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Genetics of a diverse soft winter
wheat population for pre-harvest
sprouting, agronomic, and flour
quality traits

Nisha Patwa † and Bryan W. Penning*

United States Department of Agriculture – Agricultural Research Service (USDA-ARS) Corn, Soybean
and Wheat Quality Research Unit, Wooster, OH, United States
Soft winter wheat has been adapted to the north-central, north-western, and

south-central United States over hundreds of years for optimal yield, height,

heading date, and pathogen and pest resistance. Environmental factors like

weather affect abiotic traits such as pre-harvest sprouting resistance. However,

pre-harvest sprouting has rarely been a target for breeding. Owing to changing

weather patterns from climate change, pre-harvest sprouting resistance is

needed to prevent significant crop losses not only in the United States, but

worldwide. Twenty-two traits including age of breeding line as well as

agronomic, flour quality, and pre-harvest sprouting traits were studied in a

population of 188 lines representing genetic diversity over 200 years of soft

winter wheat breeding. Some traits were correlated with one another by principal

components analysis and Pearson’s correlations. A genome-wide association

study using 1,978 markers uncovered a total of 102 regions encompassing 226

quantitative trait nucleotides. Twenty-six regions overlapped multiple traits with

common significant markers. Many of these traits were also found to be

correlated by Pearson’s correlation and principal components analyses. Most

pre-harvest sprouting regions were not co-located with agronomic traits and

thus useful for crop improvement against climate change without affecting crop

performance. Six different genome-wide association statistical models (GLM,

MLM, MLMM, FarmCPU, BLINK, and SUPER) were utilized to search for

reasonable models to analyze soft winter wheat populations with increased

markers and/or breeding lines going forward. Some flour quality and agronomic

traits seem to have been selected over time, but not pre-harvest sprouting. It

appears possible to select for pre-harvest sprouting resistance without impacting

flour quality or the agronomic value of soft winter wheat.
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wheat, pre-harvest spouting, flour quality, grain quality, genetics, genome-wide
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1 Introduction

Soft winter wheat has been improved primarily for agronomic

traits such as yield, heading date (HD), plant height (Hght), and

resistance to pathogens and pests for hundreds of years (Hedden,

2003; Cavanagh et al., 2013; Ward et al., 2019). However, other trait

improvements could increase long-term product success, such as

improved grain or flour quality traits and resistance to pre-harvest

sprouting (PHS). This is a weather-dependent abiotic stress

affecting quality and marketability of grains around the world

(Patwa and Penning, 2020). Alleles to improve traits not selected

in modern varieties may exist in older breeding lines and await

discovery. Marker-assisted selection could be used to improve

wheat varieties. However, with increases in population and food

demand requiring doubling of production, quality improvement

cannot come at the expense of agronomic traits (Ray et al., 2013).

PHS, measured as grain soundness, occurs throughout the

world and can damage wheat, rice, barley, maize, sorghum, and

rye leading to yield losses of 10%–50% and up to 30% reduction in

sale value (Patwa and Penning, 2020). It has become more prevalent

in Africa, Australia, Canada, China, Europe, India, Japan, and the

United States from climate change (Singh et al., 2021). PHS is

caused by complex physiological and biochemical mechanisms

including seed dormancy, abscisic acid concentration and

sensitivity, alpha amylase activity (AA), differential water

imbibition due to seed coat and spike morphology, humidity, and

temperature (King and Richards, 1984; DePauw and McCaig, 1991;

Yanagisawa et al., 2005; Chono et al., 2006; Patwa and Penning,

2020). However, less is known about the genetics of PHS resistance

needed to produce markers meaning that marker development is

difficult. Current knowledge of the genetic factors affecting PHS is

limited and includes signaling genes such as TaPHS1/MOTHER OF

FLOWERING TIME (MFT), MAP KINASE KINASE 3 (MKK3), and

VIVIPAROUS 1 (VP1); genes involved in abscisic acid synthesis and

degradation like 9-cis-epoxycarotenoid dioxygenase (HvNCED1)

and ABA 8’-hydroxylase (HvCYP707A1); and the mutant

ENHANCED RESPONSE TO ABA8 (ERA8) in white spring wheat

(Nakamura and Toyama, 2001; Chono et al., 2006; Nakamura et al.,

2011; Lin et al., 2016; Martinez et al., 2016; Torada et al., 2016;

Vetch et al., 2019).

Flour quality traits are used to describe the complex physical

changes that occur during baking. The impact of these traits can

differ depending on the baked product. Water absorption from

damaged starch, measured by sodium carbonate solvent retention

capacity (NaSRC), and arabinoxylans, measured by sucrose solvent

retention capacity (SucSRC), can lead to brittle products that take

longer to bake (Souza et al., 2012). Higher gluten strength as

measured by lactic acid solvent retention capacity (LASRC) or

adjusted lactic acid solvent retention capacity (LAAdSRC) binds

water during leavening to better hold dough together (dough

strength) and is useful for rising pound cake or biscuits

(Wilderjans et al., 2008; Ma and Baik, 2018). Increased flour

protein content (FlProt) also increases dough strength although

lower protein is desired by the baking industry for most soft winter

wheat baked products besides crackers (Deng et al., 2021). All

above-mentioned solvent retention capacity (SRC) measurements
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interact to affect water absorption in flour measured by water

absorption solvent retention capacity (WatSRC) (Souza et al.,

2012). Water absorption along with flour yield (FlYld) and

softness equivalence (SftEqv) can impact milling and baking

performance as well. SftEqv, SucSRC, and WatSRC have been

previously correlated with whole wheat cookie diameter (CkDia).

Measurement of CkDia after baking of cookie dough made from

flour of different wheat varieties but of the same weight and shape

estimates cookie spread during baking. Texture measured by cookie

top grade (CkTpGr) and consistent spread are important to the

baking industry for uniform products (Souza et al., 2011).

Several previous studies have defined PHS resistance or flour

quality traits on nearly every chromosome, but most are of small

effect and used modern breeding lines (Gao et al., 2013; Cabral et al.,

2014; Lin et al., 2016). PHS and flour quality traits have infrequently

been bred into soft winter wheat due to labor, cost, and the need for

time-consuming analyses. One study not only improved PHS

resistance by breeding a variety related to Tom Thumb into a

more modern variety but also affected height (Bhatt et al., 1977).

With the advent of marker-assisted selection in plant breeding,

providing reliable trait-improving markers could allow flour quality

and PHS resistance improvement while maintaining agronomically

important qualities.

To study the effects of many traits, a population encompassing

diversity of breeding lines from the early 1800s to the early 2000s was

developed based on previous milling and baking performance using a

long-flow Allis-Chalmers milling system by the USDA-Agricultural

Research Service SoftWheat Quality Lab. Included varieties represent

variation in important crop traits when grown in eastern North

America and were available for study (Souza et al., 2012). The

population displayed similar structure and more variation than a

much larger modern elite set of breeding lines (Cabrera et al., 2014).

One factor apparent in the population structure of the diversity

breeding lines was age of the release (Cabrera et al., 2014). Few studies

in soft winter wheat have investigated the impact of selective breeding

to genetic changes in such a diverse set of traits available in this

population. The selection of yield in elite breeding lines may have

inadvertently reduced overall diversity of important but untested

quality traits (Cabrera et al., 2014). Wide values for many diverse

traits in this population allowed discovery of chromosome regions for

improvement and overlap with other traits. A completed sequence

and sets of markers in wheat allowed for the performance of a

genome-wide association study (GWAS) for trait mapping (IWGSC,

2014). The GAPIT3 platform contains several GWAS models with

slightly varied assumptions and regression models that could impact

the association of significant markers with a phenotype (Wang and

Zhang, 2021). The population size of 188 with 1,978 markers

provided an opportunity to test how different GWAS models

would perform in a real population of soft winter wheat rather

than a simulated population without a burdensome amount

of computation.

The goal of this research was to find regions of the genome that

could provide resistance to PHS, an important abiotic threat to

wheat crops. Also, this study sought to determine if resistance to

PHS may overlap with other important flour quality or agronomic

traits. This would indicate if breeding efforts over the past ~200
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years impacted previously unmeasured PHS and flour quality traits

in pursuit of other traits such as yield, pests, and disease resistance.

With the pressures of an increasing population requiring more food

of higher quality at a time when climate change can cause

disruptions in the food supply, it has become more important to

protect against abiotic stresses such as PHS without impacting

agronomic traits or flour quality in wheat.
2 Materials and methods

2.1 Plant material

Sixty grams of seed per plot for each of the 188 members of the

historic diversity population described in Souza et al. (2012) and

available individually (https://www.ars-grin.gov or http://

wheatpedigree.net) as listed in Supplemental File S1 were planted

in 3 m × 3 m plots of six rows across a plot to achieve a full block of

plants with 0.6-m alleys between each 3 m × 3 m plot at Schaffter,

Snyder, and/or King farms at Ohio State University. Two sets of

plots were grown each year, one for artificial irrigation of the field

and one left in the field and harvested after a natural rain event.

Fields were grown in successive years until at least 3 years of data

could be obtained as not every year featured a natural rain event

within the harvest window. Fields were tilled and pre-dressed with

28 kg/hectare of nitrogen prior to planting in October of each year.

Nitrogen was reapplied at 101 kg/hectare in April of each year

followed by 1 L/hectare of Huskie broadleaf herbicide. A border of

>6 m of wheat or rye was used as a buffer.

For irrigated PHS tests, plots were treated in the field with

overhead sprinklers simulating 2.5–5.0 cm of rain for 2 days (Irr). A

second set of plots was left in the field until a natural rain event

(Nat) occurred (Sneller et al., 2010). Each whole plot was harvested

by a Wintersteiger Classic combine (www.wintersteiger.com). For

the artificial spike wetting test (Art), ~30 spikes were hand

harvested from the non-irrigated plot at maturity (no green on

the spikes) in brown paper bags. Spikes were dried in the bag at

~29˚C for 5 days, and then placed upright ~2.5 cm apart in

Styrofoam blocks by their stems and subjected to 95% humidity

in a growth chamber with half sodium/half metal halide lights at

200–300 mmol m−2 s−1 and 20˚C for 16 h and no lights and 15˚C for

eight h. Spikes were soaked with water from a spray bottle every

12 h. After 3 days, spikes were dried in the greenhouse for 1–2 days,

hand threshed, placed in heavy manila envelopes, and stored at

−20˚C. All collected seeds were cleaned of debris by blowing air to

remove the lighter chaff. All PHS treatments were performed for 3–

4 years (harvested 2018–2021 for Art, 2019–2021 for Irr, and 2018,

2019, and 2022 for Nat).
2.2 Chemical and physical tests

Grain and flour quality tests for FlProt, test weight (TstWt),

WatSRC, NaSRC, SucSRC, LASRC, LAAdSRC, SftEqv, FlYld,

CkDia, and CkTpGr were performed on sound grain (not

exposed to PHS) and calculated as described previously (Souza
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et al., 2012; Cabrera et al., 2015). Briefly, FlProt was determined by

near-infrared reflectance on a Unity Spectra-Star 2200 (Columbia,

MD), TstWt was determined by weight of 1,000 grains, all five SRCs

were determined by American Association of Cereal Chemists

(AACC) method 56-11.02 (AACC, 2010a), CkDia and CkTpGr

were determined by AACC method 10-52.02 (AACC, 2010b), and

FlYld and SftEqv were determined based on milling grain tempered

to 15% moisture through a modified Brabender Quadramat Junior

flour mill (Cabrera et al., 2015).

