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QC, Canada, 2Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology,
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Introduction: Genomic selection is becoming a standard technique in plant

breeding and is now being introduced into forest tree breeding. Despite

promising results to predict the genetic merit of superior material based on

their additive breeding values, many studies and operational programs still

neglect non-additive effects and their potential for enhancing genetic gains.

Methods: Using two large comprehensive datasets totaling 4,066 trees from 146

full-sib families of white spruce (Picea glauca (Moench) Voss), we evaluated the

effect of the inclusion of dominance on the precision of genetic parameter

estimates and on the accuracy of conventional pedigree-based (ABLUP-AD) and

genomic-based (GBLUP-AD) models.

Results: While wood quality traits were mostly additively inherited, considerable

non-additive effects and lower heritabilities were detected for growth traits. For

growth, GBLUP-AD better partitioned the additive and dominance effects into

roughly equal variances, while ABLUP-AD strongly overestimated dominance. The

predictive abilities of breeding and total genetic value estimates were similar

between ABLUP-AD and GBLUP-AD when predicting individuals from the same

families as those included in the training dataset. However, GBLUP-AD

outperformed ABLUP-AD when predicting for new unphenotyped families that

were not represented in the training dataset, with, on average, 22% and 53%

higher predictive ability of breeding and genetic values, respectively. Resampling

simulations showed that GBLUP-AD required smaller sample sizes than ABLUP-AD

to produce precise estimates of genetic variances and accurate predictions of

genetic values. Still, regardless of the method used, large training datasets were

needed to estimate additive and non-additive genetic variances precisely.
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Discussion: This study highlights the different quantitative genetic architectures

between growth and wood traits. Furthermore, the usefulness of genomic

additive-dominance models for predicting new families should allow practicing

mating allocation tomaximize the total genetic values for the propagation of elite

material.
KEYWORDS

Genomic selection (GS), non-additive genetic effects, mate allocation, wood quality
traits, growth traits, conifers, GBLUP, tree breeding programs
1 Introduction

Since the seminal paper by Meuwissen et al. (2001) genomic

selection (GS) has become widely applied in animal and crop

breeding (Bhat et al., 2016; Meuwissen et al., 2016). In tree

breeding, GS is expected to be highly advantageous due to the

long generation times of conventional programs, and the large cost,

time, and space required for testing and phenotyping mature traits.

During the last decade, different proof of concept studies have

successfully tested and applied GS to forest trees (e.g., Resende et al.,

2012; Beaulieu et al., 2014a; Isik et al., 2016; Pégard et al., 2020).

Publications have underlined the ability of GS to greatly shorten

breeding cycles and increase genetic gains generated per time unit

(Grattapaglia and Resende, 2011; Denis and Bouvet, 2013; Beaulieu

et al., 2014b; Chen et al., 2018). In GS, a population in which

individuals are both phenotyped and genotyped is used to train a

model, which is then used to predict the genetic merit of young

genotyped, but unphenotyped, offspring. Selections from a large

number of genotyped candidates should translate into higher

selection intensities, while preserving genetic diversity in

improved varieties, or allowing for efficient multi-trait selection

strategies (Bouvet et al., 2020; Lenz et al., 2020b; Bousquet et al.,

2021; Cappa et al., 2022).

Changing environmental conditions and forest product markets

are putting pressure on tree breeding programs to rapidly deliver

adapted planting stock with superior end-use quality attributes.

Hence, accelerating breeding for improved reforestation material is

becoming essential for traits related to wood quality (Hassegawa

et al., 2020), biotic stress resistance (Beaulieu et al., 2020; Lenz et al.,

2020b; Westbrook et al., 2020; Mphahlele et al., 2021; Gamal El-

Dien et al., 2022), and resilience to abiotic stress such as drought

(Bouvet et al., 2020; Depardieu et al., 2020; Cappa et al., 2022;

Laverdière et al., 2022; Soro et al., 2022). GS can hence play an active

role in climate change mitigation strategies and provide more

flexibility to tree breeders.
V, cross-validation; GS,

ctions; PABV, predictive

bility of genetic value

lue estimates; PACCGV,

St. Casimir; SE, somatic
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To fully harness the power of GS, models need to fit and rely on

both additive and non-additive genetic variances for delivering the

most optimal selections for the propagation of elite material. Non-

additive genetic variance can be partitioned into dominance and

epistasis components; that is the interaction of alleles within genetic

loci, and the interaction of alleles among different loci, respectively

(Falconer and Mackay, 1996). Simulations showed that considering

both additive and non-additive variances, especially dominance,

can increase the prediction accuracy of genetic values (Denis and

Bouvet, 2013; Nishio and Satoh, 2014; de Almeida Filho et al., 2016,

2019; Nazarian and Gezan, 2016). The inclusion of dominance in

GS models improved the prediction of complex traits in animals

and crops, such as milk production in dairy cattle (Sun et al., 2014;

Aliloo et al., 2016), grain production and drought tolerance in maize

hybrids (Dias et al., 2018; Ferrão et al., 2020), or yield in sorghum

(Hunt et al., 2020). Still, most tree breeding programs focus solely

on the estimation of additive variance and breeding values as seeds

for reforestation are generally produced in open-pollinated seed

orchards (Mullin et al., 2011). This is because only additive effects

are transmitted and accumulate over generations, and they

generally account for most of the genetic variance of complex

traits (Hill et al., 2008). Thus, non-additive effects are often

ignored in tree breeding as their estimation requires more

complex crossing schemes, experimental designs, and statistical

models, which can be prohibitive considering the short-term costs

and benefits. Moreover, they are not easily partitioned from their

additive counterpart due to their dependency in practical breeding

situations (Muñoz et al., 2014; de Almeida Filho et al., 2019).

However, ignoring non-additive effects will result in inflated

estimates of additive genetic variance, and lead to biased

predictions of breeding values and genetic gains (Araújo et al.,

2012; Muñoz et al., 2014). Thus, it is crucial to estimate both

additive and non-additive effects to guide the establishment of

optimal testing, breeding, selection, and deployment strategies

(White et al., 2007; Chen et al., 2020). For deployment, it may be

advantageous to exploit dominance by the propagation of elite full-

sib families or to utilize both dominance and epistasis when clonal

propagation methods are available, for example through rooted

cuttings or somatic embryogenesis (Park et al., 2016; Wu, 2019),

thus preserving existing allelic combinations within and among loci.

In forest genetics, several studies have attempted to disentangle

additive and non-additive effects. Dominance may be separated
frontiersin.org
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from additive effects with structured schemes of full-sib crosses,

such as in diallel experiments, where each parent is mated with

several others. In addition, the partition of additive, dominance, and

epistasis components requires clonal repetition of individual

genotypes from full-sibs (Foster and Shaw, 1988; Wu, 2019). In

tree species, only a few reliable estimates of both dominance and

epistatic genetic variances were reported using pedigree-based

methods and clonal trials. While some studies reported small

non-additive effects (Costa e Silva et al., 2004, 2009; Baltunis

et al., 2007), others reported considerable non-additive effects that

were of similar magnitude as the additive effects (Mullin and Park,

1992; Baltunis et al., 2009; Araújo et al., 2012; Berlin et al., 2019;

Chen et al., 2020). Typically, clonal deployment based on clonal

mean selection yielded the largest genetic gains, followed by clonal

deployment of elite families, and by seedling deployment from

open-pollinated seed orchards (Weng et al., 2008; Baltunis et al.,

2009; Wu, 2019; Nguyen et al., 2022). Authors hence concluded that

exploiting non-additive variance should be considered in future

deployment strategies (Araújo et al., 2012; Park et al., 2016; Li and

Dungey, 2018; Berlin et al., 2019).

During the last decade, with the development of high-

throughput genotyping methods leading to abundant genetic

marker information, quantitative methods have been developed to

estimate additive, dominant, and epistasic relationship matrices

based on genetic markers (VanRaden, 2008; Su et al., 2012; Vitezica

et al., 2013, 2017). While the conventional pedigree-based animal

model, often called “ABLUP”, can only describe the expected

relationships between individuals (e.g., 0.5 for full-sibs), the

genomic additive relationship matrix (G) used in GBLUP can

estimate the realized relationships based on the fraction of the

genome shared between individuals. Furthermore, the G-matrix

allows the detection of inbreeding, hidden co-ancestry, and

unknown parentage in breeding populations with shallow

pedigree, such as for forest trees (Doerksen et al., 2014; Munoz

et al., 2014; Lenz et al., 2017, 2020a; Gamal El-Dien et al., 2022).

An increasing number of empirical GS studies in forest trees

considered non-additive effects and aimed at their separation from

additive effects (Muñoz et al., 2014; Bouvet et al., 2016; de Almeida

Filho et al., 2016, 2019; Gamal El-Dien et al., 2016, 2018, 2022;

Resende et al., 2017; Tan et al., 2018; Chen et al., 2019; Beaulieu

et al., 2020; Pégard et al., 2020; Thavamanikumar et al., 2020;

Calleja-Rodriguez et al., 2021; Thumma et al., 2022). Compared

with ABLUP, GBLUP was shown to better separate both types of

variance and reduce confounding between genetic and

environmental effects (Muñoz et al., 2014; Gamal El-Dien et al.,

2016; Tan et al., 2018). Nevertheless, even under GBLUP, some level

of confounding occurs, and estimates of non-additive effects

sometimes carry high standard errors (Gamal El-Dien et al., 2016,

2018; Tan et al., 2018; Chen et al., 2019). In most cases, when

significant dominance variance was detected, the additive-

dominance model did not result in significant improvements in

the prediction ability or accuracy of total genetic values compared

with the additive model (Muñoz et al., 2014; Bouvet et al., 2016; de

Almeida Filho et al., 2016; Resende et al., 2017; Tan et al., 2018;

Beaulieu et al., 2020; Calleja-Rodriguez et al., 2021). Given that the

vast majority of GS studies in full-sib populations relied on fewer
Frontiers in Plant Science 03
than 1,000 trees, often from a relatively small number of parents

and families (Lebedev et al., 2020), these observations underscore

the need for larger datasets with good overlapping crossing schemes

and connectivity among families, large numbers of parents, families,

and genets, as well as high-quality genotyping data to successfully

partition and predict additive and non-additive effects.

One advantage of GBLUP over ABLUP is its ability to predict

genetic values within full-sib families of young unphenotyped

material by modeling the random Mendelian sampling of alleles

(VanRaden, 2008; Legarra et al., 2009). In terms of breeding for the

next generation, a realistic approach for GS would be to predict the

genetic values of new unphenotyped full-sib families not

represented in the training population. Another potentially

overlooked application of GS in tree breeding is mating

allocation, which also involves predicting the genetic values of

future parental crosses (Toro and Varona, 2010). However, the

genomic predictions for new families suffer from a large decrease in

accuracy due to reduced relatedness between training and

validation populations (e.g., Beaulieu et al., 2014b; Lenz et al.,

2017; Chen et al., 2018), thus limiting the use of GS in this

context (Pégard et al., 2020). In forest trees, most previous studies

did not model non-additive effects when predicting new full-sib

families (Beaulieu et al., 2014b; Lenz et al., 2017; Chen et al., 2018),

or, if they did, they still only estimated the prediction accuracy of

breeding values instead of using the total genetic values (Pégard

et al., 2020; Shalizi et al., 2021; Lauer et al., 2022; Walker et al.,

2022). Thus, more research is needed to determine whether the

dominance deviations of offspring in new controlled crosses can be

successfully predicted.

