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Introduction: The development of organic manure from livestock excreta is a

useful source for sustainable crop production in environment-friendly

agriculture. Organic manure increases soil microbial activity and organic

matter (OM) supply. The excessive use of chemical fertilizers (CFs) leads to air

and water pollution caused by toxic chemicals and gases, and soil quality

degradation via nutrient imbalance due to supplying specific chemical

components. Thus, the use of organic manure will serve as a long-term supply

of various nutrients in soil via OM decomposition reaction as well as the

maintenance of environment.

Methods: In this study, we aimed to analyze the diverse effects of Hanwoo

manure (HM) on plant growth, feed quality, and soil bacterial communities in

comparison with CFs, commercial poultry manure (CM), and the combined use

of chemical fertilizer and Hanwoo manure (HM+CF). We analyzed the contents

of crude matter (protein, fat, fiber, and ash), P, acid detergent fiber (ADF), and

neutral detergent fiber (NDF) through feed quality analysis, and the contents or

activities of total phenol, total flavonoid, ABTS, nitrite scavenging, and reducing

power via the antioxidant assay. Furthermore, the soil microbial communities

were determined using 16S rRNA sequencing. We compared the soil bacteria

among different soil samples by using amplicon sequence variant (ASV) analysis.

Results and discussion: We observed increased OM in the soil of the HM group

compared to that of the CF and non-treated groups over a period of two years.

Moreover, HM+CF treatment enormously improved plant growth. Organic

manure, especially HM, caused an increase in the content of crude ash and

phosphorus in plants. There were no significant differences in total polyphenol,

total flavonoid, ABTS, nitrite scavenging, and reducing power in plants between
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HM and CF groups. Finally, we detected 13 soil bacteria (Acidibacter, Algisphaera,

Cystobacter, Microvirga, Ohtaekwangia, Panacagrimonas, Pseudarthrobacter,

Reryanella , Rhodoligotrophos , Solirubrobacter , Stenotrophobacter ,

Tellurimicrobium, and Thermomarinilinea) that were considerably correlated

with OM and available phosphorus, and three considerably correlated bacteria

were specifically distributed in CF or organic manure. The results suggest that

HM is a valuable source of organic manure that can replace CF for sustainable

crop production.
KEYWORDS

organic fertilizer, bacterial community, amplicon sequence variant, Hanwoo
manure, maize
1 Introduction

Chemical fertilizers (CFs) are mainly used to improve crop

production and plant growth because they are easily absorbed by

plants (Savci, 2012; Han et al., 2016). Using these CFs leads to

nutritional imbalances and acidification in the soil because of the

high accumulation of several chemical components (Simpson et al.,

2011; Bisht and Chauhan, 2020). Although organic manure has low

nutrient contents and decomposes nutrients slowly, it has various

benefits in the soil, such as a good balance of multiple nutrients and

an improvement in microbial activity and physical soil structure

(Han et al., 2016). In previous studies, long-term use of organic

fertilizers increased crop yield and nutrient uptake rate compared to

that of CFs (Lu et al., 2021; Nie et al., 2007). Furthermore, Ji et al.

(2017) reported that liquid fertilizer from organic matter (OM)

improved root development and soil microbial diversity in

Chrysanthemum morifolium. Thus, organic liquid fertilizer can

suitably decrease the use of CFs in agriculture owing to their

positive effects on plant growth and soil improvement.

Many microorganisms exist in the soil, including fungi, viruses,

and bacteria. Microbial communities in the soil are influenced by

the growth of different plant species (Fierer, 2017). The microbial

communities affected water and nutrient uptake from the

environment, leading to plant growth promotion (Kim et al.,

2012). The plant growth-promoting bacteria (PGPB) play a role

in the nutrient fixation of nitrogen, iron, and phosphorus

depending on soil composition; plant growth is influenced by

providing the fixed nutrients (Kim et al., 2012). Moreover, these

beneficial bacteria positively affected organic matter decomposition

and soil structure maintenance (Mumtaz et al., 2017; Suman et al.,

2022). The proper use of PGPB can reduce the application of

chemical fertilizers in agriculture (Adesemoye et al., 2009). The

physical and chemical properties and soil microbiome were

improved by providing organic manure (Adekambi and

Drancourt, 2004; Naik et al., 2019). In a multi-generation

experiment, the soil microbial community influenced the

flowering time of Arabidopsis thaliana (Panke-Buisse et al., 2015).

Furthermore, the plant pathogens are suppressed by soil

microbiomes, such as Pseudomonas and Bacillus bacteria, which
02
can be subsequently transferred by soil transplantation (Wei et al.,

2019). In a previous study, organic biofertilizer inoculated with

Trichoderma improved the production and quality of tomatoes

compared with CF (Ye et al., 2020). Thus, the proper use of organic

manure may reduce CF usage for environmental conservation

in agriculture.

Maize (Zea mays L.) is an important crop worldwide, with an

abundance of nutritional benefits and fibrous matter as an edible

crop for humans and livestock (Duvick, 2005; Zhang et al., 2022).

Corn has high digestibility in livestock diets because of the

different types and associations with corn starch (Loy and

Lundy, 2019). The livestock’s rumen can digest corn with a soft

texture. Corn is relatively high in sulfur-containing amino acids,

such as methionine and cysteine, while it is low in essential amino

acids, such as lysine and tryptophan (Loy and Lundy, 2019).