HD was recorded visually walking the field daily and recording

the first day 50% of wheat spikes had fully emerged from the boot

jack. Values were calculated by assigning the first date a variety

emerged as day 1 and adding the appropriate number of days for

each variety that emerged afterward. Hght was recorded in

centimeters at maturity, except the first year collected in inches

and converted to centimeters.

Soft winter wheat has been primarily bred for improvement of

traits such as yield, height, heading days, or pathogen and pest

resistance over ~200 years. Other traits may have been altered

because they were located near genes for selected traits. To observe

if PHS or flour quality traits may have been impacted, a

comparative measure for how long ago the variety was released

by breeders was developed. If this measure co-located with PHS or

flour quality traits, it would indicate their inadvertent selection,

especially if they also co-locate with agronomic traits. Age of

breeding line (Age) was calculated by subtracting the release year

of the line from 2020. Awnless or bearded (Awns) and red or white

seed color (SdClr) was determined by visual observation and

accession reports.

PHS treatments were tested for grain soundness by Falling

Number (FN) and AA tests. Threshed and cleaned seeds were

ground in a UDY Mill model 3010-014 with a 1-mm screen

(www.udyone.com). FN was measured using a Perten Falling

Number machine 100 or 1000 (www.perkinelmer.com) in 20 ml of

water with grams of ground seeds based on moisture content per

manufacturer’s manual Table III (Perten Instruments AB, 2016).

Moisture content was measured using AACC method 44-16.01

(1999). The paste was vortexed in a Perten Shakematic

(www.perkinelmer.com) for 15 s before placing in the Falling

Number machine following AACC method 56-81.03 (1992). Alpha

amylase activity was calculated following AACC method 22-02.01

(2002) with an alpha amylase assay kit (Ceralpha Method) by

Megazyme (www.megazyme.com) with the following modification.

Instead of 7 g of ground seeds in 40 ml of extraction solution in 50-ml

tubes, 0.3 g of ground seeds was extracted in 2 ml of extraction solution

in a 48-well format (Corning #P-5ML-48-C, www.corning.com).

Absorbance was determined colorimetrically in a 96-well plate

format (Fisherbrand #21377203, www.fishersci.com) using a BioTek

plate reader (www.biotek.com) at 405 nm. Activity was calculated using

the manufacturer’s standard method for wheat (www.megazyme.com).
2.3 Genetics and statistical analysis

Multiple years or locations of trait data, three for irrigated alpha

amylase activity (IrrAA), irrigated Falling Number (IrrFN), natural
frontiersin.org
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alpha amylase activity (NatAA), natural Falling Number (NatFN),

TstWt, CkDia, and CkTpGr, and four for artificial alpha amylase

activity (ArtAA), artificial Falling Number (ArtFN), FlProt, FlYld,

HD, Hght, LAAdSRC, LASRC, NaSRC, SftEqv, SucSRC, and

WatSRC were combined into Best Linear Unbiased Predictors

(BLUP) using R version 4.0.4 and metafor package version 2.4-0

for samples using means and standard deviations calculated in

Microsoft Excel (Viechtbauer, 2010; R Core Team, 2022).

Histograms for the BLUP of each trait were plotted using the

Histogram data analysis tool in Microsoft Excel and a Shapiro–

Wilk normality test was performed using the R command shapiro.test

(trait) (R Core Team, 2022).

Principal components analysis (PCA) was performed using

pcaMethods version 1.78.0 from Bioconducter version 3.10.1 and

factoextra version 1.0.7 in R version 3.6.3 necessary to run the

combination of tools (Stacklies et al., 2007; Huber et al., 2015;

Kassambara andMundt, 2020; R Core Team, 2022). Microsoft Excel

was used to graph combinations of principal components (PCs) 1,

2, and 3. Pearson’s correlation coefficients and their associated p-

values were calculated using the rcorr command from the Hmisc

library in R version 3.63, copied into comma delimited files using

the write.csv command and merged into one table in

Microsoft Excel.

A GWAS was performed with GAPIT3 (GitHub version on 10/

14/22 from www.zzlab.net) under R version 4.0.4 running in

RStudio version 4.2.1 using six models: general linear model

(GLM), mixed linear model (MLM), multiple loci mixed model

(MLMM), fixed and random model circulating probability

unification (FarmCPU), Bayesian-information and linkage-

disequilibrium iteratively nested keyway (BLINK), and settlement

of MLM under progressively exclusive relationship (SUPER) to

discover any differences model type might play in locating

significant markers for different phenotypes in a soft winter wheat

population (Wang et al., 2014a; Tang et al., 2016; Wang and Zhang,

2021; R Core Team, 2022; RStudio Team, 2022). The markers were

derived from the 9K iSelect single-nucleotide polymorphism (SNP)

array by removing markers that could not be uniquely mapped to a

single chromosome using five recombinant inbred line populations

with parents in the GWAS population (Cavanagh et al., 2013;

Cabrera et al., 2015). In addition to the stacked Manhattan plots

and quartile–quartile (QQ) plots generated by GAPIT3, significant

results from GAPIT3 for each trait region were reported using

Bonferroni significance cutoffs calculated using an alpha of 0.05

divided by the number of markers per chromosome (Wang and

Zhang, 2021; Hill et al., 2022). Locations of significant quantitative

trait nucleotides (QTNs) were visualized using chromPlot in R with

R script in File S2 (Orostica and Verdugo, 2016; R Core

Team, 2022).
3 Results

3.1 Statistical analysis

Alpha amylase activity calculated in three separate years for a

subset of 20 samples had a linear correlation of 0.98, 0.95, and 0.93
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between the standard and modified protocol (data not shown).

Means, standard deviations, and number of samples for each trait

are in File S1 and histograms of each trait by year and BLUP are in

File S5. Shapiro–Wilk test statistics and p-values for normality of all

traits are listed in Supplemental Table S1. Relatedness of 22

agronomic, flour quality (on sound grain), and PHS traits was

measured by Pearson’s correlation and PCA combining years or

locations using BLUPs. R scripts are in File S2. Pearson’s

correlations with a p-value < 0.001 were considered significant.

FN traits negatively correlated with AA traits. Seed color and all

PHS-related tests were significantly correlated with each other. All

but IrrAA were correlated with TstWt. Some PHS measures such as

ArtFN appeared slightly correlated with flour quality traits

including WatSRC, LASRC, LAAdSRC, and SucSRC or CkTpGr.

Only ArtFN appeared correlated with HD or Hght. Age (years since

release) was positively correlated with Hght, FlProt, and HD, and

negatively correlated with CkDia, CkTpGr, and SftEqv. SdClr was

positively correlated with TstWt and most SRC and negatively

correlated with HD, Hght, CkTpGr, and CkDia. Awns were

uncorrelated with other traits. Flour protein was positively

correlated with Hght and most SRCs and negatively correlated

with other flour quality traits while most SRCs were positively

correlated with each other and negatively correlated with other flour

quality traits with significant correlations (p-value <0.001) of −0.24

to 0.94 (Table 1).

The first three PCs of all traits represented 31%, 18%, and 12%

of variation, respectively, and were considered significant based on a

plot of Eigenvalues and cumulative variance (Supplemental

Figure S1).

The trait contribution biplot of PC1 vs. PC2 mirrored many of

the Pearson’s correlation comparisons, accounting for the positive

or negative correlation as grouped in quadrant or in opposite

quadrant by PC1, PC2, or both axes. FN and SdClr were grouped

together tightly and loosely with TstWt in quadrant 1. Alpha

amylase activity measures were tightly grouped in quadrant 3

with HD loosely associated. Non-SRC flour quality traits except

FlProt grouped loosely in quadrant 2. The SRCs grouped tightly in

quadrant 4. Awns, FlProt, Hght, and Age were not well captured by

the first two principal components and appeared separated from the

main groups (Figure 1A). The trait contribution biplot of PC1 vs.

PC3 showed similar groupings to PC1 vs. PC2 with the exception of

CkDia and CkTpGr quality traits being more closely grouped with

AA measures and many agronomic factors flipping to the positive

PC3 axis (Figures 1A, B). The PC2 vs. PC3 trait contribution biplot

revealed a strong grouping of Age, Hght, HD, and FlProt in

quadrant 2, agreeing with Pearson’s correlations and the SRC

grouping in quadrant 3 between AA measures (Figure 1C, Table 1).
3.2 Genome-wide association study

A GWAS for 22 agronomic, flour quality, and PHS traits with

combined locations/years by BLUP using six models (Blink,

FarmCPU, GLM, MLM, MLMM, and SUPER) was performed in

GAPIT3 to test for model performance over diverse traits in a

moderate-sized soft winter wheat population. See the R script in File
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TABLE 1 Pearson’s correlations of 22 soft winter wheat traits with significance across top and right correlations with p-values <0.001 in bold.
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−11