In white spruce (Picea glauca [Moench] Voss), a widespread

Canadian conifer being the subject of major reforestation and

breeding efforts (Mullin et al., 2011), very few studies have

estimated non-additive effects, with mixed results obtained. Weng

et al. (2008) used a large clonal trial and pedigree-based methods to

conclude that 81% of the genetic variance for growth was additive,

with the rest mostly explained by dominance, and not by epistasis.

In contrast, Gamal El-Dien et al. (2016) found that epistatic

variances were larger than their additive counterparts for growth

and wood traits in an open-pollinated trial, but the standard errors

of estimates were large. More recently, Beaulieu et al. (2020) found

significant dominance variance for growth and acoustic velocity

using GBLUP in a full-sib trial. However, in both Beaulieu et al.

(2020) and Gamal El-Dien et al. (2016), modeling non-additive

effects did not increase the accuracy of breeding or total genetic

values. Finally, Lenz et al. (2020a) did not detect significant

dominance variance for both growth and wood traits in a

polycross trial. Hence, more studies are required to elucidate

whether common traits carry significant proportions of non-

additive genetic variance.

The present study uses two uniquely large datasets of 2,458 and

1,608 white spruce trees from 90 and 56 full-sib families,

respectively, to (1) evaluate the ability of GS-based GBLUP and

conventional pedigree-based ABLUP models to partition additive

and dominance variances for growth and wood traits; (2) compare

the predictive ability of ABLUP and GBLUP when predicting for

the same families as those included in the training population, or for
frontiersin.org
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new unphenotyped full-sib families that were not part of the

training population; and (3) investigate the effect of sample size

on the precision of genetic parameter estimates and the accuracy of

genetic values.
2 Materials and methods

2.1 Genetic material and phenotyping

The material was sampled from a test series designed to assess

the genetic merit of first-generation selections of the white spruce

breeding program in Québec, Canada, which had been subdivided

into six breeding groups (BGs) delineated by their geographic

region (Figure 1). Crosses were made using a partial diallel

mating design within each of the six BGs to limit future

inbreeding within groups and to control inbreeding buildup in

the production population. Each parent was crossed 1–6 times,

giving rise to a mixture of full- and half-sib families within BGs,

with no relatedness between BGs (Figure S1). The genetic trial was

established on two sites in 1999 with 2-year-old nursery-grown

seedlings. These sites are Asselin Township (ASS, located in the

balsam fir–yellow birch ecological zone, thus cooler climate; Lat. 47°

55’ N, Long. 68° 26’W, Elev. 278 m), and St. Casimir (SCA, located

in the maple–basswood ecological zone, thus milder climate; Lat.

46° 42’ N, Long. 72° 06’W, Elev. 52 m; Figure 1). The experiment

layout was a randomized complete block design with 10

replications. Trees were assigned to row-plots of five trees per plot

(2 m × 2 m spacing).

For the present study, 4,245 trees were sampled in the six BGs

from 151 full-sib families involving 101 parents. The sampled trees
Frontiers in Plant Science 04
were roughly equally distributed among the two test sites (ASS:

2,061 trees; SCA: 2,184 trees). The phenotypic traits tree height

(HT), diameter at breast height (DBH), average wood density

(WD), and acoustic velocity (AV) were assessed at age 16 since

plantation for BGs 1, 2, 5, and 6, and at age 13 since plantation for

BGs 3 and 4. The total volume (VOL, dm3), excluding the bark, was

calculated following Prégent et al. (2010) as:

VOL = 0:0344(DBH1:8329)(HT1:1793) (1)

with HT in m and DBH in cm. Average wood density was

determined with X-ray densitometry as previously described

(Beaulieu et al., 2014b). Acoustic velocity, which is a proxy for

wood stiffness measured at standing trees (Lenz et al., 2013), was

measured with the Hitman ST300 tool (Fibre-gen, New Zealand).
2.2 DNA extraction and SNP genotyping

DNA for the 4,245 trees was isolated from needles and twig

buds with the Qiagen DNeasy Plant Kit and quantified with

PicoGreen fluorescent dye (Invitrogen). Trees were genotyped

using an Infinium iSelect SNP array (Illumina, San Diego, CA) as

described in Lenz et al. (2020a). After applying several filters for

retaining high-quality data, imputing only a small proportion of

genotypes (0.9%), and correcting the registered pedigree using

marker data (see Suppl. Methods), a total 4,066 trees from 146

families, genotyped on 4,092 SNPs, were retained for quantitative

genetic analyses. The retained SNPs had an average call rate of

99.1%, an average genotyping reproducibility rate of 99.99% as

assessed by replicated control genotypes, an average minor allele

frequency MAF = 0.211, and an average fixation index Fe = 0.022.

Genetic diversity within each BG was estimated with the status

effective number (Ns):

Ns = 1=2q (2)

where q is the group coancestry (Lindgren et al., 1996), as

estimated from the corrected full-sib pedigree. Descriptive statistics

of BGs and phenotypes are presented in Tables 1, 2, respectively.

Boxplots of phenotypes grouped by sites and BGs are shown in

Figure S2.
2.3 Quantitative genetic analyses

For analysis, we subdivided the data into two subsets: 1) the

phenotypes measured at age 16 in BGs 1, 2, 5, and 6, hereafter

referred to as “dataset 1” (n=2,458 trees), and 2) the phenotypes

measured at age 13 in BGs 3 and 4, hereafter referred to as “dataset

2” (n=1,608 trees). These two datasets were analyzed separately

because the measurements were taken at different ages, thus having

different means and variances, and also because there was no

genetic relatedness between these two datasets (no parents in

common). All analyses were conducted in the R v.4.0.2

environment (R Core Team, 2020). The R code is provided in

Supplementary Material.
FIGURE 1

Location of the St. Casimir (SCA) and Asselin (ASS) white spruce test
sites in the province of Québec, Canada. The provenances of the
genetic material tested in both sites are colored by breeding groups.
Each breeding group is composed of two to five provenances.
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For each dataset, we ran individual-tree linear mixed models

using pedigree-based relationship matrices among trees (A, D),
referred to as “ABLUP” models, or using realized genomic

relationship matrices (Ga, Gd), referred to as “GBLUP” models.

We ran two additive models (ABLUP-A and GBLUP-A) and two

additive-dominance models (ABLUP-AD and GBLUP-AD). The

full additive-dominance models were fitted using ASReml-R v.4.1

(Butler et al., 2017) based on the following expression:

y = Xb  + Z1b sÞ + Z2p sð Þ + Z3bg + Z4s:bg + Z5a sð Þ + Z6d(s) + eð
(3)
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where y is the phenotype; b is a vector of fixed effects including

the overall mean and the site effect; b(s) is the random block within

site effect; p(s) is the random plot within site effect; and e is the

residual term. The terms b(s), p(s), and e were fitted with

heterogeneous (block diagonal) variance among sites, as b(s)∼N(0,
⊕2

i=1s 2
bi), p(s)∼N(0,⊕2

i=1s 2
pi) and e∼N(0,⊕2

i=1s 2
ei), respectively.

The term bg is the random breeding group (BG) effect, with bg ∼N
(0,s 2

bgI); s:bg is the random effect of site-by-BG interaction, with s :
bg ∼N(0,s 2

s : bgI); a(s) is the random additive genetic effect nested

within site, using the pedigree-based relationship matrix A for

ABLUP, with a(s)~N(0,Va⊗A), and using the additive genomic
TABLE 1 Number of white spruce trees, full-sib families, and parents sampled for each breeding group (BG) and summarized for all the 4,066
individuals retained for analyses, after pedigree correction using marker information.

Age of
measurements

Number of
trees Ns

Number of full-sib
families

Number of trees per
family

Number of
parents

Number of crosses
per parent

Min. Max. Mean Min Max. Mean

Dataset 1 16 2,458 53.4 90 4 56 27.3 62 1 5 2.9

BG 1 16 495 14.7 19 4 50 26.1 17 1 4 2.2

BG 2 16 784 16.6 31 9 34 25.3 19 1 5 3.4

BG 5 16 677 14.1 23 15 56 29.4 16 1 4 2.9

BG 6 16 502 9.4 17 18 43 29.5 10 2 5 3.4

Dataset 2 13 1,608 34.0 56 17 54 28.7 39 1 6 3.1

BG 3 13 713 15.7 24 19 34 29.7 18 1 6 2.9

BG 4 13 895 18.4 32 17 54 28.0 21 1 5 3.2
fronti
Also reported are the age of measurements, the status number (Ns), the number of trees per family, and the number of crosses per parent.
The data was subdivided into dataset 1 (BGs 1, 2, 5 and 6) and dataset 2 (BGs 3 and 4).
TABLE 2 Number of missing values (NA’s), phenotypic mean, standard deviation (SD), and coefficient of variation (CV) for sites Asselin (ASS) and St.
Casimir (SCA) using the 4,066 white spruce trees retained for analyses.

Trait1 ASS SCA

NA’s Mean SD CV (%) NA’s Mean SD CV (%)

Dataset 1: (n=2,458 trees)2

AV16 (km/s) 49 2.8 0.4 14.9 15 3.4 0.4 10.7

WD16 (kg/m³) 36 362.4 31.0 8.5 27 371.6 31.3 8.4

HT16 (cm) 1 718.0 97.4 13.6 4 818.2 107.7 13.2

DBH16 (mm) 1 110.5 19.9 18.0 4 116.2 20.1 17.3

VOL16 (dm³) 1 30.6 13.4 43.7 4 39.1 16.8 43.0

Dataset 2: (n=1,608 trees)2

AV13 (km/s) 57 2.7 0.4 13.9 48 2.9 0.3 11.9

WD13 (kg/m³) 102 380.6 29.6 7.8 30 394.4 28.5 7.2

HT13 (cm) 8 491.9 77.0 15.6 3 565.7 99.7 17.6

DBH13 (mm) 8 74.9 16.0 21.3 3 75.7 16.8 22.2

VOL13 (dm³) 8 9.9 5.1 51.6 3 12.1 6.8 56.4
1 Measured traits in descending order are acoustic velocity (AV) as a proxy for wood stiffness, average wood density (WD), tree height (HT), diameter at breast height (DBH), and volume (VOL).
2 The data was subdivided into two subsets: dataset 1 included breeding groups (BGs) 1, 2, 5, and 6 with phenotypes measured at age 16 since plantation and dataset 2 included BGs 3 and 4 with
phenotypes measured at age 13.
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relationship matrix Ga for GBLUP, with a(s)~N(0,Va⊗Ga) ; d(s) is
the random dominance genetic effect nested within site, using the

pedigree-based dominant relationship matrixD for ABLUP, with d(s)
~N(0,Vd⊗D), and using the dominant genomic relationship matrix

Gd for GBLUP, with d(s)~N(0,Vd⊗Gd). The term d(s) was not

included for the additive ABLUP-A and GBLUP-A models. The

matrices X and Zx are incidence matrices of their corresponding

effects. The matrices I are identity matrices of their appropriate size.

The symbols⊕ and⊗ refer to the direct sum and Kronecker product

of matrices, respectively.

The matrix Va is a 2 x 2 variance-covariance matrix defined by

the correlation of additive effects between sites (rBa) and unique

additive variances for site ASS (s 2
a _ASS) and site SCA (s 2

a _ SCA; i.e.,

CORH variance structure in ASReml):

Va =  
s 2
a _ASS rBa  sa _ASS  sa _ SCA

rBa  sa _ASS  sa _ SCA s 2
a _ SCA

" #
(4)

Similarly, the matrix Vd was defined by the correlation of

dominance effects between sites (rBd) and unique dominance

variances for site ASS (s 2
d _ASS) and site SCA (s 2

d _ SCA):

Vd =  
s2
d _ASS rBd  sd _ASS  sd _ SCA

rBd  sd _ASS  sd _ SCA s 2
d _ SCA

" #
(5)

These heterogeneous additive and dominance genetic variance

structures accounted for the fact that the two sites are in different

breeding zones of the white spruce breeding program in Québec

with contrasting climates (Li et al., 1997).

