a

sample contains, the brighter it appears in the MRI images.
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2.2 MRI images acquisition and data set
division

Image acquisition: As shown in Figure 1A the entire cotton

plant, including the soil, was placed in a 60 mm sample tube made

of temperature-resistant quartz material. Spin-echo (SE) sequences

were used to acquire axial MRI images. To obtain higher-quality

MRI images, the following imaging parameters of the SE were

optimized based on imaging quality and imaging time: TR

(Repetition Time) = 1100 ms, TE (Echo Time) = 18.14 ms,

Averages (Accumulation times at pre-scan) = 4, Slice thickness =

2 mm, Slice gap = 0.5 mm. The 2D Fourier transform

reconstruction method built into the imaging software is used to

reconstruct the image, after which 256×256 grayscale images were

saved. 1191 MRI images were obtained, including 635 images of

healthy roots and 556 images of infected roots. Samples were also

collected from 2 healthy rape roots that had been growing for about

20 days, with a total of 32 MRI images.

Data set division: The dataset was divided based on the

proportion 8:2 in this paper. In the image segmentation task, five

healthy cotton root systems and five root systems infected with Vd

were randomly selected. The 315 images of these ten cotton root

systems were collected and utilized as a dataset for the segmentation

task after being denoised. 252 images were used as the training set

and 63 images were treated as the testing set. In the image
A B

FIGURE 1

(A) Cotton experimental samples; (B) The low-field MRI instrument used in this paper.
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classification task, 1191 images were used as the dataset, the training

set consisted of 953 images and the testing set contained 238 images.
2.3 Data analysis

2.3.1 Fine-tuning
Existing models in supervised learning require large quantities

of labeled data, computational time, and resources. To save time

and effort, transfer learning for deep learning is gaining more and

more attention (Jiang et al., 2022). Transfer learning aims to apply

knowledge or patterns acquired in one domain or task to a distinct

but related domain or problem. Fine-tuning model is a method of

transfer learning. The model parameters of pre-trained models are

superior to those obtained by others after training with some classic

models (VGG16/19, ResNet) and utilizing large datasets as training

sets (ImageNet, COCO) (Hasan et al., 2022). In this experiment,

both MRSwinUNet and MRResNet models utilized the fine-tuning

method. After retaining the architecture of the model, the model

was retrained using the initial weights of the pre-trained model to

fine-tune.

2.3.2 Loss function
The Focal loss (Lin et al., 2017) is a loss function that deals with

the imbalance of sample classification. It focuses on adding weights

to the losses corresponding to the samples according to the ease of

sample discrimination, i.e., adding smaller weights to the samples

that are easy to distinguish and larger weights to the samples that

are difficult to differ. The Focal loss function was improved from the

cross-entropy loss function. As in Equation (1)

CE(p, y) =
− log (p),             if   y = 1

− log (1 − p),           otherwise  

(
(1)

Here, y takes values of 1 and -1, representing the foreground

and background, respectively. p takes values ranging from 0 to 1

and is the probability that the model predicts belonging to

the foreground.

Next, as shown in Equation (2), a function on p is defined.

pt =
p,         if   y = 1

1 − p,     otherwise

(
(2)

The combination of equation (1) and equation (2) leads to the

simplified equation (3).

CE(p, y) = CE(pt) = −log(pt) (3)

To solve the positive and negative sample imbalance problem, a

weighting factor a is introduced belonging to [0,1]. When it is a

positive sample, the weighting factor is a, and when it is a negative

sample, the weighting factor is 1-a. The loss function can be

rewritten as:

CE(pt) = −at log(pt) (4)

Formula (4) is called balanced cross entropy(BCE) loss and is

the baseline for proposing Focal loss.
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BCE loss does not distinguish between simple or difficult

samples. When the number of easy-to-distinguish negative

samples is super high, the whole training process will revolve

around the easy-to-distinguish negative samples, which will in

turn swamp the positive samples and cause large losses.

Therefore, a modulation factor is introduced here to focus on the

hard-to-score samples with the following formula (5).