2.E
−11

9.E
−02

9.E−05 8.E
−03

1.E−08 2.E
−09

Awns 0.11 −0.05 2.E
−01

5.E
−02

3.E
−02

2.E
−02

3.E
−02

4.E
−02

2.E
−02

6.E
−01

6.E−01 3.E
−02

6.E−01 6.E
−01

ArtAA 0.10 −0.36 0.10 6.E
−12

1.E
−08

0 4.E
−11

4.E
−10

4.E
−07

9.E
−01

2.E−03 1.E
−03

3.E−04 1.E
−02

IrrAA 0.05 −0.45 0.15 0.47 0 1.E
−12

0 0 3.E
−05

6.E
−01

5.E−02 1.E
−01

3.E−02 6.E
−04

NatAA 0.03 −0.46 0.16 0.40 0.67 3.E
−12

0 0 2.E
−08

2.E
−01

1.E−01 8.E
−01

1.E−02 8.E
−04

ArtFN −0.08 0.53 −0.17 −0.69 −0.49 −0.48 7.E
−13

7.E
−13

1.E
−08

6.E
−01

8.E−05 4.E
−03

6.E−06 2.E
−04

IrrFN 0.03 0.33 −0.15 −0.46 −0.81 −0.57 0.49 0 1.E
−03

3.E
−01

8.E−02 4.E
−01

6.E−02 5.E
−03

NatFN 0.00 0.46 −0.15 −0.44 −0.76 −0.80 0.49 0.74 6.E
−06

2.E
−01

9.E−02 5.E
−01

1.E−02 1.E
−03

TstWt −0.07 0.47 −0.17 −0.36 −0.30 −0.39 0.40 0.24 0.32 1.E
−05

1.E−05 7.E
−02

4.E−06 2.E
−09

FlProt 0.53 0.12 −0.04 −0.01 −0.03 −0.09 0.04 0.07 0.09 0.31 8.E−05 3.E
−01

4.E−07 1.E
−10

WatSRC 0.16 0.28 0.04 −0.23 −0.14 −0.11 0.28 0.13 0.13 0.31 0.28 0 0 1.E
−10

NaSRC −0.08 0.19 0.16 −0.23 −0.12 −0.02 0.21 0.06 0.05 0.13 −0.07 0.68 0 5.E
−07

SucSRC 0.15 0.40 0.04 −0.26 −0.16 −0.18 0.32 0.14 0.19 0.33 0.36 0.76 0.74 0

LASRC 0.11 0.42 0.03 −0.18 −0.25 −0.24 0.27 0.20 0.24 0.42 0.45 0.45 0.36 0.70

LAAdSRC −0.10 0.42 0.05 −0.20 −0.27 −0.23 0.28 0.20 0.23 0.35 0.12 0.39 0.43 0.64 0.94

SftEqv −0.30 −0.03 0.16 −0.02 −0.04 0.02 0.00 −0.01 0.00 −0.24 −0.59 −0.39 0.26 −0.07 −0.09

FlYld −0.16 −0.08 −0.04 0.08 0.03 −0.03 −0.13 −0.04 −0.05 0.01 −0.31 −0.51 −0.50 −0.59 −0.35
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FIGURE 1

Principal components analysis for all 22 trait contributions. (A)
Principal Component 1 vs. Principal Component 2. (B) Principal
Component 1 vs. Principal Component 3. (C) Principal Component 2
vs. Principal Component 3. Quadrant numbers shown in corners.
Gray arrows point to circles where labels would be too close to
read. Age of breeding line (Age), Artificial alpha amylase activity
(ArtAA), Artificial falling number (ArtFN), Awnless or bearded (Awns),
Cookie Diameter (CkDia), Cookie top grade (CkTpGrd), Flour Protein
(FlProt), Flour Yield (FlYld), Heading date (HD), Plant height (Hght),
Irrigated alpha amylase activity (IrrAA), Irrigated falling number
(IrrFN), Adjusted Lactic Acid SRC (LAAdSRC), Lactic Acid SRC
(LASRC), Sodium Carbonate SRC (NaSRC), Natural alpha amylase
activity (NatAA), Natural falling number (NatFN), red or white seed
color (SdClr), Softness Equivalence (SftEqv), Sucrose SRC (SucSRC),
test weight (TstWt), and Water SRC (WatSRC).
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S2. File S3 contains BLUP estimated values. File S4 contains

HAPMAP markers with 1,978 markers mapped uniquely to a

single genome (A, B, or D) for the 188 genotypes. The analysis

uncovered 226 significant QTNs at 102 genomic regions across all

21 chromosomes and four unassigned regions and included 40

markers with multiple significant traits at 26 regions. Figure 2

provides a visual representation of the QTN regions for all 22 traits

while Table 2 provides detailed information of the QTN including

approximate regions in centiMorgans (cM), largest effect on the

trait, smallest p-value for significance, and which markers and

models were significant (Supplemental Table S2). Figure 3 shows

the stacked Manhattan plots for Age and IrrAA as examples of

important traits showing only experiment-wise significant markers.

Figure 3 shows several locations where multiple models have the

same marker significant at a more stringent experiment-wise

Bonferroni cutoff of p-value <0.01 for Age and locations on

chromosomes 1A and 4A for IrrAA. The QQ plot for Age

showed some deviation from expected values for the GLM
Frontiers in Plant Science 07
beyond the points at the end associated with phenotypic

differences while the QQ plot for IrrAA shows all models within

expected values except potential markers associated with

phenotypic differences (Figure 4). Manhattan and QQ plots

generated by GAPIT3 for each trait not in the main article are

available along with histograms of the BLUP trait values as File S5.

Measured traits IrrFN, FlProt, WatSRC, SucSRC, LASRC,

LAADSRC, SftEqv, FlYld, and CkDia were all normally

distributed by the Shapiro–Wilk normality test. However, the

majority of test statistics fit well into their quartile values, W >

0.9, except ArtAA and NatAA with a limited range of values; Age,

which is heavily skewed to newer lines; and Awns and SdClr, which

are binary by classification (Supplemental Table S1). For inclusion

as a QTN, the marker for the trait had to be significant by a 0.05

Bonferroni cutoff for at least two of the six models (Supplemental

Table S2).

Five regions on chromosomes 1A, 5A, 6B, and 6D overlapped

Age and agronomic or flour quality traits including Hght, HD,
FIGURE 2

Regions of significant QTN for 22 traits. Circles are agronomic and physical traits, squares are pre-harvest sprouting, and triangles are flour quality.
Gray bars surrounding symbols indicate a range of significant markers. Legend describes specific traits. Age of breeding line (Age), Artificial alpha
amylase activity (ArtAA), Artificial falling number (ArtFN), Awnless or bearded (Awns), Cookie Diameter (CkDia), Cookie top grade (CkTpGrd), Flour
Protein (FlProt), Flour Yield (FlYld), Heading date (HD), Plant height (Hght), Irrigated alpha amylase activity (IrrAA), Irrigated falling number (IrrFN),
Adjusted Lactic Acid SRC (LAAdSRC), Lactic Acid SRC (LASRC), Sodium Carbonate SRC (NaSRC), Natural alpha amylase activity (NatAA), Natural falling
number (NatFN), red or white seed color (SdClr), Softness Equivalence (SftEqv), Sucrose SRC (SucSRC), test weight (TstWt), and Water SRC (WatSRC).
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TABLE 2 All significant QTN regions including GWAS models and markers.

Pos. (MBP1)
App.

Loc (cM)2

Significant Models4
Smallest
p-value5

Largest
effect6

QTN Chrom Start Stop Trait3 <0.05 <0.1 Marker

1A-1 1A 3 3 3 Age G, M S 3.90E−07 −22.74 wsnp_Ex_c12254_19575022

1A-2 1A 8 8 10 SftEqv B, G, S 1.07E−05 −2.81 wsnp_CAP11_c710_458019

1A-3 1A 301 301 68 Age B, F, G M, S 5.04E−08 −29.97 wsnp_BE497361A_Ta_1_1

1A-4 1A 443 443 76 IrrAA B, G, M, MM, S 4.68E−09 0.27 wsnp_JD_c2638_3555755

NatAA B, F, G, M, MM, S 8.27E−10 0.26 wsnp_JD_c2638_3555755

1A-5 1A 477 495 80–81 FlProt G, S 1.81E−05 0.20 wsnp_Ex_c16592_25117132

Age F, G, S 1.96E−11 23.19 wsnp_Ex_c21336_30465618

FlProt G, S 2.97E−06 0.21 wsnp_Ex_c21336_30465618

Hght B, F, G, S 4.28E−06 −5.01 wsnp_Ra_c4664_8410628

1A-6 1A 501 501 90 FlYld B, G 2.16E−04 −0.45 wsnp_Ra_c3270_6136601

1A-7 1A 530 530 104 NatAA G, M 2.22E−04 0.10 wsnp_Ex_c43228_49605281

1A-8 1A 542 542 117 WatSRC G, S 4.45E−05 −0.67 wsnp_Ex_c28900_37982485

WatSRC G, S 4.45E−05 0.67 wsnp_BE443588A_Ta_2_1

NaSRC F, G S 3.01E−04 −0.82 wsnp_Ex_c26688_35918122

WatSRC G, S 2.83E−05 −0.68 wsnp_Ex_c26688_35918122

1B-1 1B 60 119 24–27 LASRC G, S 1.93E−04 −3.74 wsnp_Ku_c4911_8795151

LAAdSRC B, F, G, M, MM, S 1.75E−10 6.91 wsnp_Ku_c16938_25916279

LASRC G, M, MM, S 8.54E−09 8.36 wsnp_Ku_c16938_25916279

LAAdSRC G, M, MM, S 9.52E−07 −6.90 wsnp_Ex_c20975_30093113

LASRC B, F, G, M, MM, S 6.99E−12 −8.36 wsnp_Ex_c20975_30093113a

1B-2 1B 143 144 30 CkTpGr G, S 1.32E−04 −0.49 wsnp_BE399980B_Ta_2_1

FlYld G, MM, S M 1.41E−05 −0.55 wsnp_BE399980B_Ta_2_1

SucSRC B, G F 1.25E−05 2.00 wsnp_BE399980B_Ta_2_1

FlYld B, F, G, MM, S M 6.92E−07 0.45 wsnp_Ku_c230_460618

1B-3 1B 382 382 39 NatAA G, M 5.67E−05 −0.07 wsnp_Ex_c30805_39678077

1B-4 1B 464 464 48 Awns B, F 4.65E−06 −0.22 wsnp_Ex_rep_c67584_66224379

1B-5 1B 563 563 77 NaSRC B, F 4.50E−06 −0.59 wsnp_JD_c2636_3554874

1B-6 1B 646 646 111 SftEqv B, S 6.63E−08 −1.22 wsnp_CAP11_c1902_1022408

1D-1 1D 8 9 14–21 LAAdSRC G, S 1.14E−04 −4.72 wsnp_Ex_c1085_2078944

LAAdSRC G, S 1.55E−04 −4.90 wsnp_Ex_c1358_2600929

LASRC G, S 1.21E−04 −5.57 wsnp_Ex_c1358_2600929

SucSRC G, S 7.43E−05 −2.54 wsnp_Ex_c1358_2600929

LASRC G, S 7.03E−05 6.84 wsnp_Ex_c1358_2601510

LAAdSRC G, S 7.68E−05 5.17 wsnp_Ex_c1358_2602235

LASRC G, S 6.08E−05 5.86 wsnp_Ex_c1358_2602235

SucSRC G, S 3.96E−05 2.66 wsnp_Ex_c1358_2602235

1D-2 1D 408 408 89 LAAdSRC B, S 4.80E−11 −5.16 wsnp_Ex_c1318_2520916

LASRC B, S 1.33E−06 3.99 wsnp_Ex_c6920_11929171

LASRC F, S 1.78E−06 −3.56 wsnp_Ex_c57601_59245380
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TABLE 2 Continued

Pos. (MBP1)
App.