The additive relationship matrix (A) and its inverse were

computed from the corrected pedigree using the “Amatrix” and

the “ainverse” functions of the R packages AGHmatrix (Amadeu

et al., 2016) and ASReml-R v.4.1, respectively. The realized additive

genomic relationship matrix (Ga; Figure S3) was computed from the

marker data following VanRaden (2008) using the “Gmatrix”

function of the R package AGHmatrix. To make the matrix Ga

invertible, it was blended with the matrix A in the following

proportions:

Ga_blended = 0:98*Ga + 0:02*A (6)

The inverse of the matrix Ga_blended was calculated using the

“solve” function in the R base package.

The dominant relationship matrix D and its inverse were

computed from the corrected pedigree using the “Amatrix” and

the “makeD” functions of the R packages AGHmatrix and nadiv

(Wolak 2012), respectively. The The realized dominant genomic

relationship matrix Gd was computed using the “Gmatrix” function

(AGHmatrix) following Vitezica et al. (2013; Figure S4) and was

blended with the D matrix using the same proportions as in Eq. [6]

before computing its inverse (“solve” function). BlendingGa with A,
or Gd with D, using different proportions of Gx (0.95, 0.995) did not

change the genetic parameter estimates (results not shown).

Variance components estimated using the full GBLUP-AD

models (Eq. [3]) are presented in Table S1 (dataset 1) and S2

(dataset 2). Because the effects of bg and s:bg were small with large

standard errors, we removed these terms from the final models. The
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final additive-dominance models were then expressed as:

y = Xb + Z1b(s) + Z2p(s) + Z3a(s) + Z4d(s) + e (7)

where the terms are defined in Eq. [3]. The final models (Eq.

[7]) had a similar AIC compared to the full models (Eq. [3]; DAIC ±

4), but the BIC was always smaller for the final models (DBIC: -7 to
-15), indicating that the final models were the most parsimonious

for all traits (Tables S1, S2). Similar to this study, Beaulieu et al.

(2014b) did not find significant differences in phenotypic trait

averages between BGs 3 and 4. Results are also consistent with

the relatively weak, though significant, genetic differentiation found

among widespread white spruce populations from eastern Canada

for quantitative traits (Li et al., 1997; Jaramillo-Correa et al., 2001;

Depardieu et al., 2020).

The equations used to obtain genetic parameter estimates

within each site from the final additive and additive-dominance

models are presented in Table S3. For the additive models, across-

site estimates of individual narrow-sense heritability were

calculated as:
ĥ 2
ind = r̂ Baŝ 2

a=(ŝ 2
p + ŝ 2

a + ŝ 2
e ) (8)

where ŝ 2
a, ŝ 2

p, and ŝ 2
e are the average additive, plot, and

residual error variances of the two sites, and r̂ Ba is the correlation

of additive effects between sites.

For the additive-dominance models, across-site estimates of

individual narrow-sense heritability (ĥ 2
ind), broad-sense heritability

(Ĥ 2
ind), and of the portion of individual phenotypic variation due to

dominance (the dominance ratio, d̂ 2
ind) were computed as:

ĥ 2
ind = r̂ Baŝ 2

a=(ŝ 2
p + ŝ 2

a + ŝ 2
d + ŝ 2

e ) (9)

d̂ 2
ind = r̂ Bdŝ 2

d=(ŝ
2
p + ŝ 2

a + ŝ 2
d + ŝ 2

e ) (10)

Ĥ 2
ind = (r̂ Baŝ 2

a + r̂ Bdŝ 2
d)=(ŝ

2
p + ŝ 2

a + ŝ 2
d + ŝ 2

e ) (11)

where ŝ 2
d is the average dominance variance of the two sites,

and r̂ Bd is the correlation of dominance effects between sites. The

narrow-sense type-B genetic correlation between sites was simply

given by the estimated parameter r̂ Ba, and the broad-sense type-B

genetic correlation was calculated as:

r̂ Bg =
r̂ Ba

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ 2

a _ASS   ŝ 2
a _ SCA

q
+  r̂ Bd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ 2

d _ASS   ŝ
2
d _ SCA

q
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(ŝ 2
a _ASS + ŝ 2

d _ASS)(ŝ
2
a _ SCA + ŝ 2

d _ SCA)
q (12)

It should be noted that the estimated broad-sense heritability

and broad-sense type-B genetic correlation are approximations

since epistatic effects were not modeled for this experimental design.

Standard errors of genetic parameter estimates were obtained

using the delta method (“vpredict” function from the ASReml-R

v.4.1 package). Estimated breeding values of individual trees on

each site were obtained as the best linear unbiased predictions

(BLUPs) of the random additive effect (a(s)). Estimated genetic

values of individual trees on each site were obtained by adding the

dominance deviations (BLUPs of the dominance effect d(s)) to the

breeding values.
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2.4 Cross-validations

The predictive ability (PA) and prediction accuracy (PACC) of

ABLUP and GBLUP models were estimated using two cross-

validation (CV) procedures. The CV1 scenario evaluated the

potential for predicting additional unphenotyped progeny trees

within the same families as those included in the training

population, while the CV2 scenario evaluated the prediction of

new unphenotyped full-sib families. For CV1, trees were randomly

split into 10 folds, making sure that each fold contained ~10% of the

trees from each family (i.e., folding within families). For CV2,

families were randomly split into 10-folds such that there were only

half-sib relationships between the training and validation datasets

(i.e., folding over families). For each round of CV, nine folds were

used in model training, which was used to predict the breeding and

genetic values for the remaining fold (i.e., the validation dataset).

This 10-fold cross-validation was repeated 10 times to obtain the

standard deviation of estimates.

All PA and PACC estimates were calculated across folds (i.e.,

using the predicted breeding and genetic values from all the

sampled trees), within each repetition (Legarra et al., 2008). For

each repetition, estimates of PA and PACC were first calculated

within each site separately, and then averaged across sites. This

procedure was done because each site had different heritabilities

(see results), which can in turn affect PA and PACC estimates. We

reported the mean and standard deviation of PA and PACC

estimates across repetitions.

The predictive ability of the models was evaluated as the

Pearson’s correlation coefficient between the predicted breeding

(PABV) or total genetic values (PAGV) and the observed phenotypes,

within each site. The prediction accuracy of breeding value

estimates (PACCBV) was obtained as PACCBV = PABV=

ffiffiffiffiffiffiffiffi
ĥ 2
ind

q
(Dekkers, 2007; Legarra et al., 2008), where ĥ 2

ind is the within-site

heritability estimate. Similarly, the prediction accuracy of genetic

value estimates (PACCGV) was obtained as PACCGV = PAGV=ffiffiffiffiffiffiffiffiffiffi
Ĥ 2

ind

q
. For the calculation of PACCBV and PACCGV of both

ABLUP and GBLUP models, we used the within-site ĥ 2
ind and

Ĥ 2
ind estimated from the corresponding GBLUP models and using

100% of samples, thus representing our best estimates of the “true”

narrow-sense and broad-sense heritability, respectively (Tables S4–

S7). Hence, comparisons of PACC between the corresponding

ABLUP and GBLUP models were possible because we used the

same heritability estimates for both models.
2.5 Resampling simulations

To investigate the ability of ABLUP-AD and GBLUP-AD

models to estimate additive and dominance effects at different

sample sizes, we ran two scenarios of resampling simulations: 1)

varying the number of families while keeping the number of trees

per family constant, and 2) varying the number of trees per family

while keeping constant the number of families. For this analysis, we

used dataset 1 (BGs 1, 2, 5, and 6) and identified 72 families in

which at least 26 trees per family were sampled. This was the

number of trees per family that allowed us to keep the largest
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maximum number of trees for these resampling simulations

(n = 1,872). This subset of 72 families was used for the two

resampling scenarios.

For the first resampling scenario, we randomly sampled 12, 20,

28, 36, 48, and 60 families, and compared the results with those

using all 72 families. To ensure roughly equal representation of

families across BGs, the families were sampled in proportions of the

status number in each BG, such that BGs with larger effective

population sizes had a larger number of families sampled. Then, we

sampled 26 individuals per family to keep the number of trees per

family constant. For the second scenario, we randomly sampled 6, 8,

12, 16, 20, and 26 trees per family in each of the 72 families. For each

scenario, resampling was repeated 10 times. For each repetition, the

A, D, Ga, and Gd matrices were recalculated based only on the

sampled trees, and the ABLUP-AD and GBLUP-AD models were

run to re-estimate the genetic parameters of interest, that is Ĥ 2
ind ,

d̂ 2
ind , and Ĥ 2

ind .

In each repetition, a 10-fold cross-validation using CV2 (i.e.,

folding over families) was conducted to estimate PAGV and PACCGV

because it simulates the most interesting use of GS, that is making

new crosses for the next-generation or predicting new parental

combinations for mating allocation. For the first resampling

scenario, in which we varied the number of families sampled,

folding over families resulted in ~90% of families in the training

dataset, that is 11, 18, 25, 32, 43, 54, and 65 families. For the

calculation of PACCGV of both ABLUP-AD and GBLUP-AD, we

used the Ĥ 2
ind estimated from the GBLUP-AD models trained with

all the trees available from the 72 families. Estimates of heritability,

PAGV, and PACCGV were then averaged across the 10 resampling

repetitions. The models that did not converge were not included in

the calculations of PAGV and PACCGV.
3 Results

3.1 Genetic parameter estimates

Genetic parameters were estimated by modeling additive effects

in the pedigree-based ABLUP-A and genomic-based GBLUP-A

models, or by modeling both additive and dominance genetic effects

in ABLUP-AD and GBLUP-AD. In both datasets, the within-site

narrow-sense and broad-sense heritabilities differed between sites

(Tables S4–S7 contain the variance components and within-site

heritability estimates obtained for each dataset and model). For

simplicity, we focus on the across-site heritability estimates.

For the first dataset and the additive models, the two wood

traits, that is acoustic velocity (AV16) and average wood density

(WD16), were moderately to highly heritable (ABLUP-A: ĥ 2
ind

=0.53–0.65; GBLUP-A: ĥ 2
ind=0.32–0.37), while the growth traits

height (HT16), DBH16, and volume (VOL16) exhibited low to

moderate heritabilities (ABLUP-A: ĥ 2
ind=0.29–0.33; GBLUP-A:

ĥ 2
ind=0.13–0.18; Table 3; Figure 2). Similar results were found for

the additive-dominance ABLUP-AD and GBLUP-AD models, that

is higher narrow-sense and broad-sense heritabilities for wood than

growth traits. The ABLUP-AD models estimated high broad-sense

heritabilities (Ĥ 2
ind), ranging from 0.48 for DBH16 and VOL16 to as
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much as 0.77 for WD16. The estimates of Ĥ 2
ind obtained using

GBLUP-AD were considerably lower and varied from 0.19 for

DBH16 to 0.41 for WD16. The two wood traits showed very low

genotype-by-environment interactions (GxE), as indicated by high

narrow-sense (r̂ Ba>0.98) and broad-sense (r̂ Bg>0.92) type-B genetic

correlations, while moderately higher GxE was found for growth

traits under the additive or additive-dominance models.