However, corn has been shown to improve protein quality and

oil and amylose contents, depending on human requirements

(Darrah et al., 2019). Unlike white corn, the kernels of yellow

corn have carotenoid pigments; thus, yellow corn silage can be a

useful source of provitamin A (Watson, 1962). The high oil

content of corn results in a high level of energy supply in

poultry (Lee et al., 2001) and swine livestock (Adeola and

Bajjalieh, 1997). Corn contains diverse types of B vitamins, such

as niacin, biotin, thiamin, and pyridoxine, but not cobalamin and

vitamin E (Ball and Ratcliff, 1978; Cort et al., 1983; Lynch et al.,

1996; Loy and Lundy, 2019). Thus, corn provides high amounts of

energy and nutrients to livestock. Therefore, the demand for

maize has rapidly increased worldwide, especially in developing

countries (Shiferaw et al., 2011).

Cattle manure contains relatively lower nitrogen (N) and

phosphorus pentoxide than poultry, swine, and sheep (Cravotta,

1995). In particular, the N content is most deficient in cattle

manure, whereas it is highest in poultry manure based on unit

weight. However, manures from dairy cows and beef cattle have

higher contents of dry materials as OM sources than those from

hog and poultry. As the economy grows, human demand for meat

increases and excessive supply has increased environmental and

social problems (Tilman et al., 2011). The amount of livestock

excretions in Hanwoo cattle in Korea is higher than that in swine
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and poultry (Choi, 2007). Although Hanwoo manure (HM) has a

low N content, the use of HM must be encouraged in

crop production, which will contribute to environmental

conserva t ion and env i ronment- f r i end ly agr i cu l tura l

development. In this study, we attempted to observe the diverse

effects of HM on plant growth, antioxidants, and microbial

communities in the cultivation of forage maize and compare its

impact with CF and commercial poultry manure. Furthermore,

the availability of HM was evaluated to reduce the use of chemical

fertilizer in the forage maize production.
2 Materials and methods

2.1 Plant growth condition and survey

Maize (Z. mays L., Kwangpyeongok) was obtained from the

Agricultural Technology Center (Hoengseong-gun, Gangwon-do,

Republic of Korea), and its seeds were grown in a greenhouse for

two weeks. The seedlings were transplanted into an experimental

field (37° 22’ 16.2″N, 127° 55’ 30.1″ E) at Sangji University (Wonju-

si, Gangwon-do, Republic of Korea). The experiment for non-

treatment (NT), CF, commercial manure (CM), HM, and a

mixture of HM and CF was performed in the field using

randomized complete block design. Thus, all treatments were

randomly assigned to the experimental units within the blocks in

the experimental field. Fertilizers were applied following the

cultivation method used in a previous experiment by Byeon et al.

(2022). Plant growth was observed with respect to plant length, leaf

width, and leaf length in the different fertilizer-treated plant groups.

The chlorophyll concentration of the leaves was measured using a

SPAD-502plus chlorophyll meter (Konica Minolta Inc., Teban

Gardens Crescent, Singapore). Fresh and dry weights were

measured in the aboveground parts of the plants before and after

dehydration, respectively. The plant tissues were dried at 60°C

for 24 h.
2.2 Total nitrogen

A soil sample of 10 g was mixed with 50 mL of distilled water;

then, the electrical conductivity (EC) and pH were detected using

multiparameter analysis (Edge HI2020, HANNA instruments,

Woonsocket, USA). The total nitrogen was measured using the

Kjeldahl method (Barbano et al., 1990; Aoac, 1995), where a 5 g

sample was mixed with a solution of 50 g potassium sulfate and 50 g

copper (II) sulfate (9:1). The samples were heated for 4 h.

Subsequently, 500 μL of phenolphthalein solution was added

(0.04 g phenolphthalein, 50 mL 95% ethyl alcohol, and 50 mL

distilled water). Sodium hydroxide (NaOH; 0.01 N) was added to

the prepared sample until it turned red. To collect the distillate from

the sample, 2% bromocresol green solution (0.5 g bromocresol

green, 0.1 g methyl red, and 100 mL 95% ethyl alcohol) was used.

Finally, the end-effect points of 0.01 N sulfuric acid (H2SO4) for
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changing color from blue to red were measured. The total nitrogen

content was calculated for each treatment as follows:

factor   of   0:01N   H2SO4  

=
amounts   of   0:1N  NaOH   for   the   end − effect   point  �   f   of   0:1N  NaOH

amounts   of   0:1N   H2SO4

Total   nitrogen   ( % )

=
(T − B)  �   f  �  Normality   �   14   �   100

sample  weight   (mg)

�   diluted   ratio   of   sample

where T represents the amounts of 0.01N H2SO4 for the end-

effect point, B represents the blank, f represents the factor of

0.01N H2SO4, and Normality represents the concentration

(N) of H2SO4.
2.3 Total phosphorus

Total phosphorus (P) and available phosphorus pentoxide

(P2O5) were detected using the Lancaster soil testing method

(Lancaster, 1980). A soil sample of 5 g was added into the 20 mL

extracting solutions that comprised 400 mL acetic acid

(CH3COOH), 300 mL 10N lactic acid (CH3CH[OH]COOH),

22.2 g ammonium bifluoride (NH4F), 133.3 g diazanium sulfate

([NH4]2SO4), and 170 g NaOH, and the mixture was boiled for

10 min. Standard P solutions (10, 100, and 1000 ppm) were used to

evaluate the available P2O5 in the samples. A 6 mL ammonium

paramolybdate solution (200 mL ammonium paramolybdate and

100 mL 0.8M boric acid [H3BO3]) was added for absorbance

determinat ion using an Ultravio let-v is ib le (UV-Vis)

spectrophotometer (NEO–S2117, NEOGEN). The total P and

available P2O5 were calculated for each treatment as follows:

Available   phosphorus   pentoxide

=  
detected   ppm   �   extracted   liquid   (ml)

sample  weight   (g)
�   2:2914

Total   P   =  Available   phosphorus   pentoxide   �    0:4364
2.4 Exchangeable cations