Loc (cM)2

Significant Models4
Smallest
p-value5

Largest
effect6QTN Chrom Start Stop Trait3 <0.05 <0.1 Marker

LAAdSRC F, S 1.24E−07 4.37 wsnp_Ku_c5560_9853214

2A-1 2A 121 192 83–115 SdClr F, M, MM G 3.50E−07 0.51 wsnp_CAP12_c948_496702

2A-2 2A 192 192 115 NatAA B, F 1.67E−06 0.08 wsnp_Ex_c2536_4728768

SdClr B, F, G, S M, MM 1.09E−05 −0.24 wsnp_Ex_c2536_4728768

2A-3 2A 714 714 170 NaSRC B, F, MM M 5.91E−06 −1.58 wsnp_JD_rep_c64440_41093162

SucSRC G, M, MM, S 7.54E−05 −3.64 wsnp_JD_rep_c64440_41093162

2A-4 2A 718 718 174 SdClr G, M, MM 4.30E−06 0.15 wsnp_BE445431A_Td_2_2

NaSRC B, F 2.11E−06 1.03 wsnp_BE445431A_Td_2_1

2A-5 2A 771 771 214 SucSRC B, F 2.67E−06 1.23 wsnp_Ex_rep_c108004_91402649

2B-1 2B 25 25 20 Hght B, F 4.67E−07 −2.82 wsnp_Ex_c2388_4476302

2B-2 2B 103 103 117 LAAdSRC B, S G 1.05E−07 −3.04 wsnp_Ex_c5239_9272511

2B-3 2B 147 147 106 SdClr B, M, MM, S G 2.74E−05 −0.45 wsnp_CAP12_rep_c4678_2134259

2B-4 2B 389 443 147–147 LAAdSRC F, G, S 2.87E−06 −5.71 wsnp_Ex_c22693_31898036

LAAdSRC G, S 7.62E−06 −5.48 wsnp_Ex_c9133_15199135

LAAdSRC G, S 7.62E−06 −5.48 wsnp_Ex_c21532_30680512

LAAdSRC G, S 7.62E−06 −5.48 wsnp_Ex_c36002_44045355

LAAdSRC G, S 7.31E−06 5.59 wsnp_Ex_c28243_37383894

2B-5 2B 579 579 163 Age G, S 1.89E−05 15.15 wsnp_JD_rep_c67103_42432235

2D-1 2D 15 15 12 FlYld G, S 1.30E−03 0.38 wsnp_CAP12_c455_248396

WatSRC G, S 1.23E−03 −0.50 wsnp_CAP12_c455_248396

2D-2 2D 18 18 12 TstWt G, M, MM, S B, F 7.26E−04 0.76 wsnp_Ex_c1408_2704736

2D-3 2D 67 67 90 ArtAA B, F, G, M, MM, S 5.89E−04 −0.04 wsnp_BM140538D_Ta_2_1

ArtFN B, F G, M, MM 1.91E−03 41.18 wsnp_BM140538D_Ta_2_1

2D-4 2D 81 81 101 NatAA B, F, G, M, MM, S 3.38E−05 0.03 wsnp_BE444144D_Ta_1_1

2D-5 2D 514 514 165 LAAdSRC G, S 6.02E−05 −5.24 wsnp_Ex_c26281_35525999

2D-6 2D 617 617 172 SdClr B, S 7.50E−04 NA wsnp_Ex_c21593_30744815

3A-1 3A 138 138 57 Hght G, S 2.25E−04 3.22 wsnp_Ex_c25653_34914467

3A-2 3A 424 505 63–64 CkTpGr G, S F 9.81E−05 0.38 wsnp_Ra_c19979_29215858

FlProt G, S 4.75E−05 −0.20 wsnp_Ra_c19979_29215858

CkDia G, S 1.67E−04 −0.18 wsnp_Ex_rep_c67349_65914945

CkTpGr B, G, S 7.57E−06 −0.35 wsnp_Ex_rep_c67349_65914945

FlProt B, F, G, S 1.31E−06 0.23 wsnp_Ex_rep_c67349_65914945

CkDia B, G, S 4.41E−06 −0.25 wsnp_Ex_c3571_6530739

CkDia G, S 1.62E−05 −0.28 wsnp_BG263758A_Ta_1_1

FlProt G, S 1.73E−04 0.32 wsnp_BG263758A_Ta_1_1

3A-3 3A 508 508 76 Hght B, G, S 5.23E−06 5.05 wsnp_Ex_c12850_20377830

3A-4 3A 534 534 83 LASRC G, S 1.95E−05 4.20 wsnp_Ex_c15269_23491104

3A-5 3A 571 571 109 SftEqv B, S F, G 1.49E−05 −0.82 wsnp_Ex_rep_c66685_65003625

3A-6 3A 646 652 118–123 LAAdSRC B, F, G, S 5.35E−09 −5.11 wsnp_Ex_c18747_27625264
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TABLE 2 Continued

Pos. (MBP1)
App.

Loc (cM)2

Significant Models4
Smallest
p-value5

Largest
effect6QTN Chrom Start Stop Trait3 <0.05 <0.1 Marker

LASRC B, F, G, S M, MM 9.15E−08 −5.70 wsnp_Ex_c18747_27625264

SdClr F, G 5.11E−07 −0.12 wsnp_Ex_c18747_27625264

LAAdSRC G, S 1.45E−04 3.82 wsnp_Ra_c16053_24607526

3A-7 3A 659 659 123 Awns B, F, G, S 2.21E−07 0.12 wsnp_Ex_c14202_22145805

Awns G, S 1.09E−04 −0.11 wsnp_Ex_c14202_22145136

3A-8 3A 714 714 146 SdClr B, F, G, M, MM, S 5.13E−10 −0.17 wsnp_CAP8_c6939_3242530

3B-1 3B 60 60 61 WatSRC B, F, S 2.38E−05 0.42 wsnp_Ex_c2820_5215394

3B-2 3B 259 259 72 FlProt G, S 1.31E−04 −0.21 wsnp_BE591466B_Ta_2_1

3B-3 3B 414 414 74 FlYld G, S 2.17E−06 −12.32 wsnp_BE489326B_Ta_2_2

3B-4 3B 486 486 84 Age G, S 1.62E−05 −12.32 wsnp_Ex_c14462_22457559

3B-5 3B 618 618 95 NaSRC B, F, G, MM, S M 1.07E−08 −0.85 wsnp_JD_c5643_6802088

NaSRC G, MM, S M 3.18E−05 −0.85 wsnp_JD_c5643_6802211

3D-1 3D 44 44 13 LAAdSRC B, S 1.44E−03 −2.42 wsnp_Ex_c4661_8344663

3D-2 3D 119 119 145 FlProt B, F, G, S MM 4.95E−05 0.22 wsnp_JD_c12087_12411036

3D-3 3D 600 600 18 NaSRC B, F, G, MM, S M 2.95E−05 −0.51 wsnp_Ku_c13204_21105694

3D-4 3D 603 604 18 Hght G, S 2.71E−04 −5.56 wsnp_Ra_c5433_9630495

Hght G, S 1.68E−03 4.63 wsnp_Ra_c7174_12417331

Hght G, S 7.00E−04 5.25 wsnp_BE444579D_Ta_2_1

Hght G, S 1.68E−03 4.63 wsnp_BE444579D_Ta_2_2

Hght G, S 2.71E−04 −5.56 wsnp_BE444579D_Ta_2_3

3D-5 3D 611 611 196 HD B, G M, MM 4.64E−04 −1.09 wsnp_Ku_c2249_4335279

4A-1 4A 30 30 182 Age G, S 8.48E−07 −21.54 wsnp_CAP8_c1013_646748

4A-2 4A 102 116 151–156 LAAdSRC G, S B 3.77E−05 4.29 wsnp_Ex_c6044_10590220

LAAdSRC G, S 2.36E−05 4.59 wsnp_JD_c14769_14413046

LAAdSRC G, S 1.55E−04 −5.28 wsnp_Ex_c35839_43909849

LAAdSRC G, S 1.55E−04 5.28 wsnp_Ex_c14529_22547438

4A-3 4A 596 596 122 SdClr B, F, G, M, MM, S 1.61E−05 0.14 wsnp_Ex_c21165_30292808

SdClr G, M, MM 4.80E−05 −0.13 wsnp_Ex_c4068_7351806

SdClr G, M, MM 3.93E−05 0.14 wsnp_Ex_c17338_26018247

4A-4 4A 604 604 113 ArtAA B, F G, M, MM 3.92E−04 0.01 wsnp_Ex_rep_c66324_64493429

IrrAA B, F, G, M, MM, S 1.86E−09 0.04 wsnp_Ex_rep_c66324_64493429

IrrFN B, F, G, M, MM, S 7.74E−05 −13.76 wsnp_Ex_rep_c66324_64493429

4B-1 4B 13 13 15 SdClr F, G 1.36E−05 −0.07 wsnp_Ku_c7180_12403155

4B-2 4B 564 564 72 Age G, S 5.87E−04 −10.71 wsnp_Ex_c30581_39482788

4B-3 4B 573 573 72 ArtAA B, F, G, M, MM, S 5.29E−05 0.06 wsnp_Ku_c17721_26864251

ArtFN B, F, G, M, MM, S 3.16E−04 −53.00 wsnp_Ku_c17721_26864251

4B-4 4B 645 672 39–125 Hght F, G 2.47E−05 −2.98 wsnp_Ex_c29867_38850724

Hght B, G S 7.15E−05 2.92 wsnp_Ku_c5566_9864771

Hght G, MM, S M 1.86E−04 −3.04 wsnp_JD_c9484_10319946
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TABLE 2 Continued

Pos. (MBP1)
App.