For wood traits and dataset 1, only small dominance effects were

detected (Table 3; Figure 2). For AV16, the dominance ratio was

close to zero (d̂ 2
ind<0.07) for both ABLUP-AD and GBLUP-AD, and

the smaller AIC and BIC values indicated that the additive models

were more parsimonious than the additive-dominance models. For

WD16, the AIC favored the additive-dominance models, but the

BIC was similar between the additive and additive-dominance

models. The dominance ratio was moderate under ABLUP-AD

(d̂ 2
ind=0.21), but low under GBLUP-AD (d̂ 2

ind=0.07). Nevertheless,
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the dominance variance for WD16 represented a small proportion of

the total genetic variance (ABLUP-AD: 27%; GBLUP-AD: 17%).

For growth traits and dataset 1, both the AIC and BIC values

favored the additive-dominance models over the additive models

(Table 3). The dominance ratios were moderate for ABLUP-AD

(d̂ 2
ind=0.29–0.34) or low for GBLUP-AD (d̂ 2

ind=0.09–0.13). For

growth traits under ABLUP-AD, the dominance variance

represented the majority (61%–69%) of the total genetic variance

(Table 3). In contrast, under GBLUP-AD, the dominance variance

was about equal to the additive variance.

For the second dataset, we found results similar to those of

dataset 1, that is moderate to high across-site heritabilities for wood

traits, while growth traits presented lower heritabilities (Table S8;

Figure S5). The genetic variation in wood traits was mostly due to

additive effects, with null or low dominance effects, and low GxE.

For growth traits, dominance (d̂ 2
ind) represented the largest portion
TABLE 3 For the complete dataset 1, across-site genetic parameters estimated using the ABLUP and GBLUP additive (A) and additive-dominance (AD)
models.

AV16 WD16 HT16 DBH16 VOL16

A1 AD2 A1 AD2 A1 AD2 A1 AD2 A1 AD2

ABLUP

ĥ 2
ind 0.53 (0.08) 0.51 (0.09) 0.65 (0.09) 0.56 (0.10) 0.33 (0.08) 0.16 (0.08) 0.29 (0.07) 0.19 (0.07) 0.31 (0.07) 0.19 (0.08)

d̂ 2
ind — 0.07 (0.05) — 0.21 (0.09) — 0.34 (0.13) — 0.29 (0.12) — 0.29 (0.12)

Ĥ 2
ind — 0.57 (0.09) — 0.77 (0.10) — 0.50 (0.11) — 0.48 (0.10) — 0.48 (0.10)

r̂ Ba 0.98 (0.03) 0.98 (0.03) 0.99 (0.02) 0.99 (NA)† 0.78 (0.09) 0.62 (0.19) 0.84 (0.09) 0.85 (0.18) 0.85 (0.08) 0.83 (0.17)

r̂ Bg — 0.98 (0.03) — 0.96 (0.05) — 0.80 (0.10) — 0.79 (0.11) — 0.80 (0.11)

AIC -2949 -2945 17897 17880 24370 24348 16521 16493 15091 15065

BIC -2897 -2876 17949 17950 24422 24417 16573 16563 15143 15134

V̂ A (%)3 — 89 — 73 — 31 — 39 — 39

V̂ D (%)3 — 11 — 27 — 69 — 61 — 61

GBLUP

ĥ 2
ind 0.32 (0.03) 0.30 (0.03) 0.37 (0.03) 0.34 (0.03) 0.18 (0.03) 0.14 (0.04) 0.13 (0.03) 0.09 (0.03) 0.15 (0.03) 0.11 (0.03)

d̂ 2
ind — 0.05 (0.03) — 0.07 (0.03) — 0.13 (0.03) — 0.09 (0.03) — 0.11 (0.03)

Ĥ 2
ind — 0.35 (0.04) — 0.41 (0.04) — 0.27 (0.04) — 0.19 (0.04) — 0.22 (0.04)

r̂ Ba 0.99 (0.04) 0.99 (NA)† 0.99 (0.04) 0.99 (NA)† 0.73 (0.11) 0.63 (0.13) 0.73 (0.14) 0.70 (0.20) 0.77 (0.12) 0.67 (0.17)

r̂ Bg — 0.99 (NA)† — 0.92 (0.07) — 0.76 (0.09) — 0.67 (0.14) — 0.80 (0.14)

AIC -2948 -2946 17892 17874 24380 24342 16538 16496 15105 15069

BIC -2896 -2876 17944 17943 24433 24412 16590 16565 15157 15139

V̂ A (%)3 — 85 — 83 — 51 — 50 — 50

V̂ D (%)3 — 15 — 17 — 49 — 50 — 50
fro
The parameters reported are individual narrow-sense (ĥ 2
ind) and broad-sense heritability (Ĥ 2

ind), the dominance ratio (d̂ 2
ind), and the narrow-sense (r̂ Ba) and broad-sense (r̂ Bg ) type-B genetic

correlations. Standard errors of estimates are in parentheses. The AIC and BIC of the best models between the A and AD models are in bold (D>2). The details of all variance components and
within-site genetic parameter estimates are in Table S4 (A models) and Table S5 (AD models). See Table 2 for a description of traits.
1 The additive model fitted is described in Eq. [7], by excluding the dominance term d(s).
2 The additive-dominance model fitted is described in Eq. [7].
3 The across-site additive (V̂ A = r̂ Baŝ 2

a) and dominance variances (V̂ D = r̂ Bdŝ 2
d) are reported as a percentage of the total genetic variance (V̂ A + V̂ D).

† These terms were at boundary (very close to 1) after convergence of the model.
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of the total genetic variance under both ABLUP-AD (63%–85%)

and GBLUP-AD (60%–82%). Again, for both datasets, heritability

estimates obtained using GBLUP-AD were markedly lower than

those obtained using ABLUP-AD.
3.2 Predictive ability and accuracy of the
additive models

The predictive abilities of breeding value estimates (PABV), that

is the correlation between the predicted breeding values and the

observed phenotypes, considerably differed between sites for most

traits. For simplicity, we present the averaged estimates across sites.

For the first cross-validation scenario (CV1; i.e., folding within

families) in dataset 1 and the additive ABLUP-A and GBLUP-A

models, we found PABV values ranging from 0.48–0.55 for wood

traits, and from 0.36–0.39 for growth traits (Table 4). After
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standardizing by the square root of heritability, the prediction

accuracies of breeding values (PACCBV) were similar between

wood (PACCBV=0.84–0.90) and growth traits (PACCBV=0.76–0.91).

To compare ABLUP and GBLUP models, we simply use the

predictive ability (PA). The results were identical in terms of

prediction accuracy (PACC) since we used the same heritability

estimates for both methods. For CV1, The PABV were similar

between ABLUP-A and GBLUP-A for all traits.

For the second cross-validation scenario (CV2) in dataset 1, in

which the predicted unphenotyped full-sib families were not part of

the model training (i.e., folding over families), the PABV and PACCBV

were smaller than for CV1 (Table 4). Under CV2, the reduction was

more important for growth (PABV=0.20–0.22) than for wood traits,

with PABV values remaining above 0.41. These results translated into

much smaller PACCBV for growth (0.44–0.52) than for wood traits

(0.71–0.74) under CV2. Again, we obtained similar PABV values

between ABLUP-A and GBLUP-A for all traits.
FIGURE 2

For the complete dataset 1, across-site narrow-sense heritabilities (ĥ 2
ind) and dominance ratios (d̂ 2

ind) estimated using additive (A) or additive-

dominance (AD) models, with ABLUP or GBLUP. The broad-sense heritabilities (Ĥ 2
ind) are estimated as the sum of ĥ 2

ind and d̂ 2
ind. The error bars

represent the approximated standard errors of estimates calculated using the delta method. See Table 2 for a description of traits.
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The results for dataset 2 were similar to those of dataset 1 (Table

S9). We found no clear advantage of GBLUP-A versus ABLUP-A in

terms of predictive ability or accuracy of breeding values for both

CV1 and CV2 scenarios. Under CV2, we also found much larger

PABV and PACCBV estimates for wood than for growth traits.
3.3 Predictive ability and accuracy of the
additive-dominance models

For dataset 1 under CV1, and for both ABLUP and GBLUP, the

additive-dominance models improved the predictive ability of

genetic values (breeding values + dominance deviations, PAGV)
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for growth traits by 0.02–0.04 compared with that of breeding

values (PABV) from the additive models, but little to no

improvement was observed for wood traits (increase of 0–0.01;

Table 4). However, all traits showed a reduction of 0.04–0.13 of

prediction accuracy of genetic values (PACCGV) under the additive-

dominance models, after standardizing by the broad-sense

heritability, compared with that of breeding values (PACCBV)

under the additive models, which were standardized by the

narrow-sense heritability.

When predicting for new unphenotyped families under CV2,

the PAGV of GBLUP-AD models was again larger than the PABV of

GBLUP-A models for growth traits (increase of 0.04–0.07), but not

for wood traits (increase of 0–0.01; Table 4). This increasing trend
TABLE 4 For the complete dataset 1, average across-site predictive ability (PA) and prediction accuracy (PACC) obtained from cross-validation using
the ABLUP and GBLUP additive (A) and additive-dominance (AD) models.

AV16 WD16 HT16 DBH16 VOL16

A1 AD2 A1 AD2 A1 AD2 A1 AD2 A1 AD2

ABLUP

CV13

PABV
4 0.48 (0.01) 0.48 (0.01) 0.54 (0.03) 0.54 (0.03) 0.39 (0.03) 0.38 (0.02) 0.38 (0.04) 0.36 (0.05) 0.38 (0.03) 0.37 (0.03)

PAGV
4 — 0.48 (0.01) — 0.55 (0.03) — 0.41 (0.04) — 0.41 (0.04) — 0.41 (0.03)

PACCBV
5 0.84 (0.02) 0.86 (0.03) 0.88 (0.03) 0.92 (0.04) 0.78 (0.02) 0.81 (0.03) 0.91 (0.01) 1.00 (0.02) 0.87 (0.01) 0.93 (0.01)

PACCGV
5 — 0.80 (0.03) — 0.82 (0.01) — 0.70 (0.01) — 0.78 (0.02) — 0.79 (0.01)

CV23

PABV
4 0.41 (0.02) 0.40 (0.02) 0.43 (0.02) 0.43 (0.02) 0.22 (0.02) 0.19 (0.03) 0.20 (0.05) 0.20 (0.05) 0.21 (0.03) 0.19 (0.04)

PAGV
4 — 0.40 (0.02) — 0.43 (0.02) — 0.19 (0.03) — 0.20 (0.05) — 0.19 (0.04)

PACCBV
5 0.72 (0.03) 0.73 (0.04) 0.71 (0.03) 0.74 (0.04) 0.44 (0.04) 0.42 (0.05) 0.48 (0.08) 0.53 (0.07) 0.47 (0.06) 0.47 (0.07)

PACCGV
5 — 0.68 (0.03) — 0.65 (0.02) — 0.33 (0.05) — 0.37 (0.08) — 0.36 (0.06)

GBLUP

CV13

PABV
4 0.48 (0.02) 0.48 (0.02) 0.55 (0.03) 0.54 (0.03) 0.38 (0.03) 0.37 (0.03) 0.36 (0.05) 0.35 (0.05) 0.37 (0.03) 0.36 (0.03)

PAGV
4 — 0.48 (0.02) — 0.55 (0.03) — 0.41 (0.04) — 0.40 (0.04) — 0.40 (0.03)

PACCBV
5 0.84 (0.01) 0.86 (0.01) 0.90 (0.03) 0.94 (0.04) 0.76 (0.03) 0.80 (0.05) 0.87 (0.02) 0.95 (0.02) 0.84 (0.01) 0.90 (0.01)