FL(pt) = −(1 − pt)
g log(pt) (5)

g is a parameter in the range [0, 5]. (1-pt)
g can reduce the loss

contribution of the easy-to-score samples and increase the loss

proportion of the hard-to-score samples. When pt tends to 1, which
means that the sample is easily distinguishable. Then the

modulating factor (1-pt)
g tends to 0, which means that it

contributes less to the loss, i.e., it reduces the proportion of loss

of the easily distinguishable sample. Small pt means that if a sample

is divided into positive samples, but the probability that the sample

is positive is particularly small, the modulating factor (1-pt)
g tends

to 1, which does not have much effect on the Loss.

By balancing the above for positive and negative samples as well

as difficult and easy samples, the final Focal loss formula (6) should

be obtained.

FL(pt) = −at(1 − pt)
g log(pt) (8)

The imbalance in the number of positive and negative samples

can be suppressed by at. And the imbalance in the number of

simple or difficult-to-distinguish samples can be controlled by g. In
this experiment, g is 2 and at is 0.25.

2.3.3 Segmentation models
A hierarchical transformer called SwinT has been proposed (Liu

et al., 2021), which was based on shift windows to implement the

computation. The move operation allowed adjacent windows to be

interacted with, significantly reducing the computational

complexity. Compared with CNN, it showed competitive or even

better performance on various visual benchmarks.

SwinUnet (Cao et al., 2021) was based on the SwinT network

design for the image segmentation task, having transformer modules

similar to the UNet structure. Supplementary Figure 1A represents the

structure diagram of SwinT for the classification of the ImageNet

dataset. And Supplementary Figure 1C depicts two SwinT modules

connected in series, like a traditional multi-headed self-attentive (MSA)

module structure’s construction on shifted windows. Each SwinT

module includes a layer normalization layer (LN), a MSA module, a

residual connection, and a multilayer perceptron with an activation

function. In two consecutive transformer modules, a window-based

multi-headed self-attentive (W-MSA) module and a shifted-window-

based multi-headed self-attentive module (SW-MSA) are applied,

respectively. ẑ l   and zl denote the ML of the (SW-MSA) module and

the 1 th block, respectively. The number of operations required to

compute the correlation between two locations did not increase with

distance, which made it possible to capture global semantic

information more efficiently. In this paper, three major

improvements were made to the SwinUNet model to obtain the

model named MRSwinUNet.
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First, We used transfer learning to better train the model. The

specific step of the fine-tuning technique for transfer learning was to

first preserve the original structure and then train with pre-trained

weights. This improvement saved time on label annotation and

reduced the requirement for the number of datasets. Next, the BCE

loss function was replaced by the Focal loss function, which could

distinguish the difficulty of segmented samples. A higher weight

was given to the more difficult segmented roots, while a lower

weight was given to the easily segmented soil pixels. The problem of

large differences in the proportion of pixels occupied by

cotton roots and background soil was solved. Finally, the

AdamW optimizer was applied to improve the performance of

the network.
2.3.4 Classification models
The residual block structure of the ResNet network was

proposed to solve the problem of gradient disappearance or

gradient explosion. At the same time, it also addressed the issue

of deeper levels leading to network performance degradation.

Therefore, ResNet34 (He et al., 2016) network was chosen as the

classification model based on the size of our dataset and the network

performance of the devices used. Supplementary Figure 2C is a

specific presentation of the residual block in Supplementary

Figure 2A. In Supplementary Figure 2C, the feature matrix

obtained after a series of convolutional layers on the mainline is

summed with the input feature matrix, which is then output by the

activation function. The output feature matrix shape of the main

branch and shortcut must be the same. Formally, the desired

underlying mapping is denoted as H(x) and the stacked nonlinear

layers are made to fit another mapping: F(x) =H(x) - x. The original

mapping is reshaped as F(x) + x. It is easier to optimize the residual

mapping than to optimize the original, unreferenced mapping. In

this work, we made three improvements based on the ResNet model

using the cotton root MRI image dataset. The model named

MRResNet was obtained afterwards.

We used transfer learning and changed the loss function of

ResNet to Focal loss function, and replaced the original optimizer

with AdaBound to solve the problem that the MRI images of cotton

roots have less information than the RGB images of leaves or stems.

The issue of different number of MRI images for healthy and

diseased samples was also addressed.

The training parameters for the segmentation and classification

network models are shown in Table 1.
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2.4 Model evaluation and software

This paper evaluated the denoising model using the peak signal-

to-noise ratio (PSNR) and structural similarity (SSIM) indices.