Loc (cM)2

Significant Models4
Smallest
p-value5

Largest
effect6QTN Chrom Start Stop Trait3 <0.05 <0.1 Marker

4D-1 4D 2 2 8 NatAA G, M 2.15E−03 0.11 wsnp_Ex_c23850_33089300

4D-2 4D 455 455 53 ArtAA B, F, MM G, M 4.72E−03 0.01 wsnp_BE497160D_Ta_2_1

HD G, S B 3.53E−03 −0.66 wsnp_BE497160D_Ta_2_1

5A-1 5A 52 66 153 SftEqv G, S 6.21E−05 1.13 wsnp_Ku_c1102_2211433

SftEqv G, S 3.62E−05 −1.16 wsnp_Ra_rep_c105791_89683548

SftEqv G, S 5.19E−05 1.14 wsnp_Ex_rep_c67636_66293429

SftEqv G, S 5.19E−05 1.14 wsnp_JD_c7404_8500079

SftEqv G, S 3.62E−05 −1.16 wsnp_Ex_c23509_32746909

5A-2 5A 104 109 150 SftEqv B, G, S 4.70E−06 −1.29 wsnp_Ex_c130_259533

5A-3 5A 109 109 150 LAAdSRC F, G 1.42E−05 3.21 wsnp_Ra_c18459_27525981

SftEqv G, S 4.70E−06 1.29 wsnp_Ra_c18459_27525981

5A-4 5A 158 158 140 SftEqv B, F, G, S 4.98E−06 1.30 wsnp_BE444644A_Ta_2_1

5A-5 5A 512 520 99–109 Age G, S 3.53E−07 −14.07 wsnp_Ex_c49211_53875575

FlProt G, S 4.85E−05 −0.15 wsnp_Ex_c49211_53875575

Age B, G, S 2.57E−09 19.09 wsnp_Ex_c11322_18287597

FlProt B, F, G, S 4.08E−07 0.21 wsnp_Ex_c11322_18287597

5A-6 5A 574 574 80 CkDia B, F, G, S 8.07E−08 0.17 wsnp_RFL_Contig3739_3996324

NaSRC B, F, G, S 2.89E−08 −0.81 wsnp_RFL_Contig3739_3996324

SucSRC B, F, G, S 1.62E−06 −2.08 wsnp_RFL_Contig3739_3996324

WatSRC B, G 1.63E−07 −0.69 wsnp_RFL_Contig3739_3996324

5A-7 5A 634 637 46–47 Age B, MM 1.22E−04 −14.84 wsnp_Ex_c16715_25264080

Age B, F, G, M, MM, S 1.96E−11 −17.59 wsnp_Ex_c1880_3545329

5A-8 5A 708 708 1 Awns F, G 6.71E−05 0.12 wsnp_Ex_c2171_4072995

5B-1 5B 21 21 204 TstWt B, F, G MM 8.55E−05 0.51 wsnp_BE499835B_Ta_2_5

5D-1 5D 58 58 143 SdClr G, M, MM 2.45E−04 0.45 wsnp_CAP7_c3386_1586636

5D-2 5D 342 342 126 SdClr G, M, MM 2.45E−04 0.45 wsnp_Ex_c23358_32602488

SdClr G, M, MM 2.94E−04 0.25 wsnp_Ex_c23358_32602315

6A-1 6A 4 4 1 LAAdSRC G, S 2.17E−04 −8.03 wsnp_RFL_Contig3512_3672726

LASRC G, S 2.09E−05 −9.82 wsnp_RFL_Contig3512_3672726

6A-2 6A 13 13 25 FlYld B, G, S F, M, MM 3.93E−06 −0.52 wsnp_Ex_rep_c68165_66935148

FlYld G, S F 3.31E−05 0.50 wsnp_Ex_rep_c68165_66935041

FlYld G, S F, MM 4.79E−05 −0.51 wsnp_Ex_c3530_6459643

6A-3 6A 105 115 89–90 CkDia G, S 2.80E−06 −0.18 wsnp_Ra_c61979_62214892

CkTpGr G, S F 1.15E−04 −0.29 wsnp_Ra_c61979_62214892

FlProt G, S 2.17E−07 0.23 wsnp_Ra_c61979_62214892

Hght B, F, G, S 1.99E−06 4.30 wsnp_Ra_c61979_62214892

CkDia B, F, G, S 2.07E−07 0.18 wsnp_Ex_c17692_26437459

FlProt B, F, G, S 2.28E−08 −0.24 wsnp_Ex_c17692_26437459

Hght G, S 3.25E−06 −4.21 wsnp_Ex_c17692_26437459
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TABLE 2 Continued

Pos. (MBP1)
App.

Loc (cM)2

Significant Models4
Smallest
p-value5

Largest
effect6QTN Chrom Start Stop Trait3 <0.05 <0.1 Marker

CkDia G, S 2.12E−06 0.18 wsnp_Ra_c16745_25482384

FlProt G, S 6.32E−08 −0.24 wsnp_Ra_c16745_25482384

Hght G, S 3.25E−06 −4.21 wsnp_Ra_c16745_25482384

6A-4 6A 448 448 98 FlProt G, S 7.54E−06 0.22 wsnp_BF202329A_Ta_2_2

FlProt G, S 7.54E−06 0.22 wsnp_BM134512A_Ta_2_2

6A-5 6A 494 494 114 CkDia G, S 1.17E−05 −0.21 wsnp_Ex_c16480_24986490

FlProt G, S 9.45E−06 0.23 wsnp_Ex_c16480_24986490

Hght G, S 6.07E−05 4.24 wsnp_Ex_c16480_24986490

SucSRC B, F, G 2.03E−07 2.56 wsnp_Ex_c16480_24986490

6B-1 6B 9 9 1 LASRC G, S 2.79E−05 −9.96 wsnp_Ku_c4446_8062906

6B-2 6B 13 13 5 TstWt B, F, G MM 2.40E−04 1.12 wsnp_CD453605B_Ta_2_6

6B-3 6B 27 27 22 WatSRC F, G, S 6.24E−05 0.72 wsnp_Ra_c20409_29673950

6B-4 6B 471 471 82 Age B, F, G, M, MM, S 8.18E−08 21.18 wsnp_Ra_c14498_22667649

HD B, G F, S 1.03E−06 1.07 wsnp_Ra_c14498_22667649

6B-5 6B 515 515 83 Age B, F, G, M, MM, S 7.68E−13 −47.17 wsnp_BM134512B_Ta_2_1

6B-6 6B 576 599 95–97 NaSRC B, F, G, S MM 1.35E−10 −0.99 wsnp_CAP11_c166_172556

WatSRC B, G S 5.87E−06 −0.58 wsnp_CAP11_c166_172556

CkTpGr B, F, G, S 1.22E−05 −0.48 wsnp_BE490147B_Ta_2_1

FlYld B, F, G 1.77E−05 −0.77 wsnp_BE490147B_Ta_2_1

WatSRC G, M, MM 1.87E−06 1.15 wsnp_BE490147B_Ta_2_1

CkTpGr F, G, S 3.75E−05 −0.48 wsnp_BE496986B_Ta_2_2

FlYld F, G 4.31E−05 −0.77 wsnp_BE496986B_Ta_2_2

WatSRC G, M, MM 1.87E−06 1.15 wsnp_BE496986B_Ta_2_2

CkTpGr F, G, S 3.75E−05 −0.48 wsnp_BE497701B_Ta_2_1

FlYld F, G 4.31E−05 −0.77 wsnp_BE497701B_Ta_2_1

WatSRC G, M, MM 1.87E−06 1.15 wsnp_BE497701B_Ta_2_1

CkDia F, G 4.70E−05 −0.24 wsnp_Ex_c23010_32232119

CkTpGr G, S F 1.06E−04 −0.45 wsnp_Ex_c23010_32232119

WatSRC G, S M, MM 3.47E−06 1.12 wsnp_Ex_c23010_32232119

6B-7 6B 695 695 100 Awns B, F, G, M, MM, S 1.76E−10 0.26 wsnp_Ex_c8963_14948293

6B-8 6B 709 712 150–151 Age G, S 2.77E−05 −16.64 wsnp_CAP11_c949_571671

CkDia B, G 1.88E−06 0.20 wsnp_CAP11_c949_571671

WatSRC B, G, MM, S M 8.64E−09 −0.89 wsnp_CAP11_c949_571671

FlProt G, S 1.43E−06 0.22 wsnp_Ex_c54772_57527387

Hght G, S 4.00E−05 −2.81 wsnp_Ex_c54772_57528275

FlProt G, S 1.63E−06 0.22 wsnp_Ex_rep_c83634_77351566

CkTpGr B, F, G 4.06E−05 0.28 wsnp_RFL_Contig3211_3221207

FlProt G, S 5.19E−06 −0.18 wsnp_RFL_Contig3211_3221207

Hght G, S 2.00E−05 −3.19 wsnp_RFL_Contig3211_3221207
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Awns, WatSRC, FlProt, CkDia, and CkTpGr and all but Hght and

CkTpGr shared common markers with Age (Figure 2, Table 2).

Quantitative trait nucleotide 1A-1, 80-81 estimated cM region with

Age, FlProt, and Hght had p-values of 2 × 10−5 to 2 × 10−6.

Quantitative trait nucleotide 5A-5, 99-109 estimated cM region

with Age and FlProt had p-values of 5 × 10−5 to 3 × 10−9.
Frontiers in Plant Science 13
Quantitative trait nucleotide 6B-4, 82 estimated cM region with

Age and HD had p-values of 1 × 10−6 to 8 × 10−8. Quantitative trait

nucleotide 6B-8, 150-151 estimated cM region with Age, CkDia,

WatSRC, FlProt, Hght, and CkTpGr had p-values of 2 × 10−5 to 9 ×

10−9. Quantitative trait nucleotide 6D-2, 10 estimated cM region

with Age and Awns had p-values of 6 × 10−4 to 4 × 10−5. These
TABLE 2 Continued

Pos. (MBP1)
App.