Exchangeable cations were detected using the ammonium

acetate method. The four exchangeable cations (potassium [K],

calcium [Ca], magnesium [Mg], and natrium [Na]) were

determined in the 5 g samples and 50 mL of 1N-NH4OAc at pH

7 by inductively coupled plasma atomic emission spectrometry

(ICP-OES; SPECTROBLUE, SPECTRO). The four exchangeable

cations were calculated for each treatment as follows:

Ex − cations   =   ICP − AES   value  �  
extracted   liquid   (mL)
sample  weight   (g)  �10

  ÷   electrochemical   equivalent
frontiersin.org

https://doi.org/10.3389/fpls.2023.1135947
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lee et al. 10.3389/fpls.2023.1135947
The electrochemical equivalent was 39.1 for K, 20.04 for Ca,

12.15 for Mg, and 22.99 for Na.
  
2.5 Organic matter

OM was determined using the Tyurin method (Schollenberger,

1927). The 5-g sample was added to 10 mL of 0.4 N potassium

dichromate solution (40 g potassium dichromate [K2Cr2O7] per 1 L

H2SO4). The solution was then boiled for 5 min on a hot plate (C-

HP, CHANGSHIN SCIENCE), and 150 mL of distilled water was

added. Five milliliters of 85% H3PO4 and 500 μL diphenylamine

were added to the sample. To determine the end-effect point, 0.2N

ammonium iron (II) sulfate hexahydrate solution (78.44 g [NH4]

2SO4FeSO4 6H2O per 1 L H2SO4) was added to the reactants until it

turned from orange to green. The OM was calculated for each

treatment as follows:

OM   ( % )   =   (B   –  T)   

�    0:2  �   3  �   0:001   � 100
sample  weight   (g)

 �

where T represents the amounts of 0.2N ammonium iron (II)

sulfate hexahydrate solution for the end-effect point, B represents

the blank, 0.2 represents the normal concentration of ammonium

iron (II) sulfate hexahydrate solution, 3 represents the chemical

equivalent of 1 mg carbon, and 1.724 represents the carbon ratio for

soil erosion.
2.6 Cation exchange capacity of fertilizers

The cation exchange capacity (CEC) of the fertilizer was

determined using the ammonium acetate method (Thomas, 1982)

with 5 g of sample and 100 mL of 1N NH4OAc. After 4 h of

incubation, 100 mL of 80% ethyl alcohol (pH 7.0) was added. Then,

500 μL phenolphthalein solution (0.04 g Phenolphthalein, 50 mL

ethyl alcohol, and 50 mL distilled water) and MgO were added until

they turned red. Finally, 20 g of H3BO3 and 5 mL of 2% bromocresol

green solution per liter (L) were added to the reactants, and the

endpoint of 0.01N H2SO4 for changing color from blue to red was

measured. The CEC was calculated for each treatment as follows:

CEC   (me=100g)  

=  
T − B

sample  weight   (g)
�   f  �   Normality  �   100

where T represents the amounts of 0.01N H2SO4 at the end-

effect point, B represents the blank, f represents the f of 0.01N

H2SO4, and Normality represents the concentration (N) of H2SO4.
2.7 Crude protein content

The content of crude protein was extracted following the

Kjeldahl method (Barbano et al., 1990; Aoac, 1995). Briefly, 0.5 g
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of a dried sample was mixed with 7 g of potassium sulfate solution

(9 g potassium sulfate and 1 g copper sulfate) and 10 mL of H2SO4.

Then, 100 μL liquid indicator was added to the prepared mix. The

solution was then distilled after adding zinc and sodium hydroxide

solution (sodium hydroxide 500 g, sodium thiosulfate 100 g,

distilled water 1 L). The amount of 0.1 N hydrochloric acid was

observed until the desired color (reddish brown) was obtained. The

percentage of crude oil content was calculated using the following

formula:

Crude   protein   ( % )  

=  
0:00140067   (0:1N  HCl)  �  T  �   F  �   6:25  �   100

W

where T represents the amount of 0.01 N H2SO4 for the end

effect point, F represents the amount of 0.1 N HCl for the blank, and

W represents the weight of the sample.
1:724

2.8 Crude fat content

The crude fat content was extracted using the ether extract

method (Padmore, 1990). In this method, after drying 2 g of the

sample on a filter paper for 2 h at 100°C, ether was mixed and

placed in the Soxhlet extractor (ANKOM XT15 Extractor, ANKOM

Technology, USA) for boiling at 80°C for 8 h to extract the fat. The

ether was extracted and dried in the solvent flask for 3 h at 100°C.

Afterward, the sample was cooled in a desiccator for 40 min, and

using the following formula, the crude fat content was calculated:

Crude   fat   ( % )   =  
a − b
c

 �   100

where a and b are the total mass of the solvent flask after and

before extraction, respectively, and c is the total mass of the sample.
2.9 Crude fiber content

The content of crude fiber was extracted by following

Henneberg and Stohmann’s method (Henneberg and Stohmann,

1859). In this method, a mix of 1 g of sample, 50 mL of 5% sulfuric

acid solution (27 mL H2SO4, and 1 L distilled water), and 150 mL

distilled water were placed in a 500 mL beaker, followed by the

addition of 2 drops of an anti-foaming agent. After boiling the mix

for 30 min, it was filtered, and the residue was washed with hot

distilled water until the alkaline was eliminated with quantitative

filter paper (2.5 μM). Then, 130 mL of the washed residue was

added to 50 mL of 5% sodium hydroxide solution (50 g NaOH and

1 L distilled water) in a beaker, and distilled water was added until

the total volume reached 200 mL. After boiling the mix again for

30 min and washing the residue with hot distilled water, the

resultant residue was washed thrice with 95% ethyl alcohol and

twice with ethyl-ether, followed by drying the residue for 2 h at 100°C

and 2 h at 135°C. The dried mass was then cooled in a desiccator for

40 min, burned in a porcelain crucible, and cooled again. The crude

fiber content was then calculated as follows;
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Crude   fiber   ( % )   =  
d − a
s