PACCGV
5 — 0.80 (0.01) — 0.83 (0.01) — 0.70 (0.03) — 0.75 (0.03) — 0.76 (0.01)

CV23

PABV
4 0.42 (0.02) 0.41 (0.02) 0.45 (0.03) 0.45 (0.03) 0.22 (0.03) 0.23 (0.03) 0.22 (0.06) 0.24 (0.05) 0.22 (0.04) 0.24 (0.04)

PAGV
4 — 0.41 (0.02) — 0.46 (0.02) — 0.26 (0.03) — 0.29 (0.04) — 0.28 (0.03)

PACCBV
5 0.74 (0.02) 0.75 (0.02) 0.74 (0.03) 0.78 (0.04) 0.44 (0.04) 0.49 (0.05) 0.52 (0.08) 0.64 (0.06) 0.50 (0.06) 0.59 (0.05)

PACCGV
5 — 0.69 (0.02) — 0.68 (0.02) — 0.45 (0.03) — 0.55 (0.04) — 0.53 (0.03)
fro
Standard deviations of estimates across repetitions are in parentheses. For the ABLUP-AD models and CV2, the predicted dominance deviations were null for all individuals, such that the
predicted genetic values were equal to the predicted breeding values. Hence, the PABV was equal to PAGV. See Table 2 for a description of traits.
1 The additive model fitted is described in Eq. [7], by excluding the dominance term d(s).
2 The additive-dominance model fitted is described in Eq. [7].
3 CV1: trees were randomly split into 10 folds, making sure that each fold contained ~10% of the trees from each family; CV2: families were randomly split into 10 folds.
4 The predictive ability of breeding values (PABV) and of genetic values (PAGV) were calculated as the correlation between the predicted breeding or genetic values and the observed phenotypes,
respectively, within each site. The average across sites is reported.

5 The prediction accuracy of breeding values (PACCBV) was equal to PABV=

ffiffiffiffiffiffiffiffiffi
ĥ 2
ind

q
. The prediction accuracy of genetic values (PACCGV ) was equal to PAGV=

ffiffiffiffiffiffiffiffiffiffi
Ĥ 2

ind

q
. The heritabilities obtained

using GBLUP were used to calculate the PACC of ABLUP and GBLUP models. The average across sites is reported.
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in favor of GBLUP-AD versus GBLUP-A for growth traits was also

observed for prediction accuracies (PACCGV versus PACCBV;

increase of 0.01–0.03). We found the opposite trend for ABLUP

models under CV2, with a reduction of 0–0.03 from PABV (ABLUP-

A) to PAGV (ABLUP-AD), and a large reduction of 0.11 from

PACCBV to PACCGV for the three growth traits.

Under CV1, we found almost equal predictive ability of genetic

values (PAGV) between ABLUP-AD and GBLUP-AD (Table 4).

However, when predicting for unphenotyped families (CV2), there

was a clear advantage of GBLUP-AD over ABLUP-AD for PAGV.

The advantage of GBLUP-AD over ABLUP-AD for predicting

genetic values was larger for growth (increase of up to 0.09 in

PAGV) than for wood traits (increase of up to 0.03 in PAGV).

Interestingly, GBLUP-AD also increased the predictive ability of

breeding values (PABV) over ABLUP-AD, again only under CV2,

and especially for growth traits (increase of PABV up to 0.05). Thus,

GBLUP-AD was better than ABLUP-AD for predicting both

breeding and genetic values for unphenotyped families.

For dataset 2, we obtained very similar results (Table S9). Most

importantly, for growth traits, modeling dominance with GBLUP-

AD and predicting the total genetic values for unphenotyped

families (CV2) was clearly advantageous compared with

predicting only breeding values with GBLUP-A. In contrast, a

reduction of predictive ability and accuracy was observed when

comparing ABLUP-AD with ABLUP-A models. Furthermore,

GBLUP-AD outperformed ABLUP-AD under the CV2 scenario

for growth traits. For example, the PAGV almost doubled using

GBLUP-AD versus ABLUP-AD for DBH (ABLUP-AD: PAGV=0.11;

GBLUP-AD: PAGV=0.20) and volume (ABLUP-AD: PAGV=0.12;

GBLUP-AD: PAGV=0.20).
3.4 Varying the sample size

We varied the number of full-sib families sampled from 12 to 72

in dataset 1 to determine the effect of sample size on genetic

parameter estimates. For the majority of sample sizes, either the

narrow-sense heritability (ĥ 2
ind ; e.g., AV16, WD16), the dominance

ratio (d̂ 2
ind ; e.g., HT16), or sometimes both parameters (e.g., DBH16,

VOL16) were generally overestimated using ABLUP-AD, leading to

higher broad-sense heritabilities (Ĥ 2
ind) compared with GBLUP-AD

(Figure 3). Most importantly, we found that genetic parameter

estimates were more stable at all sample sizes using GBLUP-AD

compared with ABLUP-AD. The standard deviations of ĥ 2
ind , d̂

2
ind ,

and Ĥ 2
ind estimates were on average 36%, 48%, and 35% smaller,

respectively, using GBLUP-AD compared with ABLUP-AD. For

GBLUP-AD, estimates of Ĥ 2
ind had very small standard deviations

when 60 families or more were sampled, while the ABLUP-AD

models required using all 72 families to obtain similarly small

standard deviations.

The predictive ability (PAGV) or accuracy (PACCGV) of genetic

values under CV2 steadily increased with increasing the number of

families sampled in the training dataset up to the maximum

number of families (Figure 4). Depending on the trait, the

PACCGV increased by 53%–86% and by 14%–86% using ABLUP-

AD and GBLUP-AD, respectively. For growth traits, the PAGV of
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GBLUP-AD were generally higher than those of ABLUP-AD across

all sample sizes. For wood traits, GBLUP-AD was better than

ABLUP-AD when 18 families or less were sampled in the training

dataset, but they performed similarly for larger sample sizes. Finally,

the standard deviations of PAGV estimates were on average 27%

smaller using GBLUP-AD compared with ABLUP-AD.

We found similar results when varying the number of trees per

family while keeping constant the number of families. Increasing

the number of trees per family decreased standard deviations of

H2
ind estimates up to the maximum of 26 trees per family using both

ABLUP-AD and GBLUP-AD (Figure S6). Again, standard

deviations of estimates were generally smaller under GBLUP-AD

than ABLUP-AD. In cross-validations, the increase in PACCGV

from 6 to 26 trees per family (ABLUP: 6%–43%; GBLUP: 8%–40%;

Figure S7) was less pronounced than when varying the number of

families. PAGV and PACCGV reached a plateau at around 12 (AV16,

WD16, DBH16, VOL16) or 20 (HT16) trees per family for both

ABLUP-AD and GBLUP-AD.
4 Discussion

4.1 Wood traits are good candidates for
tree breeding, with mostly additive
inheritance and low GxE

We found that the studied wood traits, acoustic velocity, a proxy

for wood stiffness, and average wood density, were under moderate

to high genetic control, with almost no GxE interactions, indicating

very little rank changes of families between the two contrasting

environments tested. These conclusions based on GxE are limited as

we only considered two sites. However, these results were confirmed

in the two datasets analyzed here, which can be seen as independent

replications since they consisted of different breeding populations

with no relatedness between them. Our results are also in line with

previous studies, which generally found higher across-site

heritability and lower GxE estimates for wood quality versus

growth traits in white spruce (Beaulieu et al., 2014b, 2020; Lenz

et al., 2020a), Norway Spruce (Chen et al., 2018; Lenz et al., 2020b;

Nguyen et al., 2022), lodgepole pine (Ukrainetz and Mansfield,

2020), Douglas-fir (Ukrainetz et al., 2008), and radiata pine

(Baltunis et al., 2010; Raymond, 2011), with some exceptions

(e.g., in interior spruce, Gamal El-Dien et al., 2015, 2018; in black

spruce, Lenz et al., 2017). Thus, evidence is increasing for many

conifer species that wood traits are moderately to highly heritable,

with low GxE, compared with growth traits (Beaulieu and Bousquet,

2010; Hassegawa et al., 2020).

Our results for the second dataset can be directly compared to

those of Beaulieu et al. (2014b) given that the same genotypic and

phenotypic data (WD13, HT13, and DBH13) were used, although we

performed additional SNP and individual quality control filtering

following pedigree correction. The reported within-site narrow-

sense heritabilities using the ABLUP-A models in Beaulieu et al.

(2014b) were in the same range as in this study (Table S6). In both

studies, the within-site heritabilities were moderate to high for

wood and growth traits, but a lower GxE component was found for
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wood than for growth traits, emphasizing the importance of multi-

site analyses and reporting the across-site heritability estimates.

In this study, we further separated the genetic variance into

additive and dominance effects. We found that, in both analyzed

datasets, acoustic velocity and wood density exhibited small

dominance effects, accounting for 15%–17% of the total genetic

variance in the genomic GBLUP-AD models. However, the

dominance effects were close to 0 considering the standard errors

of estimates, and the AIC and BIC generally favored the additive

models (GBLUP-A) over the additive-dominance models (GBLUP-

AD) for both datasets. The literature is sparse regarding the

evaluation of non-additive effects, especially in white spruce

(Weng et al., 2008), and even more so for wood traits. A recent
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study that analyzed a multi-site full-sib trial reported moderate

dominance for acoustic velocity (d̂ 2
ind=0.25), similar to the narrow-

sense heritability (ĥ 2
ind=0.30), using GBLUP-AD (Beaulieu et al.,

2020). These contrasting results across studies for acoustic velocity

is not unexpected given that the decomposition of genetic variance

into additive and dominance components is population specific as it

depends on the population allele frequencies (Falconer and Mackay,

1996; Hill et al., 2008; Huang and Mackay, 2016). In full-sib or

clonally replicated trials in other conifers, null or small dominance

effects for wood traits were detected in Norway spruce (Chen et al.,

2019, 2020; Nguyen et al., 2022) and in Scots pine (Calleja-

Rodriguez et al., 2021). In the well-studied Eucalyptus species and

their hybrids, the genetic variance of wood density was found to be
FIGURE 3

For dataset 1, across-site narrow-sense heritabilities (ĥ 2
ind), dominance ratios (d̂ 2

ind), and broad-sense heritabilities (Ĥ 2
ind) estimated when varying the

number of families sampled using the ABLUP-AD and GBLUP-AD additive-dominance models. The error bars represent the standard deviations of
estimates across the 10 replications for each level of number of families sampled. See Table 2 for a description of traits.
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mostly additive (Costa e Silva et al., 2004, 2009; Resende et al., 2017;

Tan et al., 2018; Thumma et al., 2022). Thus, our results and those

of previous studies point towards mostly additive inheritance for

wood traits, although the presence of some dominance or epistasis

at the gene level is possible (Beaulieu et al., 2011; Huang and

Mackay, 2016).