Loc (cM)2

Significant Models4
Smallest
p-value5

Largest
effect6QTN Chrom Start Stop Trait3 <0.05 <0.1 Marker

6D-1 6D 67 67 49 NatAA B, G, M, S 5.44E−05 0.03 wsnp_Ra_c4330_7871129

NatFN B, F, G, M, MM 3.66E−04 −19.81 wsnp_Ra_c4330_7871129

NatAA B, F, G, M, MM, S 6.78E−06 0.03 wsnp_Ex_c1249_2399894

NatFN B, F, G, M, MM 1.26E−04 −21.22 wsnp_Ex_c1249_2399894

6D-2 6D 459 459 10 Age F, S 6.36E−04 6.38 wsnp_Ex_c30754_39633791

Awns F, G, MM, S 3.71E−05 −0.15 wsnp_Ex_c30754_39633791

6D-3 6D 469 469 151 HD G, MM M 5.50E−04 −1.87 wsnp_CAP7_c1735_859744

7A-1 7A 77 78 45 Awns G, S 3.55E−05 0.11 wsnp_CAP11_c1182_686503

Awns B, F, G M, MM 2.50E−09 0.14 wsnp_Ex_c41150_48040078

7A-2 7A 169 169 66 LAAdSRC B, F 1.49E−04 −5.97 wsnp_BE498209A_Ta_2_1

7A-3 7A 182 211 66 Age F, G, S 2.08E−07 22.58 wsnp_Ex_c21068_30195276

Age B, F, G, S 2.04E−07 54.82 wsnp_BE591002A_Ta_2_3

7A-4 7A 594 594 100 SftEqv F, G S 3.67E−05 −1.64 wsnp_Ex_c19214_28132186

7A-5 7A 676 676 134 Age G, S 6.84E−05 −12.09 wsnp_CAP7_c1321_664478

Age F, G, S 1.05E−04 11.76 wsnp_CAP7_c1321_664480

7A-6 7A 717 717 171 Hght B, G, S 1.13E−06 −3.18 wsnp_Ra_c7112_12318340

7B-1 7B 264 264 47 ArtAA B, F, MM G, M, S 1.75E−04 0.05 wsnp_RFL_Contig1735_856501

7B-2 7B 471 471 58 SdClr M, MM G 2.45E−04 −0.45 wsnp_BE398417B_Ta_2_1

7B-3 7B 570 571 66 Awns G, M, MM, S 1.99E−06 0.22 wsnp_BF483648B_Ta_2_1

Awns G, M, MM, S 1.99E−06 0.22 wsnp_Ex_c15458_23737002

Awns G, M, MM, S 1.99E−06 −0.22 wsnp_Ku_c21412_31166369

7B-4 7B 644 644 90 SucSRC G, S 2.79E−05 −1.69 wsnp_Ex_c10500_17163956

SucSRC G, S 2.79E−05 −1.69 wsnp_Ku_c854_1768346

SucSRC B, G F 2.75E−05 −1.58 wsnp_Ex_c3309_6096114

SucSRC G, S 2.79E−05 −1.69 wsnp_Ku_c854_1768062

7D-1 7D 614 614 3 LASRC G, S 1.48E−03 8.28 wsnp_JD_c5853_7011562

Un-1 Un 24 24 – LASRC B, F, S 5.24E−06 −2.84 wsnp_Ex_c1668_3168723

Un-2 Un 57 57 – Hght G, M, MM S 1.00E−03 −13.38 wsnp_BF482269B_Ta_1_1

Un-3 Un 87 87 – Age B, F, G, M, MM 3.03E−08 −18.99 wsnp_Ex_c758_1488368

Un-4 Un 222 222 – FlProt G, S 2.39E−05 0.21 wsnp_Ex_c7316_12552186

Hght G, S 1.31E−04 3.43 wsnp_Ex_c7316_12552186
1: MBP, Mega base pairs.
2: Approximate genetic distances in cM from Wang et al. (2014b) Table S6, if available.
3: For descriptions, see Table 1.
4: Models significant for Bonferroni threshold by chromosome in Table S1 for indicated alpha where: B = Blink, F = FarmCPU, G = GLM, M = MLM, MM = MLMM, S = SUPER.
5: Most significant p-value for all models, bold indicates experiment-wise significance considering all markers.
6: Greatest potential change in trait value predicted by GAPIT3 models except SUPER and BLINK, which did not report effect.
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regions indicated where potential trait changes over time observed

by Pearson’s correlation and PCA may have occurred. For identical

markers, the FlProt effect was in the same direction as Age three

times, while HD and WatSRC, once. Conversely, Awns and CkDia

effects were the opposite of Age where increased Age indicated older

breeding lines (Table 2).

Regions of PHS were separate from other traits except for co-

located or closely located groups to SdClr on chromosomes 2A and

4A or HD and ArtAA on chromosome 4D. Seed color is QTN 2A-1

at an estimated 83–115 cM and a p-value of 3 × 10−7 while SdClr

and NatAA are QTN 2A-2 at an estimated 115 cM and p-values of 1

× 10−5 to 2 × 10−6. Quantitative trait nucleotide 4A-3 is at an

estimated 122 cM and p-values of 2 × 10−5 to 5 × 10−5 while QTN

4A-4 is ArtAA, IrrAA, and IrrFN at an estimated 113 cM with p-

values of 4 × 10−4 to 2 × 10−9. Quantitative trait nucleotide 4D-4 is

at an estimated 53 cM that includes ArtAA and HD with p-values of

4 × 10−3 to 5 × 10−3. Multiple measures of PHS co-located on
Frontiers in Plant Science 14
chromosomes 1A, 2D, 4A, 4B, and 6D. Quantitative trait nucleotide

1A-4 is at an estimated 76 cM for IrrAA and NatAA with p-values

of 5 × 10−9 to 8 × 10−10. Quantitative trait nucleotide 2D-3 is at an

estimated 90 cM for ArtAA and ArtFN with p-values of 2 × 10−3 to

6 × 10−4. Quantitative trait nucleotide 4A-4 is described above.

Quantitative trait nucleotide 4B-3 is at an estimated 72 cM for

ArtAA and ArtFN with p-values of 3 × 10−4 to 5 × 10−5.

Quantitative trait nucleotide 6D-1 is at an estimated 49 cM for

NatAA and NatFN with p-values of 1 × 10−4 to 7 × 10−7. Only one

region on chromosome 4A (QTN 4A-4, described above) had an

overlap between ArtAA and irrigated PHS measures while irrigated

and natural PHS measures were more often co-located. Multiple

flour quality traits co-located on chromosomes 1A, 1B, 1D, 2A, 2D,

3A, 5A, 6A, and 6B. Quantitative trait nucleotide 1A-5 was

described above. Quantitative trait nucleotide 1A-8 is at an

estimated 117 cM including WatSRC and NaSRC with p-values

from 3 × 10−4 to 4 × 10−5. Quantitative trait nucleotide 1B-1 is at an
A

B

FIGURE 3

Manhattan plots for genome-wide association of all six models, GLM, MLM, MLMM, FarmCPU, BLINK, and SUPER. Model names are shown on the
right. Negative log 10 of p-value for each marker on a chromosome are colored dots. Red horizontal line is the default, more stringent experiment-
wise Bonferroni significance threshold in GAPIT3 of alpha = 0.01. Dashed gray vertical lines indicate two models significant for the same marker, and
solid gray vertical lines, three or more. (A) Age of breeding line (Age) shown with many very significant markers across several models. (B) Irrigated
alpha amylase activity (IrrAA) shown with markers on chromosome 1A and 4A with multiple models showing strong significance.
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estimated 24–27 cM including LASRC and LAAdSRC with p-values

from 2 × 10−4 to 7 × 10−12. Quantitative trait nucleotide 1B-2 is at an

estimated 30 cM including CkTpGr, FlYld, and SucSRC with p-

values of 1 × 10−4 to 7 × 10−7. Quantitative trait nucleotide 1D-1 is

at an estimated 14-21 cM including LASRC, LAAdSRC, and

SucSRC with p-values of 1 × 10−4 to 8 × 10−5. Quantitative trait

nucleotide 1D-2 is at an estimated 89 cM and includes LASRC and

LAdSRC with p-values of 1 × 10−6 to 5 × 10−11. Quantitative trait

nucleotide 2A-3 is at an estimated 170 cM and includes NaSRC and
Frontiers in Plant Science 15
SucSRC with p-values of 8 × 10−5 to 6 × 10−6. Quantitative trait

nucleotide 2D-1 is at an estimated 12 cM and includes FlYld and

WatSRC with p-values of 1 × 10−3. Quantitative trait nucleotide 3A-

2 is at an estimated 63–64 cM and includes CkTpGr, CkDia, and

FlProt with p-values of 2 × 10−4 to 8 × 10−6. Quantitative trait

nucleotide 3A-6 is at an estimated 123 cM including LAAdSRC,

LASRC, and SdClr with p-values of 1 × 10−4 to 5 × 10−9.

Quantitative trait nucleotide 5A-3 is at an estimated 150 cM and

includes LAAdSRC and SftEqv with p-values of 1 × 10−5 to 5 × 10−6.

Quantitative trait nucleotide 5A-6 is at an estimated 80 cM and

includes CkDia, NaSRC, SucSRC, and WatSRC with p-values of 2 ×

10−6 to 8 × 10−8. Quantitative trait nucleotide 6A-3 is at an

estimated 89–90 cM and includes CkDia, CkTpGr, FlProt, and

Hght with p-values of 1 × 10−4 to 6 × 10−8. Quantitative trait

nucleotide 6A-5 is at an estimated 114 cM and includes CkDia,

FlProt, Hght, and SucSRC with p-values of 1 × 10−5 to 9 × 10−6.

Quantitative trait nucleotide 6B-6 is at an estimated 95–97 cM and

includes NaSRC,WatSRC, CkTpGr, CkDia, and FlYld with p-values

of 1 × 10−4 to 1 × 10−10. Quantitative trait nucleotide 6B-8 is

described above with overlap in Age (Figure 2, Table 2).
4 Discussion

The 188-member population of historically diverse soft winter

wheat breeding lines was chosen for increased marker and trait

diversity compared to elite breeding lines to maximize trait

differences in the population. It has a rich history of genetic

diversity, which could contain useful genes for PHS and flour

quality trait enhancement that may have been bred out of elite

lines selected only for limited agronomic traits such as yield and a

few resistance genes. Population structure is often quite evident in

wheat including the present population, which was previously

compared to a larger elite wheat breeding population. Using

Structure v 2.2, Cabrera et al. (2014) found five subpopulations of

the historic diversity lines compared to six in a larger set of 449 elite

parent lines. Three of the 5 historic diversity sub-populations

separated mostly by Age, reported as release year. Wright’s

fixation index between sub-groups for the historic diversity lines

ranged from 0.178 to 0.485 while they ranged from 0.212 to 0.408

for the elite population (Cabrera et al., 2014). Diversity between the

historic and much larger elite line set was found to be similar, and

the historic diversity population had moderate structure due to

recent and historic breeding history as well as red versus white seed

color (Cabrera et al., 2014).