 �   100

where d represents the dry weight of the residue filtered after

decomposition, a represents the residue after the last burning in the

porcelain crucible, and s represents the weight of the sample.
2.10 Crude ash content

The crude ash content was determined following Liu’s method

(Liu, 2019). In this method, the porcelain crucible was burnt in an

electric furnace (Lindberg/Blue M, Thermo Fisher Scientific, USA)

at 600°C for 1 h and cooled in a desiccator for 40 min. Then, 2 g of

the sample was placed in an electric furnace at 600°C for 2 h, cooled

in a desiccator for 40 min, and measured. The crude ash content

was calculated for each treatment as follows:

Crude   ash   ( % )   =  
a − b
c

 �   100

where a represents the weight of the burnt sample and the

porcelain crucible, b represents the weight of the porcelain crucible,

and c represents the raw sample weight.
2.11 Phosphorus content

The P content was measured following Cavell’s method (Cavell,

1955). In this method, the P content of corn was determined by

measuring its absorbance after adding a coloring agent. First, 1 mL

of sample solution (filtrate of 2 g burned sample mixed with 10 mL

of hydrochloric acid [1:1]) was taken in a 25 mL mass flask and

mixed with 2.5 mL of ammonium molybdite solution (25 g

ammonium molybdite with 400 mL distilled water). The

absorbance was then measured at 470 nm wavelength. The P

content was calculated for each treatment as follows:

Phosphorus   ( % )   =  
a=b   �    c
d   � 106

 �    100

where a is the absorbance of the sample, b is the standard

absorbance (1 ppm), c is the dilution factor, and d is the

sample weight.
2.12 Neutral detergent fiber

Neutral detergent fiber (NDF) was measured using 1 g of

sample and 100 mL of neutral detergent solution (150 g of

sodium lauryl sulfate, 93.05 g of EDTA disodium salt, 34.05 g of

sodium borate, 22.8 g of sodium phosphate, 22.8 g of dibasic

dodecahydrate, and 50 mL of ethylene glycol monoethyl ether).

Then, 5 L of disti l led water was added to 2 mL of

decahydronaphthalene and 0.5 g sodium sulfite. The mix was

boiled for 1 h in an automated fiber analyzer (ANKOM A2000,

ANKOM Technology, USA) and then filtered through a glass filter.

The residue was then washed with acetone and dried at 105°C for
Frontiers in Plant Science 05
4 h. NDF was calculated for each treatment as follows:

NDF   ( % )   =  
a − b
c

 �   100

where a represents the sample weight after drying, b represents

the residual weight, and c represents the sample weight.
2.13 Acid detergent fiber

For measurement of acid detergent fiber (ADF), 2 g of the

sample was added to a 500 mL beaker along with 100 mL of acid

detergent solution (melted mix of 20 g of cetyltrimethylammonium

bromide [CTAB] and 1 N 1 L of H2SO4), and 2 mL of decalin. The

mixture was then boiled for 1 h in an automated fiber analyzer and

filtered using a glass filter. The residue was washed with acetone and

dried at 105°C for 4 h. The ADF was calculated for each treatment

as follows:

ADF   ( % ) =  
a − c
c

 �   100

where a represents the sample weight after drying, b represents

the residual weight, and c represents the sample weight.
2.14 Antioxidant analysis

The top part of forage maize was used to evaluate the

antioxidant activities of plants in the different fertilizer-treated

groups. The total phenol and flavonoid contents, nitrate-

scavenging activities, reducing power, and ABTS were determined

as described previously (Jo et al., 2022). All measurements were

performed in triplicate. The plant extracts were collected using

methanol, and standard curves were generated for quantitative

analysis using standard materials (quercetin for total flavonoid

and gallic acid for total phenol) (Figure S1). A high R-squared

value (R2 > 99) was obtained in the regression line. The absorbance

was measured using a spectrometer at 760, 510, 520, 734, and 700

nm for total phenol, total flavonoid, nitrate-scavenging activity,

ABTS assay, and reducing power assay, respectively.
2.15 Soil microbiome 16s rRNA
sequencing analysis

To compare the microbial diversity in the fertilizer-treated soils,

an Illumina MiSeq microbiome analysis was conducted. The soil

microbial DNA was isolated using DNeasy Power Soil Kit (Qiagen,

Hilden, Germany) followed the manufacturer’s protocol, and a

DNA library was generated using the Illumina 16S Metagenomic

Sequencing Library (Amplicon et al., 2013). According to the

manufacturer’s instructions, polymerase chain reaction (PCR) was

performed using Herculase II Fusion DNA Polymerase (Agilent

Technologies, Santa Clara, CA, USA). The first PCR process

involved heat activation for 30 min at 95°C, followed by 25 cycles

of denaturation for 30 s at 95°C, annealing for 30 s at 55°C,
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extension for 30 s at 72°C, and a final extension for 10 min at 72°C.