High narrow-sense heritabilities make wood traits excellent

candidates for genetic improvement. The additive genetic

variation is of utmost importance to tree breeders because it can

be utilized in a simple and efficient random mating design such as

open-pollinated seed orchards for the deployment of improved

genetic material. Considerable genetic gains can be achieved for

wood traits under such conditions (Lenz et al., 2013; Rashidi-
Frontiers in Plant Science 13
Jouybari et al., 2022). Here, we found that the selected material

for wood traits should perform well in a wide variety of

environments, as evidenced by the very low GxE observed across

the two study sites located in different breeding zones (Li et al.,

1997). Indeed, Beaulieu et al. (2014b) found moderately high

accuracies for wood traits when predicting across sites,

confirming that selections for wood traits could be successfully

deployed across breeding zones. In particular, acoustic velocity is

quick to assess on standing trees and is generally found

uncorrelated or positively correlated with height growth (Beaulieu

et al., 2020; Hassegawa et al., 2020), thus showing promise for

simultaneous improvements in multi-trait selection schemes (Lenz

et al., 2020b; Laverdière et al., 2022).
FIGURE 4

For dataset 1, average across-site predictive ability (PAGV) and prediction accuracy of genetic values (PACCGV) estimated using CV2 and when varying
the number of families sampled in the training dataset using the ABLUP-AD and GBLUP-AD additive-dominance models. The error bars represent
the standard deviations of estimates across the 10 replications for each level of number of families sampled. See Table 2 for a description of traits.
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4.2 GBLUP better estimates additive and
dominance effects for growth traits

Improvement for growth has been the main focus in most forest

tree improvement programs, yet non-additive effects have not been

frequently evaluated or used in tree breeding, including for white

spruce (Weng et al., 2008; Beaulieu et al., 2020). Compared to wood

traits, we found significant dominance variance for growth traits,

which was of the same magnitude or even larger than the additive

variance. Tangible dominance variance for growth traits has been

commonly observed in tree species (de Almeida Filho et al., 2016;

Resende et al., 2017; Tan et al., 2018; Chen et al., 2019; Beaulieu

et al., 2020; Thumma et al., 2022). In this study, ABLUP-AD and

GBLUP-AD appeared to differ in their ability to partition the

genetic variance. In the first dataset, GBLUP-AD partitioned the

genetic variance of growth traits into smaller and roughly equal

additive and dominance variances, while ABLUP-AD assigned the

largest proportion of genetic variance to dominance. Using a full-sib

trial, Beaulieu et al. (2020) also found large dominance effects for

height, DBH, and volume under ABLUP-AD (d̂ 2
ind=0.22–0.51),

with close to zero additive effects, while GBLUP-AD partitioned

the genetic variance into relatively equal additive (ĥ 2
ind=0.09–0.18)

and dominance effects (d̂ 2
ind=0.10–0.14).

In this study, there was a large reduction in ĥ 2
ind when

dominance was included in the additive-dominance models

compared with the additive models, indicating that additive and

dominance effects were partly confounded. In dataset 1, this

observed reduction in ĥ 2
ind was more pronounced for ABLUP

(reduction of 34%–52%) than for GBLUP (reduction of 22%–

31%). In dataset 2, the reduction in ĥ 2
ind from additive to

additive-dominance models was even more drastic (ABLUP:

reduction of 50%–74%; GBLUP: reduction of 47%–67%).

Interestingly, the reduction in ĥ 2
ind was the steepest under ABLUP

for the trait that showed the highest dominance ratio in each dataset

(HT16 in dataset 1; DBH13 in dataset 2), clearly showing the

important confounding of genetic variances occurring in the

ABLUP-AD models. The reduction of the estimated additive

variance when non-additive effects are included in the model has

also been reported previously (e.g., Muñoz et al., 2014; Bouvet et al.,

2016; Tan et al., 2018). Such reduction should not occur if the

genetic variance components were orthogonal (i.e., independent,

Vitezica et al., 2013) as assumed in quantitative genetic theory

(Falconer and Mackay, 1996). However, as noted by de Almeida

Filho et al. (2019), important theoretical assumptions such as

Hardy-Weinberg equilibrium, random mating, and linkage

equilibrium do not hold in real breeding populations.

Previous empirical studies found that the additive, non-

additive, and environmental variances were less confounded

under GBLUP than under ABLUP after examining the sampling

correlation matrix of variance components, although estimates of

variance components were not orthogonal even under GBLUP

(Muñoz et al., 2014; Bouvet et al., 2016; Gamal El-Dien et al.,

2016; Tan et al., 2018). Furthermore, simulations showed that

GBLUP-AD better estimates additive and dominance variances

because it uses the observed genomic relationships rather than

expected relationships based on the pedigree (Vitezica et al., 2013;
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de Almeida Filho et al., 2019). Our resampling simulations provided

additional evidence that GBLUP-AD is better than ABLUP-AD in

estimating additive and dominance variances. The genetic

parameter estimates were more stable, with lower standard

deviations at all sample sizes using GBLUP-AD compared with

ABLUP-AD. In addition, ABLUP-AD suffered from convergence

problems at lower sample sizes (Figure S8), indicating difficulties in

estimating all model parameters. Taken together, we found that

GBLUP-AD provided more realistic estimates of both the additive

and dominance variances and better separated these effects than

ABLUP-AD (also see Nazarian and Gezan, 2016).

Besides the fact that estimates of additive and dominance

variances are not orthogonal in practical breeding populations,

these variances cannot be directly interpreted in terms of the

relative importance of additive and non-additive gene actions

(Falconer and Mackay, 1996; Hill et al., 2008; Huang and

Mackay, 2016). Vitezica et al. (2013) described a matrix of

dominant genomic relationships that can be used in a mixed

model framework, such that the variances obtained using this

“classical” or “breeding” parametrization can be directly

compared to pedigree-based models. Under this parametrization

of GBLUP-AD, the additive variance is prioritized over non-

additive components, such that the statistical genetic variance

decomposition does not reflect the biological or functional effects

of the genes (Huang and Mackay, 2016). This is because the

majority of dominant or epistatic gene actions (functional effects)

contribute to additive genetic variance (statistical effects) in various

ways depending on the allele frequencies in the population (Vitezica

et al., 2013; Huang and Mackay, 2016). Indeed, Weng et al. (2008)

used a large clonally replicated trial and pedigree-based models to

infer that the additive variance accounted for ~80% of the total

genetic variance for growth traits in white spruce, with dominance

explaining most of the remaining genetic variance, and thus with

little epistatic effects. The results of Weng et al. (2008) are in line

with theory and empirical observations that additive variance is

generally the major source of genetic variation for complex traits

(Hill et al., 2008).

In any case, genetic variance analysis and the estimation of non-

additive effects should remain highly useful for genetic predictions

and selection in plant and animal breeding (Varona et al., 2018).

Our results suggest that there exist significant non-additive effects

for growth traits in white spruce because the broad-sense

heritabilities found under the additive-dominance models were

greater than the narrow-sense heritabilities under the additive

models. Thus, the additive-dominance models captured additional

genetic variance that was left aside by the additive models.

Therefore, exploiting both additive and non-additive variances by

propagating elite families or superior clones should prove to be

beneficial and provide superior genetic gains for growth

productivity in white spruce (Weng et al., 2008).

Recent studies attempted to decompose additive, dominance,

and epistatic (ADE) variances using open-pollinated (Gamal El-

Dien et al., 2016, 2018) or full-sib progeny trials (Tan et al., 2018;

Chen et al., 2019; Calleja-Rodriguez et al., 2021). However, for the

studies and traits that showed considerable epistatic variances, it

was always associated with large standard errors, and, in all but one
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case (Gamal El-Dien et al., 2016), GBLUP-ADE was not the best

model compared with GBLUP-AD or GBLUP-A based on AIC

(Gamal El-Dien et al., 2018; Tan et al., 2018; Calleja-Rodriguez

et al., 2021). Although gene-gene interactions have been found to be

pervasive in model organisms (Mackay, 2014), there may be little

power to detect epistatic variance for polygenic traits in practice

(Hill et al., 2008; Mäki-Tanila and Hill, 2014). Clonally replicated

trials are ideal to obtain accurate estimates of all genetic variance

components in forest trees using either pedigree-based (Foster and

Shaw, 1988; Wu, 1996) or genomic-based models (Muñoz et al.,

2014; Walker et al., 2022). But even in such trials, a sufficient

number of parents, full-sib families, genotypes per family, and

clonal replication is required (Baltunis et al., 2009; Berlin et al.,

2019; Nguyen et al., 2022). Given the difficulties mentioned above,

we suggest that epistatic variance in white spruce should be

estimated with a genomic-based model using only large clonally

replicated trials.
4.3 The benefits of calculating predictive
ability and accuracy within sites

When a completely independent dataset is unavailable to

perform true model validation, cross-validation (CV) techniques

can be used to evaluate model predictive ability and accuracy. The

predictive ability (PA) is obtained as the correlation between the

predicted breeding/genetic values and the observed phenotypes, and

the prediction accuracy (PACC) is obtained as the correlation

between the predicted breeding/genetic values and the true

breeding/genetic values. In operational breeding populations, the

true breeding/genetic values are unknown and many previous

studies used, for this purpose, the BLUPs obtained using the

complete dataset (i.e., using all phenotypic information) with

either ABLUP or GBLUP as a surrogate for the true breeding

values (e.g., Lenz et al., 2017; Ukrainetz and Mansfield, 2020;

Walker et al., 2022). However, this is biased towards the method

used to estimate those true values, and it can often result in an

overestimation of the PACC (Beaulieu et al., 2020). We trust that PA

and PACC calculated as PA=
ffiffiffiffiffi
h2

p
are better estimators to compare

the performance of ABLUP and GBLUP models since they do not

require assumptions about the true breeding/genetic values. We

used the heritability estimates obtained from GBLUP to calculate

PACC for both the ABLUP and GBLUP models. Thus, the

comparison of PACC between ABLUP and GBLUP models

depended only on PA, not on the heritability estimates.

Here, we evaluated PA and PACC slightly differently than in

previous GS studies in spruce (Beaulieu et al., 2020; Lenz et al.,

2020a, 2020b). We used a two-site model that took GxE interaction

into account to predict the breeding/genetic values of individual

trees within each site, and estimated the correlation between those

predicted breeding/genetic values and the observed phenotypes

within each site separately. We then averaged the results across

sites to simplify the presentation of the results. This was done for

three main reasons. First, we used the raw phenotype, which was

not adjusted for site effects, as a response variable in the mixed-

models and fitted all fixed and random effects simultaneously.
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Second, each individual genotype was located in only one site

because there was no clonal replication. By calculating PA and

PACC within sites, there was a better correspondence between the

observed phenotype for a particular individual and its predicted

breeding/genetic value on that site than if the predicted breeding/

genetic value represented an average across sites, such as commonly

done when fitting a homogeneous genetic effect across sites (e.g.,

Beaulieu et al., 2020; Lenz et al., 2020a, 2020b). Third, the site St.

Casimir (SCA) had generally larger heritability estimates than the

site Asselin (ASS), and so it was expected that the PA and PACC

would also differ between sites (Hayes et al., 2009). For example, for

the first cross-validation scenario (CV1) using GBLUP-A and

dataset 1, the PABV was 8.70%–9.62% and 17.14%–29.03% larger

at SCA versus ASS for wood and growth traits, respectively (Table

S10). These differences were reduced for the PACCBV estimates, but

were still considerable for some traits (e.g., -6.45% for wood density

and +8.22% for height). Similar results were found for GBLUP-AD

and for dataset 2. Given the differences observed between sites, we

suggest that computing PA and PACC within sites as done here is

more accurate, especially for traits with higher GxE, and when there

is a sufficient number of samples per site.
4.4 GBLUP showed similar predictive ability
compared to ABLUP when predicting
within trained families

In our first CV scenario (CV1), individuals were divided into 10

folds, with ~10% of individuals from each family in each fold so that

all families were well represented in training and validation datasets

(i.e., folding within families). Using the CV1 scenario and the

additive models, we obtained very high prediction accuracies of

breeding values (PACCBV) for all traits, datasets, and models

(ABLUP: 0.67–0.91; GBLUP: 0.69–0.90).