Given a clean image I and a noisy image K of size m×n, the mean

square error (MSE) and PSNR is defined as:

MSE =
1
mno

m−1
i=0 on−1

j=0 ½I(i, j) − K(i, j)�2 (4)

PSNR = 10� log10(
MAX2

I

MSE + e
) (5)

where MAX2
I is 255. e is a very small constant that prevents the

denominator from being zero. SSIM indicates the degree of

similarity between two images. The definition is as:

SSIM(x, y) =
(2mxmy + c1)(sxy + c2)

(m2
x + m2

y + c1)(s 2
x + s 2

y + c2)
(6)

where x and y are two signal indicators, mx and my represent the
means of x and y respectively, and sx and sy represent the standard
deviations of x and y, respectively. sxy represents the covariance of x
and y. And c1,c2,c3 are constants to avoid systematic errors brought by a

zero denominator.

In the segmentation task, the Dice coefficient (1), mean

Intersection over Union (mIoU), Recall, and Precision metrics

were used. And Accuracy, F1 score, Recall, and Precision metrics

were used in the classification task.

mIoU =  
1

k + 1o
k
i=0

TP
TP + FP + FN

(7)

Recall =  
TP

TP + FN
(8)

Precision =  
TP

TP + FP
(9)

F1   score =  
2� Precision� Recall
Precision + Recall

(10)

Accuracy =  
TP + TN

TP + FP + TN + FN
(10)

TP, TN, FP, and FN indicate the number of true positives, true

negatives, false positives, and false negatives, respectively. k is the

total number of categories to be segmented.
TABLE 1 The segmentation and classification network model training parameters.

Items Segmentation values Classification values

original model MRSwinUNet original model MRResNet

Learning rate 0.0001 0.0001 0.0001 0.0001

Optimizer SGDM AdamW SGDM AdaBound

Num_workers 4 4 4 4

Loss function BCE loss Focal loss BCE loss Focal loss

Epochs 100 100 10 10
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The cotton root systems in situ images were annotated by the

lasso tool of Adobe Photoshop CC2020 in the segmentation task.

The segmentation and classification models were developed using

the deep learning framework PyTorch (version 1.7.1). All models

were generated with PyCharm (version 2019.2.3). A custom-built

workstation with 48 GB of RAM and two GTX 1080 Ti graphics

cards (NVIDIA, California, United States) was utilized.
3 Results and discussion

3.1 Denoising of the cotton root's MRI
images

Image denoising could reduce the damage of noise to make the

root system features clearer. In this paper, the parameters were

optimized and the best parameter results were obtained for three

models NLM, GLPF, and MF. Table 2 details the comparison of the

effects of each model.

It is well known that a higher PSNR value represents a cleaner

image. SSIM ranges from 0 to 1, with values closer to 1 indicating

more image detail retention. NLM had the highest PSNR score and

SSIM with 32.776 dB and 0.952, respectively. The PSNR score of

GLPF and MF did not exceed 30 dB. Meanwhile, the SSIM index of

GLPF and MF did not exceed 0.9.

To examine the effect of denoising each model more visually,

Figure 2 presents the sample images for each model. NLM appeared

the least noisy, with a clear background andmore complete details. The

denoising of GLPF and MF blurred the image and left the

details incomplete.

Based on the PSNR and SSIMmetrics and the subjective judgment

of the vision, NLM had the best denoising effect and the most detail

retention. It was because it had the ability to calculate the required

pixels by weighted averaging of the entire pixels of the image, thus

reducing the loss of image details. Since the noise was primarily

concentrated in the high-frequency band, GLPF filtered the noise

information to make the image smooth. But it also blurred the

image. Additionally, MF also made the image more blurred. In this

paper, it was considered that the image blurring and detail loss caused

by GLPF and MF denoising processes were unacceptable. Therefore,

the NLM model was chosen to denoise the MRI images.
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3.2 Segmentation of the cotton root’s
MRI images

In the segmentation task, the clean images after denoising were

segmented to extract the root systems region, which was beneficial

for the subsequent classification of the root systems. And the images

were segmented at the pixel level.

Table 3 outlines the segmentation results. The Dice coefficients

and mIoU of both SwinUNet-B and TransUNet-B models were 0.5,

and their precision and recall were both 0. It indicates that

SwinUNet-B and TransUNet-B are not directly applicable to the

segmentation task of cotton root MRI images. After improving the

model, MRSwinUNet and TransUNet-D performed well with all

metrics close to each other. However, the training time of

MRSwinUNet was longer than the MRSwinUNet. This was a big

drawback of the TransUNet model. So our MRSwinUNet model

had the best overall performance. Compared with the original

model SwinUNet-B, the Dice coefficient and mIoU of out model

increased by 46% and 44%, respectively.