The sequences of the primer pairs used for the first amplification are

as follows:
Fron
V3-F: 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGA
CAGCCTACGGGNGGCWGCAG-3′,

V4-R: 5′-GTCTCGTGGGCTCGGAGATGTGTATAA

GAGACAGGACTACHVGGGTATCTAATCC-3′.
AMPure XP beads (Agencourt Bioscience, Beverly, MA, USA)

were used to purify the first PCR products. The purified first PCR

product was used for library construction using the NexteraXT

Indexed Primer (Illumina Inc., CA, USA). The second PCR and

purification were performed using the same method as the first

PCR. Sequencing was performed using the MiSeq™ platform

(Illumina, San Diego, CA, USA) with a paired-end method (2 ×

300 bp).
2.16 Amplicon sequence variant and
statistical analysis

Raw sequencing data (fastq) were used to remove adapter

sequences using the Cutadapt program (Martin, 2011). We

performed an error correction of filtered paired-end sequencing

data using the R package DADA2 (Callahan et al., 2016) and

identified the amplicon sequence variant (ASV). The ASVs

obtained from different samples were normalized using QIME

(Caporaso et al., 2010). The taxonomy of each ASV was identified

from the NCBI 16S microbial database using BLAST+ with a query

coverage of 85% (Camacho et al., 2009). Statistical analysis of

bacterial diversity was performed using the R packages dplyr

(Wickham et al., 2015), taxa (Foster et al., 2018), apes (Paradis

et al., 2004), ggrepel (http://cran.nexr.com/web/packages/ggrepel/

index.html), pyloseq (McmurdieHolmes, 2013), DESeq2 (Love
tiers in Plant Science 06
et al., 2014), vegan (https://cran.r-project.org/web/packages/

vegan/index.html), ggsignif (https://cran.r-project.org/web/

packages/ggsignif/index.html), and ggplot2 (Wickham and Chang,

2016). Significant differences were evaluated using the R package

Agricolae (https://cran.r-project.org/web/packages/agricolae/

index.html) with Duncan’s test for comparisons between different

treatment groups (p ≤ 0.05). To determine the significant

correlation between soil chemical components and bacterial

communities, the Mantel test was performed using the R package

vegan (https://cran.r-project.org/web/packages/vegan/index.html)

with 9,999 permutations, and canonical correspondence analysis

(CCA) was performed using the R package CCA (https://cran.r-

project.org/web/packages/CCA/index.html).
3 Results

3.1 Soil chemical components

We analyzed the chemical components of soil in each

experimental field [NT, CF, CM, HM, and combined treatments

of Hanwoo manure and chemical fertilizer (hereinafter named HM

+CF)] after harvesting maize (Table 1). The pH was considerably

lower in the CF group (5.51) than in the other groups (5.57 for NT,

6.21 for CM, 5.93 for HM, and 5.79 for HM+CF). The highest CEC

was observed in CM (10.93 cmol+/kg). Total Nitrogen content was

markedly higher in the CM (0.139%) and HM+CF (0.139%) groups;

however, the HM group (0.131%) was not significantly different

from the CM and HM+CF groups. The available P was increased in

CM (301.70 mg/kg), CF (297.85 mg/kg), and HM+CF (285.86 mg/

kg). Ca and Mg exchangeable cations were high in the CM (7.72

cmol+/kg for Ca, 1.37 cmol+/kg for Mg) and HM+CF (7.98 cmol

+/kg for Ca, 1.38 cmol+/kg for Mg) groups, while exchangeable K

and Na showed no considerable difference. Finally, a high OM was

observed in HM (2.58%) and HM+CF (2.49%) groups. The EC and
TABLE 1 Chemical components of fertilizers remaining in the soil.

NT CM HM CF HM + CF

pH[1:5] 5.57 (± 0.17) ab 6.21 (± 0.18) a 5.93 (± 0.13) ab 5.51 (± 0.14) b 5.79 (± 0.22) ab

EC[1:5] (dS/m) 0.10 (± 0.006) a 0.11 (± 0.008) a 0.10 (± 0.05) a 0.10 (± 0.008) a 0.12 (± 0.006) a

C.E.C. (cmol+/kg) 9.02 (± 0.17) b 10.63 (± 0.17) a 9.45 (± 0.15) b 9.24 (± 0.17) b 9.58 (± 0.13) b

Total N (%) 0.105 (± 0.004) c 0.139 (± 0.002) a 0.131 (± 0.003) ab 0.126 (± 0.004) b 0.139 (± 0.003) a

Available P (mg/kg) 201.63 (± 7.72) c 301.70 (± 4.54) a 245.32 (± 6.61) b 297.85 (± 5.56) a 285.86 (± 3.52) a

Exchangeable K (cmol+/kg) 0.07 (± 0.01) a 0.09 (± 0.01) a 0.11 (± 0.013) a 0.08 (± 0.01) a 0.09 (± 0.015) a

Exchangeable Ca (cmol+/kg) 7.32 (± 0.092) b 7.72 (± 0.093) a 7.07 (± 0.099) b 7.24 (± 0.085) b 7.98 (± 0.104) a

Exchangeable Mg (cmol+/kg) 1.20 (± 0.02) b 1.37 (± 0.03) a 1.26 (± 0.02) b 1.20 (± 0.02) b 1.38 (± 0.02) a

Exchangeable Na (cmol+/kg) 0.08 (± 0.01) a 0.07 (± 0.01) a 0.09 (± 0.01) a 0.08 (± 0.005) a 0.09 (± 0.01) a

Salinity (%) 0.005 (± 0.0008) a 0.004 (± 0.0005) a 0.005 (± 0.0005) a 0.005 (± 0.0005) a 0.005 (± 0.0005) a