PHS is most often measured by FN or AA (Vetch et al., 2019;

Patwa and Penning, 2020). The developed micro assay for alpha

amylase activity showed strong correlation to the original method in

a subset of 20 samples tested in three separate years. Both AA and

FN were used in this study although more QTNs were obtained

using AA (11) than FN (4). PHS only occurs when conditions such

as high humidity or extensive rainfall occur at spike maturity (Vetch

et al., 2019; Patwa and Penning, 2020). In addition to waiting for the

correct conditions to occur in the field, NatAA and NatFN, spikes

were removed and subjected to the correct conditions in a growth

chamber, ArtAA and ArtFN, or once all plants reached maturity,
A

B

FIGURE 4

QQ plots for two genome-wide association traits. Colored circles
represent the six different models (GLM, MLM, MLMM, FarmCPU,
BLINK, and SUPER) tested for each trait. The red diagonal line
indicates where observed and expected results would match. Gray
shaded region is confidence interval and colored circles significantly
above the line represent deviations that may be significantly
associated with phenotype. (A) Age of breeding line (Age) shown
with many potentially significant phenotype associations across
several models but the majority of GLM appear too far above the
line. (B) Irrigated alpha amylase activity (IrrAA) shown with fewer
potentially strong significant associations to phenotype.
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they were subjected to overhead water sprinklers to simulate

rainfall, IrrAA and IrrFN. Sixty-five potential regions affecting

PHS resistance and flour quality were found including a highly

significant region for PHS resistance on chromosome 4A and

multiple regions for flour quality on chromosomes 6A and 6B

(Figure 2, Table 2). Another goal was to observe if selective breeding

of a few traits might affect unselected traits in the same

chromosomal region. PHS measures showed no correlation to

Age by Pearson’s correlation, PCA, or GWAS overlapping only

with HD on chromosome 4D at 455 MBP. Thus, PHS resistance

does not appear selected over time and could be improved with

minimal impact to agronomic traits while providing resistance to an

abiotic stress related to climate change. Some PHS resistance has

been tied to dormancy genes or areas, so it is not unusual for PHS

measures and HD, which can be affected by dormancy, to be

associated (Nakamura et al., 2011; Martinez et al., 2016; Torada

et al., 2016). Shorter et al. (2005) found that maturity could impact

PHS depending on when a rain event occurred. The relationship

between seed dormancy, HD, and PHS resistance is complicated.

The rice gene, Ghd7, has been linked to pleotropic effects including

seed dormancy and HD as well as other effects through the ratio of

gibberellins and abscisic acid (Hu et al., 2021). A previous study in

rice found a short locus on chromosome 3 for HD, and seed

dormancy could be separated into two loci: one for HD, Hd8, and

one for seed dormancy, Sdr1, through fine mapping of

recombination events within the region (Takeuchi et al., 2003). In

barley, two different HvNCED genes that catalyze a key step in

abscisic acid synthesis were found to be differentially expressed

based on seed developmental age or water imbibition (Chono et al.,

2006). Seed dormancy has been shown to have a large effect on PHS

resistance but is not the only factor involved (DePauw and McCaig,

1991). Although the literature suggests and PCA indicated some

association between HD and AA measures of PHS, only ArtAA was

correlated significantly with HD by Pearson’s correlation and had a

single co-localization in GWAS. Age was positively correlated with

Hght, FlProt, and HD. Examination of trait positive or negative

effects at individual markers in the GWAS indicated older breeding

lines headed later and had higher flour protein content and greater

water absorption but were less likely to have awns and had a smaller

CkDia. Quantitative trait nucleotides 1A-5 and 6B-8 had Age,

FlProt, and Hght co-localizations while 5A-5 had Age and FlProt

co-localizations and 6B-4 had Age and HD co-localizations

indicating regions that may have had two agronomic and one

flour quality trait selected for over time. Quantitative trait

nucleotide 6B-8 also had co-localizations of Age with WatSRC,

CkDia, and CkTpGr, indicating the potential impact of other flour

quality traits over time. Using Supplementary Data from Wang

et al. (2014b), approximate regions in cM were calculated to

compare with other studies. Five Hght QTN regions, 2B-1 (Ppd-

B1), 3A-3 (qRht.3A), 4B-4 (Rht-B1), and 6A-3 and 6A-5 (Rht24),

were 0.7–8.8 cM from other quantitative trait loci (QTL) studies of

410 European winter wheat varieties, a fine mapping set of 110

European winter wheat varieties, and four F2 mapping populations

(Würschum et al., 2015; Zhou et al., 2016; Würschum et al., 2017).

Markers are listed in Table 3. However, no regions were found on

1D, 2A, 2D, 4D, 5A, 5B, and 7D but additional QTN regions were
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found on 1A-5, 3D-4, 6B-8, 7A-6, and two unlinked markers.

Differences could be attributed to population differences between

US and European wheat varieties.

FN negatively correlated with AA by Pearson’s correlation and

were at opposite quadrants in PCA. This was expected as higher

alpha amylase activity breaks down more starch, reducing hot flour

paste thickness and thus FN (Patwa and Penning, 2020). The

correlation of TstWt and PHS resistance was observed in both

PCA and Pearson’s tests. A near-significant TstWt at the same

marker for GWAS models, MLM, MLMM, and GLM as PHS

resistance on chromosome 1B at 382 million base pairs (MBPs)

was observed (data not shown). Statistical significance has been

reported between TstWt and PHS in another population (Ji et al.,

2018). Seed color was strongly correlated with PHS measures and

PCA indicated a tight positive link between FN and SdClr. Red seed

color has been widely reported as significant to PHS resistance and a

gene has been located (Lin et al., 2016; Ji et al., 2018; Patwa and

Penning, 2020). No QTN for PHS and SdClr on chromosome 3A

near MFT was found, but the study had few mostly related white

seed color varieties. Detection would be difficult due to the low

minor allele frequency and a strong population structure. A highly

significant QTN for PHS was observed on chromosome 4A in the

region of a known PHS resistance gene,MKK3 (Torada et al., 2016).

A total of 36 QTNs at 25 regions related to PHS resistance were

observed. The majority of PHS QTN regions were field events, both

natural weathering (Nat) and by overhead irrigation (Irr), that were

co-located and offer potential new targets to improve PHS including

a highly significant QTN on chromosome 1A. None of the PHS

regions overlapped with flour quality traits and only one overlapped

with HD; thus, improvement of PHS may be obtained without

impacting crop or baking performance. Artificial spike wetting

(Art) had fewer QTNs and only one overlap on chromosome 4A

at 604 MBP with field-treated samples (Irr or Nat). Converting

regions to approximate cM, no exact marker matches were found in

the literature, but five QTN regions were within 1 to 8 cM. 1A-4,

1B-3, and 4B-3 were compared to a GWAS of 469 club and soft

white wheat germplasm from the Pacific Northwest (Martinez et al.,

2018). Four QTN regions were observed within 0.3 to 11 cM of a

GWAS with 198 elite Eastern US soft white winter wheat lines 1B3,

4A-4, 6D-1, and 7B-1 out of 11 regions (Kulwal et al., 2012). All

close matches are listed in Table 3. Thus, population, method of

association, and/or environment appeared to play a key role in

locating PHS resistance, although some consistent regions

were found.

High genetic variation in a number of flour quality traits

including FlYld, FlProt, multiple SRCs, SftEqv, and measures of

cookie quality has been previously suggested for this population, but

these soft wheat lines have maintained relatively stable quality

standards without large improvements (Souza et al., 2012). This

study has revealed potential changes of flour protein over time, but

it remains possible to improve many other flour quality traits

utilizing this diverse population of historic breeding lines by

finding and understanding the genes underlying flour quality

traits. Soft wheat flour is used mostly for baked confections such

as cookies and cakes. Depending on the end use of soft wheat flour,

a higher or a lower FlProt may be desired. For baking powder
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biscuits and pound cake, a slightly higher FlProt can increase height

(Wilderjans et al., 2008; Ma and Baik, 2018). Higher protein can

increase the volume and reduce collapse in pound cake but

decreases CkDia and cookie spread factor (Wilderjans et al., 2008;

Souza et al., 2011). Co-located flour quality QTNs had expected

positive and negative values when considering individual markers.

Lower FlProt or gluten strength measured by LASRC and
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LAAdSRC is considered a positive trait for most soft winter

wheat applications except crackers (Souza et al., 2012; Deng et al.,

2021). Flour quality traits showed strong overlap among themselves

by Pearson’s correlation, PCA, and GWAS, indicating high

potential genetic overlap affecting these traits. Solvent retention

capacity measures for flour quality were tightly grouped by PCA

and were strongly positively correlated with co-localizations on
TABLE 3 Matches to QTL regions previously found in other studies.

Trait QTN Marker Chrom MBP cM1 Gene/QTL cM Reference

PHS wsnp_JD_c2638_3555755 1A 442 NA# QPHS.wsu-1A.1 82 Martinez et al., 2018

PHS wsnp_Ra_c2895_5488879* 1A 462 76 QPHS.wsu-1A.1 82 Martinez et al., 2018

PHS wsnp_Ex_c30805_39678077 1B 382 39.4 QPHS.wsu-1B.1 31 Martinez et al., 2018

PHS wsnp_Ex_c30805_39678077 1B 382 39.4 wPt-666564 33.5 Kulwal et al., 2012

PHS wsnp_Ex_rep_c66324_64493429 4A 604 113 wPt-730913 93.1 Kulwal et al., 2012

PHS wsnp_Ku_c17721_26864251 4B 573 72 QPHS.wsu-4B.2 73 Martinez et al., 2018

PHS wsnp_Ra_c4330_7871129 6D 67 49 cfd37.208 60 Kulwal et al., 2012

PHS wsnp_RFL_Contig1735_856501 7B 264 NA wPt-8283 46.5 Kulwal et al., 2012

PHS wsnp_CAP11_rep_c6622_3044459* 7B 328 46.8 wPt-8283 46.5 Kulwal et al., 2012

Height wsnp_Ex_c2388_4476302 2B 24.8 NA Ppd-B1 18 Zhou et al., 2016

Height wsnp_Ex_c10961_17803258* 2B 8.5 16 Ppd-B1 18 Zhou et al., 2016

Height wsnp_Ex_c12850_20377830 3A 508 75.2 qRht.3A 75.9 Würschum et al., 2017

Height wsnp_Ku_c5566_9864771 4B 645 38.6 Rht-B1 47.8 Würschum et al., 2017

Height wsnp_Ra_c61979_62214892 6A 105 89.3 Rht24 93.7 Würschum et al., 2017

Height wsnp_Ex_c17692_26437459 6A 113 89.7 Rht24 93.7 Würschum et al., 2017

Height wsnp_Ra_c16745_25482384 6A 115 89.7 Rht24 93.7 Würschum et al., 2017

Height wsnp_Ex_c16480_24986490 6A 494 114 Rht24 93.7 Würschum et al., 2017

SftEqv wsnp_CAP11_c710_458019 1A 8 10.2 wPt-7541 2.5–7.9 Cabrera et al., 2015

LASRC wsnp_Ku_c4911_8795151 1B 60 23.7 wPt-7094 9.0-27 Cabrera et al., 2015

LASRC wsnp_Ku_c16938_25916279 1B 109 NA wPt-1684 35 Cabrera et al., 2015

LASRC wsnp_Ex_c20975_30093113 1B 118 NA wPt-1684 35 Cabrera et al., 2015

LASRC wsnp_BE399980B_Ta_2_1* 1B 143 30 wPt-1684 35 Cabrera et al., 2015

NaSRC wsnp_JD_c2636_3554874 1B 563 NA wPt-2526 87.9–88.3 Cabrera et al., 2015

NaSRC wsnp_Ex_c22439_31632880* 1B 563 77.7 wPt-2526 87.9–88.3 Cabrera et al., 2015