Comparing the performance of GS across studies is difficult

because of the different methods used to estimate prediction

accuracy in forest trees (Bousquet et al., 2021; Calleja-Rodriguez

et al., 2021). However, several studies in spruce used similar CV

schemes to those used here and calculated the predictive ability

(PABV) or accuracy (PACCBV as PA=
ffiffiffiffiffi
h2

p
) of breeding values using

additive models (Table 5). The PACCBV is a better estimator to

compare across studies because it accounts for the different

heritabilities. We found that the accuracies obtained in this study

for the GBLUP-A models and dataset 1 were similar to those

reported for Norway spruce (Lenz et al., 2020b) or black spruce

(Lenz et al., 2017) full-sib trials exhibiting lower genetic diversity, as

measured by the status number (Ns). The accuracies obtained for

both datasets in this study were larger than those obtained for a

white spruce polycross trial with similar Ns, which used a smaller

sample size (Lenz et al., 2020a). The PACCBV found in this study

were also much larger than that obtained for other white spruce

full-sib or open-pollinated trials with larger Ns (Beaulieu et al.,

2014a, 2020), or with much smaller sample sizes (Laverdière et al.,

2022). It should be noted that the markers used in the above-

mentioned white spruce studies largely overlapped. Considering

that the marker densities and trait heritabilities in all above-
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mentioned studies were in the same range, the higher accuracies of

breeding values obtained in this study are likely due to the higher

linkage disequilibrium existing in the breeding groups with small Ns

and to the large training datasets that we used (Hayes et al., 2009;

Grattapaglia and Resende, 2011). With the current marker density,

our GBLUP models are mostly tracing relatedness through the large

co-segregating haplotype blocks formed by controlled crossing, but

probably not much of the short-range linkage disequilibrium

between markers and QTLs (Beaulieu et al., 2014b; Lenz et al.,

2017). As for the influence of the overall size of the training

population, it was also clearly illustrated by a reduction of

accuracy in dataset 2 compared with dataset 1.

When comparing the ability of ABLUP and GBLUP models to

predict the breeding and genetic values of validation trees under the

first CV scenario, we found no marked differences in PA between

ABLUP-A and GBLUP-A, nor between ABLUP-AD andGBLUP-AD.

The results were identical for PACC since we used the same

heritability estimates for ABLUP and GBLUP. Other studies that

calculated PA using similar CV schemes in full-sib trials (random

folding or folding within families as in this study) found either no

improvements (Lenz et al., 2017, 2020b; Chen et al., 2018, 2019;

Pégard et al., 2020; Calleja-Rodriguez et al., 2021) or small

improvements of PA using GBLUP versus ABLUP (+7% on average

in Beaulieu et al., 2020). One study reported very large improvements

(+55%) using GBLUP-A or GBLUP-AD over the corresponding

ABLUP models with a corrected pedigree (Tan et al., 2018).
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The absence of improvement of PA under CV1 in our study

between GBLUP and ABLUP may be in part due to the pedigree

correction that we performed using marker data, as ~10% of the

trees were found to be misclassified. Pedigree corrections informed

by markers in full-sib tree breeding populations with different

percentage of errors (7% in Munoz et al., 2014; 78% in Tan et al.,

2018; 15% in Pégard et al., 2020) markedly improved the predictive

abilities/accuracies, sometimes to levels that were similar to GS

models (Pégard et al., 2020). Yet, even with a corrected pedigree,

GBLUP should describe more precisely the variation around

expected relationships between individuals due to Mendelian

sampling within families (VanRaden, 2008; Legarra et al., 2009;

Beaulieu et al., 2022). When predictive ability or accuracy is

calculated among-families as in this study for the CV1 and CV2

scenarios, it includes both the parent average component (family

means) and the Mendelian sampling term, while within-family

predictions only measure the prediction of the Mendelian

sampling term (Werner et al., 2020). The lack of substantial

increase of PA or PACC between GBLUP and ABLUP in this and

some other studies may be due to the relatively small number of

trees per family (~28) or to the expected smaller within- versus

among-family genetic variances (Falconer and Mackay, 1996),

which may reduce the contribution of any significant within-

family predictive ability that would confer an advantage to GBLUP.

The within-family accuracy of genomic predictions in white

spruce with the current effective and training population sizes, and
TABLE 5 Summary of previous spruce studies that estimated the predictive ability of breeding values (PABV: the correlation between the predicted
breeding values and the phenotypes) using GBLUP-A models.

Study Species mating design
Cross-validation

scheme4 PACCBV Ns
Number of

trees
Number of

SNPs

Lenz et al. (2020b)1 Picea abies
Full-sib
(partial diallel)

Folding within families
(10-folds)

0.86
(0.71–0.96) 24 714 3,934

This study:
dataset 1 Picea glauca

Full-sib
(partial diallel)

Folding within families
(10-folds; CV1)

0.84
(0.76–0.90) 53 2,458 4,092

Lenz et al. (2017)1,2,3
Picea
mariana

Full-sib
(partial diallel)

Folding within families
(10-folds)

0.81
(0.78–0.88) 19 734 4,993

This study:
dataset 2 Picea glauca

Full-sib
(partial diallel)

Folding within families
(10-folds; CV1)

0.71
(0.69–0.76) 34 1,608 4,092

Lenz et al. (2020a) Picea glauca Polycross
Folding within families
(10-folds)

0.64
(0.61–0.70) 39 856 4,092

Beaulieu et al.
(2020)1 Picea glauca

Full-sib
(partial diallel)

Folding within families
(10-folds)

0.54
(0.38–0.67) 161 1,310 4,148

Beaulieu et al.
(2014a)2 Picea glauca Open-pollinated

Folding within families
(10-folds)

0.53
(0.40–0.74) 620 1,694 6,385

Laverdière et al.
(2022)1 Picea glauca Polycross, site Watford

Folding within families
(10-folds)

0.45
(0.27–0.57) 33 279 4,091

Laverdière et al.
(2022)1 Picea glauca

Polycross, site
Normandin

Folding within families
(10-folds)

0.41
(0.28–0.50) 31 281 4,091
The reported parameters are the average prediction accuracy of breeding values (PACCBV), with the range across the different traits shown in parentheses, the status number (Ns), the number of
trees sampled, and the number of SNPs. The results obtained for the white spruce datasets 1 and 2 presented in this study are in bold.
1 We calculated the status number (Ns) based on the pedigree according to Eq. [2] when it was not reported in the original study. For Lenz et al., 2020a, 2020b, Laverdière et al. (2022), and this
study, we used the available corrected pedigree following marker-based parental assignments.

2 We calculated the PACCBV as PABV=

ffiffiffiffiffiffiffiffiffi
ĥ 2
ind

q
using the ĥ 2

ind obtained from GBLUP-A when it was not reported in the original study.
3 For Lenz et al., (2017), we reported the results obtained with the marker-based combined-site analyses.
4 Folding within families: trees were randomly split into 10 folds, making sure that each fold contained ~10% of the trees from each family.
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marker density remains to be tested. Using a clonally replicated

trial, Pégard et al. (2020) reported similar PACC between GBLUP

and ABLUP using a random folding CV scenario (i.e., PACC

calculated among families) and 7K SNPs, but were still able to

show an advantage of GBLUP when ranking individuals within full-

sib families. Other studies reported significantly positive within-

family PA or PACC values, either from full-sib family trials without

clonal replication (Resende et al., 2017; Ukrainetz and Mansfield,

2020), or with clonal replication (Walker et al., 2022). Thus, we

expect that GS models would allow performing both among-family

and within-family selections when phenotypes are not available, if

there is high relatedness between the training and validation

populations (Lauer et al., 2022).
4.5 Including dominance improved the
predictive ability, but reduced the accuracy
of models when predicting within trained
families

Under CV1 with both datasets 1 and 2, the inclusion of

dominance in the additive-dominance models increased the

predictive ability of genetic values (breeding values + dominance

deviations, PAGV) compared with the predictive ability of breeding

values (PABV) obtained from the additive models. This was

observed only for growth traits because wood traits showed little

dominance variance. For growth traits, the PA increased from the

additive to the additive-dominance models by 6.4% and 8.2% on

average for ABLUP and GBLUP, respectively. This increase was

expected because the additive-dominance models could predict a

larger portion of the phenotypic variation due to the inclusion of

significant dominance genetic effects. However, this improvement

in PA was rather small considering that the dominance variance

accounted for about half of the genetic variance for growth traits

and that the broad-sense heritabilities obtained from the additive-

dominance models were ~55% higher on average than the narrow-

sense heritabilities estimated by the additive models. The

standardization of PA as PA=
ffiffiffiffiffi
h2

p
(ĥ 2

ind for the additive

models; Ĥ 2
ind for the additive-dominance models) resulted in a

decrease of the estimated accuracies (PACC) from the additive to

the additive-dominance models for all traits, but more so for growth

traits (ABLUP: -10.1%; GBLUP: -8.5%). These results indicated that

the additive-dominance models could predict with less accuracy the

total genetic values compared with breeding values under CV1.

Previous studies in forest trees also reported increases in PA by

including dominance in GBLUP models when considerable

dominance variance was detected (0 to 21%; average 9%;

Table 6), but the accuracy based on PA=
ffiffiffiffiffi
h2

p
was not estimated.

If we use the reported GBLUP heritabilities to calculate PACC, we

find a decrease from the additive to the additive-dominance models

in all cases, similar to this study (-1% to -29%; average -12.3%;

Table 6). Thus, in this and previous studies, the PA of the additive-

dominance models did not increase to the extent that would be

expected based on the increase in broad-sense heritabilities. Tan
Frontiers in Plant Science 17
et al. (2018) attributed these results to the large standard errors of

the dominance variance estimates, the large effective population

size, and the small number of individuals per family. In our study,

the standard errors of the dominance variances for growth traits

were rather small in the larger dataset 1 (ratio standard error/

variance=0.23–0.33) and roughly equal to the standard errors of the

additive variances. Similar results were found by de Almeida Filho

et al. (2016; 2019). using both empirical and simulated data for a

loblolly pine clonal population with a full-sib mating design. In

simulations, these authors found that the prediction accuracy of

dominance deviations was lower (0.24–0.26) than the accuracy of

breeding values (0.55–0.61), even under high levels of dominance

(d̂ 2
ind=0.20; de Almeida Filho et al., 2019). However, they still found

an increase in PACC of total genetic values with the additive-

dominance models when dominance was high (d̂ 2
ind >0.20). In our

study, d̂ 2
ind was below 0.20 for all traits under GBLUP. Indeed,

accurately predicting dominance demands much more information

since it relies on measurements of phenotypes in heterozygous

individuals (Toro and Varona, 2010), and the use of a large training

population of full-sibs, including markers with high minor allele

frequency, could improve estimates (Denis and Bouvet, 2013; Ertl

et al., 2014; Nishio and Satoh, 2014). We conclude that, although

the PA of total genetic values was improved under the additive-

dominance models and CV1, indicating that we can predict

dominance deviations to some extent, the PACC of genetic values

decreased due to a lower accuracy of dominance deviations

compared with that of breeding values.

The CV1 scenario simulated the prediction of additional

genotypes from the same families as those included in the

training population, which is within the current generation,

and has direct applications in forest tree breeding. For example,

GS models could be beneficial for the selection of somatic

embryogenesis (SE) lines, for which the pedigree-based

methods do not allow within-family ranking. As such,

thousands of cryo-conserved SE lines can be genotyped to

predict their genetic values. The best individuals, both across

and within families, can then be deployed via vegetative

propagation techniques such as rooted cuttings or somatic

embryogenesis (SE), which is highly amenable for a large

diversity of clonal lines in spruce species (Park et al., 2016).