OM (%) 1.48 (± 0.05) d 2.32 (± 0.03) b 2.58 (± 0.04) a 1.95 (± 0.03) c 2.49 (± 0.03) a
NT, non-treatment; CM, commercial manure; HM, Hanwoo manure; CF, chemical fertilizer; HM + CF, combined use of Hanwoo manure and chemical fertilizer.
Lowercase letters represent significant differences (p < 0.05) between groups as determined using Duncan’s test.
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salinity showed no considerable differences among the different

experimental soils. Overall, livestock manure showed high total

nitrogen, available P, and OM contents in the soil, suggesting that

the nitrogen and available P contents increased in the soil owing to

increased OM.
3.2 Effect of different liquid fertilizers on
plant growth

To analyze the effects of HM application on maize cultivation, the

effects of different fertilizers on plant growth were observed

(Figure 1). The length of maize plants was considerably higher in

the HM+CF group (285.34 cm) after 93 days than in the other groups

(Figure 1A). However, there were no considerable differences in plant

length between the CF (79.54 cm) and HM+CF (79.61 cm) groups

after 51 days. The highest measured stem diameter and leaf length

were in the HM+CF and CF groups in 51–93 days. On day 51, the leaf

widths in different groups were in the order of HM+CF (6.76 cm), CF

(6.51 cm), and HM (6.37 cm), while the HM+CF group had the

largest leaf width (7.78 cm) at 93 days. In particular, plant length and

leaf width increased in the HM+CF group compared to those in the

CF group as the day progressed, suggesting a positive effect of HM in

the late stages of plant growth. A high SPAD unit was observed in the

HM+CF and CF groups after 51 days. The SPAD units of HM+CF

and CF increased until 65 days and then decreased until 93 days,

suggesting that the phase changed from vegetative to reproductive

(Figure 1B). The highest SPAD units of the HM+CF group were

observed after 65 and 79 days; no marked difference was observed

between the SPAD units of HM+CF and CF groups after 93 days. The

corn emergence rate after 79 and 93 days was highest in the HM+CF

group and insignificantly different among the different experimental

groups, except NT. The HM+CF and CF groups, which showed a

relatively significant decrease in SPAD units, showed a higher

emergence rate of corn after 79 days. Furthermore, the fresh and

dry weights of corn were highly increased by HM+CF treatment. HM
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+CF and CF treatments improved plant growth compared to other

treatments; in particular, HM+CF treatment demonstrated strong

effects on plant length, leaf width, initial emergence rate, and corn

weight. Although HM had a lower impact on the promotion of plant

growth than the HM+CF and CF groups, the possible utilization of

HM in agriculture needs to be considered.
3.3 Feed quality analysis and
antioxidant activities

To analyze the feed value of maize after supplying different

fertilizers, we analyzed the contents of crude matter (protein, fat,

fiber, and ash), P, ADF, and NDF in the plants (Figure 2). The crude

contents of protein, fat, fiber, ADF, and NDF were not considerably

different between the HM and CF groups. The crude ash and P

contents were relatively high in the HM and CM groups, indicating

that inorganic matter, including crude ash and P, increased in

plants treated with organic manure. However, crude ash and P

contents were low in the CF and HM+CF groups, indicating that

inorganic matter in plants with CF supply was low. The contents

and activities of antioxidants were analyzed in maize plants in

terms of total polyphenols and flavonoids, 2,2’-Azino-bis (3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS), nitrite, and

reducing power (Figure 3). The CM group had a relatively high

total flavonoid content, and the HM+CF group had a relatively

weak ABTS activity. No considerable difference was observed in the

antioxidant levels of the HM and CF groups. In summary, the feed

qualities, except for crude ash, P, and antioxidants, had a similar

effect between the HM and CF groups.
3.4 Soil microbial composition

To analyze the effects of different fertilizers on soil microbial

communities, a 16s rRNA sequencing analysis was conducted
B

A

FIGURE 1

Difference in the growth of corn (NT, non-treatment; CM, commercial manure; HM, Hanwoo manure; CF, chemical fertilizer; HM+CF, combined use of
Hanwoo manure and chemical fertilizer). (A) Plant length, stem diameter, and the width and length of leaves 93 days after planting. (B) SPAD unit, corn
emergence rate, and fresh and dry weight of plant 93 days after planting. The line colors represent the different fertilizer treatments. The values are the
mean ± standard deviation (n = 18). The lowercase letters represent the significant differences (p < 0.05) between groups using the Duncan test.
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(Figure 4). The HM group had a high alpha diversity (360 a-
diversity) in the bacterial community. In comparison, the CF (327

a-diversity) and CM (312 a-diversity) groups had decreased alpha

diversity compared to the NT (353 a-diversity) group (Figure 4A).

However, there was no marked difference in the alpha diversity

among the different soil samples. Soil microbial ASVs were

clustered into 21 bacterial phyla (Figure 4B). Nine phyla

(Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi,

Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria,

and Verrucomicrobia) comprising over 1,000 ASVs were detected

from soil bacteria in each sample. Notably, the ASVs of

Actidobacteria and Proteobacteria constituted a large percentage

of soil bacterial DNA (Figure 4B). The ASVs of Acidobacteria,

Actinobacteria, and Chloroflexi were higher in the NT group than in

the CM group (Figure S2). In contrast, ASVs of Bacteroidetes were

high in the CM group and low in the NT group. Similarly,

Proteobacteria and Verrucomicrobia were distinctly distributed

between the HM and CF groups. High correlations of ASVs

between soil samples were observed in two groups (CM and HM,

and CF and HM+CF); in particular, HM+CF was closely correlated

with CF (Figure 4C). This result suggests that the microbial

community of the HM group was similar to that of the CF group,

resulting in a change in the form of bacteria by supplying CF.
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3.5 Associations between soil microbiome
and fertilizer factors

To analyze differentially distributed bacteria, the ASVs of each

soil sample were compared to those of the NT group at the phylum

level (Figure 4D). In both soil samples, we obtained 158

considerable ASVs (65 increased and 93 decreased ASVs) divided

into 21 phyla. The increased ASVs were 32 for the CM group, 36 for

the HM group, 26 for the CF group, and 30 for the HM+CF group,

whereas the decreased ASVs were 41, 35, 42, and 26 in the CM, HM,

CF, and HM+CF groups, respectively. The highest number of

significantly distributed bacteria was observed in the HM group

for increased ASVs and in the CF group for decreased ASVs. This

result suggests a positive effect of HM and a negative effect of CF on

the bacterial community. Furthermore, many soil bacteria were

commonly observed in CM, HM, CF, and HM+CF groups.