To further demonstrate the results in Table 3, Precision-Recall

(PR) curves were given in this paper. In the PR curve image, the

closer the curve is to the coordinate (1,1), the better the

performance. In Figure 3, TransUNet had the best PR curve, but

MRSwinUNet’s PR curve was right next to it and got just as good

results. And the original model SwinUNet performed the worst.

According to the observed experimental images, it was known that

the ratio of pixels occupied by the root system and the soil was

approximated at a minimum of 1:16383. However, the original

SwinUNet-B and TransUNet-B models were trained by assigning the

same weights to the root system and the soil. In this case, the original

loss function and the optimizer only guided the model to correctly

segment the soil pixels and could not work for the root system roots. In

addition, although the metrics of both TransUNet-D and SwinUNet-D

were improved, they were still not as good as the combined

performance of MRSwinUNet. It was probably due to the reason

that the Dice loss function and Adam optimizer did not perform as

well as the Focal loss function and AdamW used in this paper.

To better demonstrate the segmentation effect, we performed a

visual evaluation. Figure 4 presents the representative figure of root

segmentation effect of SwinUNet-D, TransUNet-D, andMRSwinUNet.

The findings demonstrate that all three sample maps differed

somewhat from the accurate label maps in detail. For instance, inside
TABLE 2 The denoising results of the MRI images of the cotton root systems.

Index Optimal results PSNR(dB) SSIM

NLM h = 10
Search windowsize = 21 x 21

Patch window size=3

32.776 0.952

GLPF Kernel size = 5 x 5 24.643 0.882

MF Kernel size =7 x 7 22.650 0.807
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the red box of Figure 4, the SwinUNet-D barely segmented any effective

information on the root. The resultant map of MRSwinUNet

segmentation was similar to the original label with sufficient detail.

So MRSwinUNet was considered to be the most optimal model for the

overall performance of the segmentation task.

To investigate the scalability of the MRSwinUNet model, we

selected 32 MRI images of canola obtained with the same

acquisition method and preprocessing method. The trained

MRSwinUNet model was used to segment the rape dataset, and

the results were displayed in the MRSwinUNet-Canola model in

Table 3, the Dice, mIoU, of the canola segmentation results were

0.93 and 0.90, respectively. In addition, its Precision score was 4%
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higher than that of the cotton dataset. This indicates that

MRSwinUNet has better robustness and extensibility.

Previous research scholars (Shen et al., 2020; Kang et al., 2021; Lu

et al., 2022; Zhao et al., 2022) have also done comprehensive studies on

plant root segmentation. In this paper (Kang et al., 2021), the cotton

mature root systems were used as the research object. They designed a

semantic segmentation model of cotton roots in-situ images based on

the attention mechanism. The precision and recall values were 8.7%

and 4.8% higher than those in this paper, respectively. This would be

due to the high resolution (10200×14039 dpi) of the root images they

acquired, which was easy to identify and segment. In addition, they

trained the model directly using their dataset. Although the training
A B DC

FIGURE 2

Sample images of denoised MRI images of cotton root system. (A) Original MRI image, (B) NLM denoised image, (C) GLPF denoised image, and
(D) MF denoised image.
TABLE 3 The segmentation results of the MRI images of the cotton root systems.

model Dice mIoU Precision Recall Time(s)

TransUNet - B 0.50 0.50 0 0 3360

TransUNet - D 0.96 0.93 0.95 0.90 3624

SwinUNet - B 0.50 0.50 0 0 1685

SwinUNet - D 0.95 0.90 0.89 0.90 1683

MRSwinUNet 0.96 0.94 0.91 0.95 1659

MRSwinUNet- Canola 0.93 0.90 0.95 0.89 -
fron
The symbol "-" means no calculation time.
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process took a lot of time, it facilitated the extraction of root features in

the images and reduced segmentation errors.
3.3 Classification of the cotton root’s MRI
images

Figures 5, 6 show the MRI images of the healthy and infected

root systems. The smallest root diameter that can be detected by the
Frontiers in Plant Science 08
low-field MRI instrument used is 1 mm. This means that all the

roots in the figure have a cross-sectional diameter greater than or

equal to 1 mm. It should be noted that the healthy root systems had

more branching cross-sections than the diseased root systems,

which could be ascribed to the fungus also colonizing the ducts

and secreting toxins that damage the cells (Bai et al., 2022; Lv et al.,

2022; Ren et al., 2022; Sayari et al., 2022). Consequently, cell growth

would be hindered, and the number of lateral roots reduces, which

provides the possibility of classifying the MRI images of healthy and

unhealthy root systems.