FlProt wsnp_Ex_rep_c66509_64775661* 3B 236 72.5 wPt-1940 68.6 Cabrera et al., 2015

FlProt wsnp_BE591466B_Ta_2_1 3B 259 NA wPt-1940 68.6 Cabrera et al., 2015

NaSRC wsnp_JD_c5643_6802088 3B 618 95.5 wPt-6785 85.9–87.4 Cabrera et al., 2015

NaSRC wsnp_JD_c5643_6802211 3B 618 96.7 wPt-6785 85.9–87.4 Cabrera et al., 2015

FlYld wsnp_Ex_rep_c68165_66935148 6A 13 25.5 wPt-8266 16 Cabrera et al., 2015

FlYld wsnp_Ex_rep_c68165_66935041 6A 13 25.5 wPt-8266 16 Cabrera et al., 2015

FlYld wsnp_Ex_c3530_6459643 6A 13 25.5 wPt-8266 16 Cabrera et al., 2015

WatSRC wsnp_BE497701B_Ta_2_1 6B 595 99.5 wPt-5176 112-120 Cabrera et al., 2015
1: Calculated from Wang et al. (2014b).
#: The significant marker was not available in Wang et al. (2014b).
*: Closest marker in Wang et al. (2014b) to calculate cM distance.
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chromosomes 1A, 1D, 2A, 5A, and 6B. This is not surprising

considering the close associations of SRCs with overall water

absorption (WatSRC) in baking performance (Souza et al., 2012).

Similarly, SRCs, SftEqv, and FlProt were correlated, positively or

negatively with CkDia and CkTpGr. Negative correlations of SRCs

(WatSRC, NaSRC, SucSRC, and LASRC) with FlYld and cookie

quality (CkDia and CkTpGr) have long been known but the

underlying genes are not yet discovered (Guttieri and Souza,

2003). Multiple flour quality co-localizations occurred on

chromosomes 1B, 2D, 3A, 5A, 6A, and 6B. Using a completely

different marker set and different GWAS models for the population,

overlap with eight QTL reported by Cabrera et al. (2015) was

observed (QTN 1A-2, 1B-1, 1B-2, 1B-5, 3B-2, 3B-5, 6A-2, and 6B-6)

and additional QTNs were found on 17 of 21 chromosomes

(Tables 2, 3). These regions deserve closer investigation with

additional populations, marker sets, and/or experiments to

eventually isolate genes influencing these traits.

The A and B genomes were well covered with an average of 128

markers per chromosome except chromosome 4B with 55 markers

where only one QTN was identified. The D genome had fewer

markers per chromosome, averaging 24. Reduced sequence

diversity may have been a factor. Single-nucleotide polymorphism

markers placed on the D genome were about 20% of those on the A

and B genomes for the iSelect SNP array due to lack of sequence

differences (Cavanagh et al., 2013). While chromosome-level cutoffs

were used as in Hill et al. (2022), most of the QTNs on the A and B

genomes were significant at the much more restrictive experiment-

wise Bonferroni cutoff while most on the D genome were not.

Additional markers from single-nucleotide polymorphisms will be

needed to populate the D genome and test available diversity, which

should improve chromosome-wise significant regions to

experiment-wise significance. Increased markers on the D

genome would reduce false positives while potentially improving

QTN detection with stronger p-values by having markers closer to

the responsible region. This was observed in the A and B genomes at

regions 1B-1, 3A-2, 3A-6, 3A-7, 4A-2, 5A-1, 6A-2, and 6B-2 where a

more significant peak for a trait was detected along with a less

significant outer marker for that same trait often with SUPER and

GLM models forming the tail. However, it is impossible in a

population of this size to definitively differentiate a less significant

tail from two closely linked genes.

GAPIT3 allowed testing of multiple GWAS models. Nine traits

were normally distributed by the Shapiro–Wilk test; however, the

majority had near-normal-appearing bell curves by histogram andW

test statistics > 0.9, indicating that most values for each trait fit in

standard normal quartiles, except ArtAA and NatAA with a limited

range of values; Age, which is heavily skewed to newer lines; and

Awns and SdClr, which were either/or classifications and, thus,

binary. The six models tested did not appear to show any

abnormal calling of significant locations for SdClr, which, being

binary (red or white) with the lowest W statistic and fewer white

varieties, would have been the most susceptible to false positives. The

detection of Age-related QTN across all models with the exception of

MLM was also robust regardless of it being skewed more towards

more recent breeding lines (less than 60 years since release) as fewer

very old breeding lines are available. Single-locus tests such GLM, a
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naïve model without population correction, and MLM using

VanRaden kinship were tested along with more recently released

models. The GLM can be particularly prone to false positives as

illustrated by the QQ plot for Age but false positives appear less likely

with the QQ plot for IrrAA. The MLMM performs multiple locus

tests and is an extension of MLM with the most significant marker

fitted stepwise as a co-variate (Wang and Zhang, 2021). The

FarmCPU model iterates back and forth with two models, an

MLM with VanRaden kinship and a GLM without kinship,

reported to be faster and provide higher statistical power (Wang

and Zhang, 2021). The BLINK model replaces MLM in FarmCPU

with Bayesian-information content (Wang and Zhang, 2021). The

SUPER model assesses marker effects like GLM, optimizes a kinship

model using maximum likelihood, and tests a third time with a

kinship derived from markers not in linkage disequilibrium with the

tested marker (Wang et al., 2014a; Wang and Zhang, 2021). The

GLM as a naïve model lacking population structure correction

overestimated QTN as has been reported previously (Larsson et al.,

2013). The SUPER model also reported increased numbers of QTN

but often near other QTNs for the same traits significant for multiple

models. The MLM and MLMM gave very similar results but

appeared to underestimate QTN. Similarly, BLINK, FarmCPU, and

SUPER often located the same QTN but a different set from MLM/

MLMM. Since QTN differences were found based onmodel selection,

requiring agreement of at least two models boosts confidence in

reported QTN. A much stronger case for significance can be made

where all models agree. However, owing to the computational

intensity of testing six models as more markers or individuals are

added, selecting those with the widest differences may prove more

efficient. In this population, MLMM, FarmCPU, and BLINK were the

most obvious choices as they were the least computationally

impactful and covered the most QTN differences with less

likelihood for overestimation. The BLINK model was chosen over

SUPER as it does not assume causal genes are distributed evenly,

provides more diversity to the chosen models, and leads to less

overestimation in this population (Wang and Zhang, 2021).
5 Conclusions

Breeding over time appeared to be a factor in some traits, most

notably flour protein content, Hght, and HD. Since PHS-related traits

had little overlap with others, several new regions were uncovered to

increase resistance in wheat under adverse weather conditions brought

about by climate change without impacting agronomic performance or

flour quality. Flour quality traits showed much greater overlap both

among themselves and with agronomic traits making improvement

more challenging. Future research to increase marker density should

better resolve QTN and improve detection in areas lacking sufficient

coverage utilizing a smaller set of GWAS models.
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FILE S1

Trait data set used to calculate BLUPs. Includes name, accession number,
release year and all calculated values of traits including the means, standard

deviations, and number of reps for each soft winter wheat variety used to
calculate the BLUPs.

FILE S2

R Scripts for statistical analyses and GWAS. Includes all R scripts with notes

used to generate the Pearson’s correlations, principal components analysis,
genome-wide association study, and Figure 2.

FILE S3

Trait data as BLUPs used in GAPIT for GWAS. Twenty-two sets of the trait data

as BLUPs for 188 soft winter wheat varieties used to perform the genome-
wide association, myY in the GWAS R script.

FILE S4

Marker data in HAPMAP format used in GAPIT for GWAS. Twenty-two sets of
1978 markers in HAPMAP format for the genotypes used to perform the

GWAS, myG in the GWAS R script.

FILE S5

Histograms, Manhattan and Q-Q Plots for all traits and models of the GWAS.
Twenty-two sets of histograms of BLUPs. Twenty Q-Q plots and stacked

Manhattan plots with six models each for all traits except Age and IrrAA in
Figures 3, 4.
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Glossary

AA Alpha amylase activity

AACC American Association of Cereal Chemists

Age Age of breeding line

Art Artificial

ArtAA Artificial alpha amylase activity

ArtFN Artificial Falling Number

Awns Awnless or bearded

BLINK Bayesian-information and linkage-disequilibrium iteratively
nested keyway

BLUP Best Linear Unbiased Predictors

CkDia Cookie diameter

CkTpGr Cookie top grade

cM centiMorgans

ERA8 ENHANCED RESPONSE TO ABA8

FarmCPU fixed and random model circulating probability unification

FlProt Flour protein

FlYld Flour yield

FN Falling Number

GLM general linear model

GWAS genome-wide association study

HD heading date

HvCYP707A1 ABA 8’-hydroxylase

HvNCED1 9-cis-epoxycarotenoid dioxygenase

Hght plant height

Irr Irrigated

IrrAA Irrigated alpha amylase activity

IrrFN Irrigated Falling Number

LAAdSRC Adjusted lactic acid solvent retention capacity

LASRC Lactic acid solvent retention capacity

MBP million base pairs

MFT TaPHS1/Mother of Flowering Time

MKK3 Map Kinase Kinase 3

MLM mixed linear model

MLMM multiple loci mixed model

NaSRC Sodium carbonate solvent retention capacity

Nat Natural weathering

NatAA Natural alpha amylase activity

NatFN Natural Falling Number

PHS pre-harvest sprouting

(Continued)
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PC principal components

PCA principal components analysis

QQ quartile–quartile

QTL quantitative trait loci

QTN quantitative trait nucleotides

SdClr seed color

SNP single-nucleotide polymorphism

SftEqv Softness Equivalence

SRC solvent retention capacity

SucSRC Sucrose solvent retention capacity

SUPER settlement of MLM under progressively exclusive relationship

TstWt test weight

VP1 VIVIPAROUS 1

WatSRC Water solvent retention capacity.
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