We attempted to determine significantly correlated factors

between the 158 ASVs and 7 soil chemical compositions, which

had a significant difference in chemical quantities in at least one

experimental soil across all samples (Figure 5). We found a

significant positive correlation between available P (R = 0.43; p <

0.01) and OM (R = 0.32; p < 0.05) and bacterial communities

(Figure 5A). Furthermore, we determined the significantly
FIGURE 2

Feed values differ after applying different fertilizers (NT, non-treatment; CM, commercial manure; HM, Hanwoo manure; CF, chemical fertilizer; HM+CF,
combined use of Hanwoo manure and chemical fertilizer). The values are the mean ± standard deviation (n = 3). The lowercase letters represent the
significant differences (p < 0.05) between groups using the Duncan test.
FIGURE 3

Total polyphenol and flavonoid contents, ABTS radical and nitrite scavenging activities, and reducing power activities after different fertilizer supplies
(NT, non-treatment; CM, commercial manure; HM, Hanwoo manure; CF, chemical fertilizer; HM+CF, combined use of Hanwoo manure and
chemical fertilizer). The values are the mean ± standard deviation (n = 3). The lowercase letters represent the significant differences (p < 0.05)
between groups using the Duncan test.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1135947
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lee et al. 10.3389/fpls.2023.1135947
correlated bacteria (p < 0.05) for available P and OM within the

bacterial phylum of 158 ASVs and found 13 significant bacterial

genera (Figure 5B). Algisphaera (R = 0.8) and Thermomarinilinea

(R = 0.76) were significantly positively correlated with available P

content among the soil samples. In contrast, 9 bacterial genera

(Cystobacter, Microbirga, Panacagrimonas, Pseudarthrobacter,

Reyranella, Rhodoligotrophos, Solirubrobacter, Stenotrophobacter,
Frontiers in Plant Science 09
and Tellurimicrobium) were negatively correlated with available P.

OM was positively correlated with Acidibacter and Ohtaekwangia

and negatively correlated with Panacagrimonas, Reyranella, and

Tellurimicrobium. Three bacterial genera (Panacagrimonas,

Reyranella , and Tellurimicrobium), which had negative

correlations, were commonly exhibited in both P and OM. In the

CCA analysis between chemical components and significantly
B C

D

A

FIGURE 4

Amplicon sequence variant (ASV) approach of bacteria in the soils after different fertilizer supplies (NT, non-treatment; CM, commercial manure;
HM, Hanwoo manure; CF, chemical fertilizer; HM+CF, combined use of Hanwoo manure and chemical fertilizer). (A) Alpha diversity of the bacterial
population in each sample using the inverse Simpson (InvSimpson) method. The lowercase letters represent the significant differences (p < 0.05)
between groups by using Tukey’s HSD test. (B) Bacterial communities of each sample in the phylum level. The box colors represent the phylum of
bacteria. (C) Hierarchical clustering of samples. The line colors represent the different levels of beta diversity using the Bray−Curtis dissimilarity.
(D) The comparison of differentially distributed bacteria in the soils after different fertilizer supplies.
B CA

FIGURE 5

Correlation analysis between soil properties and bacterial community structures in the soils after different fertilizer supplies (NT, non-treatment; CM,
commercial manure; HM, Hanwoo manure; CF, chemical fertilizer; HM+CF, combined use of Hanwoo manure and chemical fertilizer). (A) Mantel
test between soil properties on bacterial community composition. Significant results are indicated by *P < 0.05 and **P < 0.01 (NS = no significance).
(B) Significant correlation between two chemical components and soil bacteria. The significance was measured by using the n-2 degrees of freedom
(*P < 0.05, **P < 0.01, and ***P < 0.001). (C) Canonical correspondence analysis of bacterial community composition and soil properties in soils
after different fertilizer supplies.
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correlated bacteria, OM and available P were closely correlated with

livestock manures, except for NT and CF (Figure 5C). Although all

bacterial ASVs were correlated between CF and HM+CF groups,

the HM+CF group, along with livestock manure (HM and CM),

was located close to OM and available P, as well as the significant

bacterial genus (Figure 5C). This result suggests a distinct form of

13 significant bacterial genera in the HM+CF group due to

increased OM and available P contents compared to those in the

NT and CF groups. We identified a high correlation of 13 significant

bacterial genera between the HM and HM+CF groups in the

heatmap analysis, indicating a high distribution of specific

bacteria in HM (Figure 6A) and specifically distributed bacteria in

each experimental soil compared to NT (Figure 6B). Ohtaekwangia

was found to be decreased in the CF group, while Acidibacter was

increased in the other groups (CM, HM, and HM+CF groups),

except in the CF group. Algisphaera increased in the CM, CF, and

HM+CF groups, except for the HM group. The HM+CF group

showed a distinct form of 13 significant bacteria between the HM

and CF groups.
4 Discussion

In this study, we observed distinct phenotypic changes in plant

growth for two years compared with the previous experiment by

Byeon et al. (2022). There were no significant differences between

the CF and HM+CF groups regarding OM content or plant growth.