In Table 4, the results of all metrics of the original models

(SwinT, Vgg16Net, ResNet) were unsatisfactory. It indicates that

the original models cannot perform the classification task regarding

the root MR images. Compared to the original model, the results

obtained by our MRResNet using all five preprocessing methods

were significantly improved. The highest accuracy was achieved

when MRResNet used the dataset processed by denoising first and

then segmenting, with 34.9% improvement over the original ResNet

model, and 59% and 42% improvement for Recall and F1,

respectively. When MRResNet was trained on the dataset

processed in the other four ways, the results were all improved

over the original model. But it was still lower than the results of the

dataset processed by the denoising-only method, denoising first and

then the segmentation method.

To compare more comprehensively the effect of image

preprocessing methods on the classification results of MRResNet

models, PR curves were plotted. In Figure 7, the curve of the

denoised and then-segmented dataset was closest to the coordinate

(1, 1). This indicates that this dataset performs best in the

classification task. From the results, it can be concluded that the

denoised and then-segmented dataset worked best in classification

model training. Because it filtered out the noise, reduced image
A B DDC

FIGURE 4

Sample segmentation effect of MRI images. (A) Real label, (B) MRSwinUNet, (C) TransUNet-D, (D) SwinUNet-D.
FIGURE 3

Precision-Recall curve. The label is 1, which means the infested
root system is the positive sample. MRSwinUNet is our improved
segmentation model. The TransUNet-B and TransUNet-D
represent the TransUNet models using BCE loss and SGDM, Dice
loss, and Adam, respectively. SwinUNet-B and SwinUNet-D
represent the SwinUNet models using BCE loss and SGDM, Dice
loss, and Adam, respectively.
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pollution, and avoided the problem of blurred root features.

Furthermore, the root targets were extracted precisely by

segmentation, which made the root features more clearly. The

denoised dataset performed the second best. This was because the

image denoising process mainly filtered out the noise in the image,

but some root features had weak signals that were not further

extracted by segmentation, which caused the classification model to
Frontiers in Plant Science 09
ignore this part of the signal. The bad thing was that the dataset with

only segmentation and segmentation followed by denoising process

methods lost the original root system features. The reason was that

without noising processing, which made the image contaminated

with noise, the segmentation model did not recognize the

segmented features and lost the smaller but more important

information of the signal, such as the lateral root cross-section.
A B

FIGURE 5

Sample MRI images of healthy and diseased roots of cotton. (A) Healthy cotton root system, (B) Infected cotton root systems. These sample images are from
the same location of different root systems.
FIGURE 6

Samples of the cotton root system. The root on the left is healthy. The root on the right is affected by the Vd.
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In conclusion, MRResNet was considered the optimal model

considering all model metrics, training time, and PR curves. The

best way to process the dataset was to denoise the images first and

then segment them.

Compared with the high accuracy of the existing literature (Li

et al., 2020; Liang, 2021; Santos-Rufo and Rodriguez-Jurado, 2021;

Sivakumar et al., 2021; Elaraby et al., 2022; Memon et al., 2022), the

accuracy of the identification of roots suffering from cotton VW

disease was about 4% lower in this paper. Studies in the literature

have targeted leaves and stem with obvious disease symptoms, such

as leaf yellowing and wilting. Thus, the accuracy was higher when it

came to disease detection. However, this paper studied cotton root

systems in the early stages of VW. Since the morphology of each

cotton plant varied, the classification model probably misclassified

healthy cotton with a small root system as diseased cotton or,

conversely, misclassified diseased cotton with a well-developed root

system as healthy cotton. These misclassifications resulted in a

lower accuracy rate in this paper than in other literature.