Notably, maize showed enhanced plant growth in the HM+CF

group and increased OM content in the second year of the

experiment, similar to the previous experiment. The combined

supply of chemical and organic fertilizers positively improved

crop production for long-term fertilization. The long-term use of

organic fertilizers led to increased soil organic carbon (SOC)

content compared to CFs (Wang et al., 2019). The combined
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supply of chicken manure and N increased the grain yield and

dry matter content of spring maize compared with CF, suggesting

that the appropriate proportion of organic substitution led to

improved crop production (Geng et al., 2019). In a long-term

fertilization experiment, Chand et al. (2006) demonstrated the

beneficial effects of farmyard manure and CF in increasing dry

matter and nutrient uptake for mint and mustard. In soil, nitrogen

accumulation is stimulated in strongly acidic soils by organic

manure application, along with swine manure and mushroom

waste (Chen et al., 2001). Furthermore, Adekiya et al. (2020)

reported that different sources of organic manure lead to

increased amounts of OM, N, P, Ca, and Mg in the soil by

enhancing the mineralization and steady supply of available

nutrients. We identified relatively increased amounts of total N,

exchangeable cations of Ca and Mg, and OM in the HM+CF group

compared to the CF group, indicating soil nutrient changes caused

by HM application. Thus, we suggest that the increased use of HM

has additional effects on plant growth and soil nutrient changes.

Crude ash is related to the content of inorganic substances such

as Ca, P, and Mg. In a previous study, the ash content in whole

millet plants was increased by cattle manure and decreased by CF

compared to NT; however, there were no significant differences in

ash content among the different treatments (Raimundo et al., 2022).

The crude ash content of onions was higher in the organic fertilizer-

treated groups than in the control group without fertilization (Olle

and Williams, 2014). Makinde et al. (2010) reported that organic

material and its combination with CF caused a significant increase

in crude ash content. Similarly, we identified increased contents

of crude ash and P in the HM and CM groups, suggesting the

positive effect of organic manures on the increase of inorganic

matter in forage maize. Furthermore, there were no significant

differences in antioxidant levels between the HM and CF groups.

Thus, HM can replace CFs in the production of forage maize for

livestock production.
BA

FIGURE 6

Taxonomic composition of significant bacteria analysis in the soils after different fertilizer supplies (NT, non-treatment; CM, commercial manure; HM,
Hanwoo manure; CF, chemical fertilizer; HM+CF, combined use of Hanwoo manure and chemical fertilizer). (A) Hierarchical clustering of samples with
significant bacteria. The line colors represent the different levels of beta diversity by using Bray−Curtis dissimilarity. (B) The relative abundances of
significantly correlated bacteria in NT, CM, HM, CF, and HM+CF groups compared to the NT group. Circle size represents the number of bacteria for
ASV. The color indicates the log 2-fold change of ASV with p-adjust < 0.05. Arrow represents the specific bacteria in each treatment.
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We confirmed that 13 soil bacterial genera were significantly

correlated with the OM and available P in the soil. The positively

correlated bacteria were Algisphaera and Thermomarinilinea for

available P and Acidibacter and Ohtaekwangia for OM. Acidibacter

was a gram-negative bacterium isolated from a lake around a mine

(Falagán and Johnson, 2014). The presence of Acidibacter is

decreased by forest conversion because it prefers an acidic soil

environment (Ezeokoli et al., 2020). In particular, Ohtaekwangia

increased during the fermentation of sheep manure, and the

presence of Ohtaekwangia and Planomicrobium could explain the

suitability of sheep manure for using organic fertilizer (Yoon et al.,

2011; Tortosa et al., 2017). We confirmed that Ohtaekwangia was

significantly increased by organic manures, except for CF.

Algisphaera had no significant differences in the HM group

compared to the NT group, but it increased dramatically in the

CM, CF, and HM+CF groups. Algisphaera is a gram-negative

aerobic bacterium whose effects on plant growth remain

unknown (Yoon et al., 2014). Furthermore, we found no

significant difference in the presence of Acidibacter spp. in the CF

group. Acidibacter was increased by organic manure application

and correlated with SOC content (Guo et al., 2017; Jimenez-

Castaneda et al., 2020; Zhang et al., 2021). Additionally,

Acidibacter plays a role in the microbial reduction of Fe (III), and

Fe (III) reduction by manure addition leads to an increase in pH

(Falagán and Johnson, 2014; Jimenez-Castaneda et al., 2020). Thus,

the enhanced microbial formation of Acidibacter by CM, HM, and

HM+CF affected the pH of the soil.
5 Conclusions

The organic manure caused changes in soil nutrient

compositions; in particular, the HM group showed increased

amounts of total nitrogen, several exchangeable cations, and OMs

compared to the CF group. The combined use of CF and HM led to

improved plant growth compared with CF and organic manure.

Although the HM+CF supply had substantial effects on plant

growth, HM increased the inorganic matter content of crude ash,

and P. ASV analysis revealed that increases in available P and OM

drove 13 bacterial genera. We found specific bacteria, such as

Ohtaekwangia and Acidibacter, in both organic manures, except

for CF, and Algisphaera in others, except for HM. In particular,

Ohtaekwangia and Acidibacter were considerably higher in organic

manure. However, the beneficial interactions between significantly

correlated bacteria and plants remain unknown. Further studies are

needed to identify the functional roles of these soil bacteria in

agriculture using organic manure. According to the results of this

study, the use of HM as a useful organic source is suggested for

environment-friendly agricultural practices, promoting sustainable

crop production by replacing CFs.
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