Nevertheless, the method in this paper still provided a new idea

for the detection of cotton VW disease. After the root system was

infested, it had already changed before the leaves turned yellow and
FIGURE 7

Precision-Recall curve. The label is 1, which means the infested root
system is the positive sample. MRSWinT-1, MRSWinT-2, MRSWinT-3,
MRSWinT-4, and MRSWinT-5 represent the original dataset, denoised
dataset only, segmented dataset only, denoised-then-segmented
dataset, and segmented-then-denoised dataset, respectively.
TABLE 4 Classification results of the MRI images of healthy versus Vd-infested cotton root systems.

Model No. Accuracy (%) Precision Recall F1 Time(s)

SwinT 1 53.40 0 0 0 327

2 53.40 0 0 0 331

3 53.40 0 0 0 318

4 53.40 0 0 0 327

5 53.40 0 0 0 316

Vgg16Net 1 46.60 1 1 1 357

2 53.40 0 0 0 359

3 53.40 0 0 0 351

4 46.60 1 1 1 352

5 53.40 0 0 0 355

ResNet34 1 53.60 1 0.05 0.09 246

2 58.00 1 0.56 0.74 270

3 53.40 0 0 0 256

4 60.10 1 0.41 0.58 268

5 53.40 0 0 0 255

MRResNet 1 89.90 1 1 1 259

2 92.00 1 0.96 0.97 267

3 76.50 1 0.91 0.95 252

4 95.00 1 1 1 268

5 70.20 1 1 1 261
fron
The column No. represents the datasets with different preprocessing methods. Five numbers from 1 to 5 represent the original dataset, denoised dataset only, segmented dataset only, denoised-
resegmented dataset, and segmented-redenoised dataset, respectively.
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wilted. In this situation, theoretically, the technique adopted in this

paper could detect the disease much earlier.
3.4 Limitations and prospects

Image denoising and segmentation contributed to clean root

systems MRI images, and deep transfer learning improved the

ability to learn image features. The combination of these two

approaches realized effective classify healthy and Vd-infested

cotton roots. However, after being inoculated, the immune

system of cotton was damaged. Along with that, there was a

great possibility of infestation by other pathogens, which could be

time-consuming and costly to identify. Considering the

observation that cotton predominantly presented symptoms of

VW when it developed, cotton VW was examined as the main

disease in this paper. Besides, the number of lateral roots in this

paper was only observed in 2D images. The changes in root

morphology after infestation by Vd were not presented in full. In

the future, we will continue to study the changes in the three-

dimensional morphology of cotton roots after being infested with

Vd. Finally, due to the lack of images of other plant roots affected

by VW disease, there was no way to do experiments to further

explore its robustness and scalability. In the future, we will collect

more image data on plant roots suffering from VW disease, and

thus build a robust and extensible model for the detection of

VW disease.

4 Conclusions

In this paper, we first used cotton root cross-section LF-MRI

images as samples to explore the feasibility of early nondestructive

detection of VW disease in cotton using deep. First, the performance

of three denoising models NLM, GLPF, and MF was compared, and

the results showed that NLM had the best denoising effect. After that,

the SwinUNet model was modified in three parts and obtained the

MRSwinUNet applicable to theMRI image segmentation of the cotton

root system. The Dice and mIoU of MRSwinUNet increased by 46%

and 44%, respectively, over the original SwinUNet’s results. And it

addressed the problem of unbalanced soil and root pixel proportions

and reduced the effort as in the original model. MRSwinUNet also had

a good segmentation effect on MRI images of the canola root system.

Subsequently, NLM and MRSwinUNet were selected to denoise and

segment the cotton root dataset respectively, and the classification

datasets with five pre-processing methods were obtained. And then

the original classification models (SwinT, Vgg16Net, ResNet) were

chosen to classify cotton root images, but the results were extremely

poor. Therefore, in this paper, we made improvements to the ResNet

model to obtain the MRResNet model for cotton root MRI image

classification. The results of five datasets were compared on the

classification model, and showed that the first denoising and then

segmentation treatment worked best. When MRResNet used the best

dataset, its accuracy improved by 34.9% over the original model.

Meanwhile, the recall and F1 improved by 59% and 42%, respectively.

This demonstrates the feasibility of detecting cotton VW disease at an

early stage using deep learning and MRI images of the cotton root
Frontiers in Plant Science 11
system. The paper provides a new research idea for the detection of

VW disease in cotton.
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