Such clonal deployment of SE lines is already undergoing for

reforestation purposes in the provinces of New Brunswick and

Québec in Canada (Perron et al., 2018). This strategy has the

potential to yield larger genetic gains per unit of time because 1) it

can exploit more of the genetic variance, that is the additive and

dominance variances, as shown by the higher broad-sense

heritabilities and increased predictive abilities of genetic values

(PAGV) for growth traits in this study; 2) the selection intensity

could be largely increased by genotyping more individuals; and 3)

it dramatically reduces the breeding cycle length because no field

testing is required for the SE lines. Thus, we expect that the

predictions of total genetic values by GS models, although less

accurate than those of breeding values, should still allow

increasing genetic gains.
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4.6 GBLUP showed superior predictive
ability compared to ABLUP when
predicting in unphenotyped families by
utilizing dominance variance

We found different trends under the second cross-validation

scenario (CV2), in which the training and validation datasets

included different families, thus simulating the prediction of

breeding and genetic values for new unphenotyped full-sib families.

However, one must keep in mind that those predicted families were
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half-sib related to a few families in the training dataset. While there

were no differences in predictive ability of breeding values (PABV)

between the additive ABLUP-A and GBLUP-A models, the results

were different for the additive-dominance models. We found that the

predictive ability of breeding (PABV) and of genetic values (PAGV) for

growth traits were substantially increased by 22% and 53% on average,

respectively, for GBLUP-AD versus ABLUP-AD. For wood traits,

there was a slight advantage of GBLUP-AD for wood density (~5–

10%), which presented small dominance effects, but no advantage was

observed for acoustic velocity.
TABLE 6 Summary of studies that previously compared additive (A) and additive-dominance (AD) genomic selection models in tree species.

Study Species Model

Cross-vali-
dation
scheme4 Trait

PABV
(A

model)5

PAGV
(AD

model)5
%

change

PACCBV
(A

model)

PACCGV
(AD

model)
%

change

de Almeida
Filho et al.
(2016)1

Pinus taeda BRR3 Random folding
(10-folds)

Height (6 yr.) 0.40
(0.04)

0.42
(0.03)

4.0 0.64 0.60 -6.1

Resende et al.
(2017)1

Eucalyptus
urophylla x E.
grandis

GBLUP Random folding
(10-folds)

Mean annual
increment
(3 yr.)

0.49 0.52 6.1 0.96 0.75 -21.9

Tan et al.
(2018)1

Eucalyptus
urophylla x E.
grandis

GBLUP Random folding
(10-folds)

Circumference
at breast height
(3 yr.)

0.16
(0.10)

0.18
(0.10)

12.5 0.43 0.42 -0.8

Circumference
at breast height
(4 yr.)

0.27
(0.11)

0.30
(0.11)

11.1 0.60 0.55 -9.3

Height (3 yr.) 0.26
(0.10)

0.30
(0.08)

15.4 0.57 0.49 -13.1

Height (6 yr.) 0.32
(0.11)

0.36
(0.11)

12.5 0.68 0.65 -5.2

Chen et al.
(2019)1

Picea abies GBLUP MET site 1 to
site 1 (10-folds)4

Height (17 yr.) 0.23
(0.04)

0.26
(0.03)

13.0 0.64 0.45 -29.0

MET site 2 to
site 2 (10-folds)4

Height (17 yr.) 0.25
(0.03)

0.27
(0.03)

8.0 0.59 0.50 -14.9

Beaulieu et al.
(2020)

Picea glauca GBLUP Folding within
families (10-
folds)

Height
(16 to 28 yr.)

0.25
(0.00)

0.27
(0.01)

8.0 0.51 0.47 -7.8

DBH
(16 to 28 yr.)

0.15
(0.01)

0.15
(0.01)

0.0 0.41 0.35 -14.6

Volume
(16 to 28 yr.)

0.14
(0.01)

0.15
(0.01)

7.1 0.38 0.33 -13.2

Acoustic
velocity
(17 to 29 yr.)

0.40
(0.01)

0.42
(0.01)

5.0 0.63 0.57 -9.5

Thumma et al.
(2022)1,2

Eucalyptus
nitens

GBLUP Random folding
(10-folds)

DBH
(8.8 to 18.6 yr.)

0.29
(0.03)

0.35
(0.02)

21.0 0.73 0.62 -15.0
fron
We only considered studies that calculated the predictive ability of breeding values (PABV) and of genetic values (PAGV) (i.e., the correlation between the predicted values and the phenotypes) and
only reported traits that showed considerable dominance variance under the genomic AD model.

1 For these studies, we calculated the prediction accuracy of breeding (PACCBV) and of genetic values (PACCGV) based on PABV=

ffiffiffiffiffiffiffiffiffi
ĥ 2
ind

q
and PAGV=

ffiffiffiffiffiffiffiffiffiffi
Ĥ 2

ind

q
, respectively, using the reported

GBLUP heritability estimates.
2 The PABV and PAGV results of Thumma et al. (2022; Figure 1) were provided by B. R. Thumma (personal communication). We used the results obtained with the 868 genotyped progeny trees.
For the GBLUP additive model, we used the results obtained from the identity-by-state model.
3 BRR: Bayesian ridge regression.
4 Random folding: trees were randomly split into 10 folds; folding within families: trees were randomly split into 10 folds, making sure that each fold contained ~10% of the trees from each family;
MET: We used the reported multi-environment trial analysis of Chen et al. (2019).
5 The reported standard errors are in parentheses.
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This marked advantage of GBLUP-AD over ABLUP-AD for

growth traits has two explanations. On one hand, fitting dominance

under ABLUP-AD decreased PA and PACC of both breeding and

genetic values for most traits, compared with ABLUP-A. It should

also be noted that PABV was always equal to PAGV under ABLUP-

AD. This is because the predicted dominance deviations were null

for all individuals under ABLUP-AD in the absence of phenotypic

information for these new families, leaving only the predicted

breeding values for the calculation of PAGV. Thus, ABLUP cannot

capitalize on dominance deviations in the prediction of new

families. On the other hand, GBLUP-AD could use genomic

information in the dominant genomic relationship matrix to

estimate dominance deviations in unphenotyped families. Indeed,

fitting dominance under GBLUP-AD slightly increased the

predictive ability of breeding values (PABV) by 5%, but

substantially increased the predictive ability of genetic values

(PAGV) by 24%, on average, compared with GBLUP-A. This

increase in PAGV led to an increase in PACCGV of 10% from

GBLUP-A to GBLUP-AD, on average. The trait that showed the

largest improvement was DBH in dataset 2 (+54% in PAGV and

+27% in PACCGV), which was also the trait that had the highest

proportion of genetic variation attributed to dominance under

GBLUP-AD (82%; Table S8). Thus, the large differences in

predictive ability of genetic values that we found between

GBLUP-AD and ABLUP-AD could be mostly attributed to the

ability of GBLUP to predict dominance deviations in unphenotyped

families, and the inability of ABLUP to do so. Moreover, we found

that GBLUP-AD was superior to ABLUP-AD in predicting both

breeding and genetic values for new families, likely because of a

better estimation of additive and dominance variances.

The findings that GBLUP-AD can predict dominance for

unphenotyped families, but not ABLUP, are novel, and, to our

knowledge, have never been reported for full-sib mating designs in

tree species. Resende et al. (2017) tested a similar CV scenario using

a full-sib trial and found an increased predictive ability of genetic

values (+25%) for unphenotyped families from GBLUP-A to

GBLUP-AD for mean annual increment, similarly to this study,

but they did not compare with ABLUP. Our results are encouraging

from a tree breeding perspective. Although the predictive abilities

and accuracies decreased under the CV2 scenario with half-sib

relatedness between training and validation datasets, compared

with the CV1 scenario with full-sib relatedness, as previously

noted (e.g., Beaulieu et al., 2014b; de Almeida Filho et al., 2019;

Lauer et al., 2022), the accuracies of genetic values obtained using

GBLUP-AD were still acceptable for growth traits (0.45–0.53 in

dataset 1) and high for wood traits (0.68–0.69 in dataset 1).

The CV2 scenario is of most interest to breeders because it is

closer to producing new crosses for the next generation cycle. One

promising application of GS would be to select the best individuals

at a very young age based on their genomic predictions, thus

skipping field testing and greatly reducing the length of the

breeding cycle. Here, we highlight another potentially fruitful

application of GS in tree breeding for the current generation, that

is mating allocation (Toro and Varona, 2010). The findings that

GBLUP-AD increases the predictive ability/accuracy of genetic

values for new families in CV2 suggest that we could identify
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crosses that would produce offspring with the highest total

genetic values. Indeed, it is straightforward to predict the genetic

merit of offspring of a future mating by modeling additive and

dominance effects using genomic data (Toro and Varona, 2010).

The resulting embryos or seedlings from these new crosses could be

propagated as elite families or undergo a further forward selection

step by genotyping and predicting their individual genetic value

before vegetative propagation and clonal deployment. As an

example, Figure 5 shows that very different individual trees would

be selected or culled when the predictions for height growth were

based on GBLUP in this study, with only 64% and 55% overlap

between ABLUP-AD and GBLUP-AD for the top and bottom 10%

individuals based on breeding (panel B) or genetic values (panel

C), respectively.

Mate allocation using GS models was found to increase the

selection response in animal breeding (Toro and Varona, 2010; Ertl

et al., 2014; Aliloo et al., 2017). This only applies to the production

population in the current generation because only additive effects,

not dominance, are transmitted to the next generation. In dataset 1,

there are n(n−1)/2=1,891 possible ways to combine the 62 parents

of the four breeding groups, including crosses between breeding

groups, but only 90 crosses were tested in the present study.

Although the accuracy was smaller when predicting new families

(-25% on average for CV2 versus CV1 in dataset 1), this could be

compensated by the large increase in selection intensity from

predicting additional parent-pairs and thus, ultimately, could lead

to higher genetic gains.

At the operational level, this strategy would be relatively quick to

implement because the parents are already sexually mature and good

phenotypic data is available for their tested progeny, also allowing the

measurement of new relevant traits, for instance in relation to

adaptation to climate (Laverdière et al., 2022). Another major

advantage is that it would allow performing the induction of somatic

embryogenesis only for the crosses with high predicted genetic values

given that not all embryos succeed forward this first step (~60% in

white spruce; Laurence Tremblay, Ministère des Ressources naturelles

et des Forêts du Québec, personal communication). Moreover, this

would allow obtaining predicted genetic values even for crosses

between breeding groups, which may have higher genetic potential

due to the combination of different genetic backgrounds and higher

heterozygosity, although the realized prediction accuracy may be

smaller because only crosses within breeding groups were tested in

this study. Overall, we find that the inclusion of dominance in GS

models is promising for the genomic evaluation of new full-sib crosses

for mating allocation within the same generation, which in turn should

allow to substantially increase genetic gains.
4.7 Large sample sizes were required for
accurate estimation of genetic parameters
and genetic value predictions

We used resampling to evaluate the ability of the ABLUP-AD

and GBLUP-AD models to estimate genetic parameters and predict

genetic values for different levels of number of families (12–72) or

trees per family (6–26) sampled in dataset 1. For our breeding
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population, we found that a large sample size of 60-72 families and

the maximum of 26 trees per family was required for accurate

estimation of broad-sense heritabilities (Ĥ 2
ind), as measured by the

standard deviations of estimates. Fewer trees per family (12-20)

were required for accurate prediction of genetic values, as measured

by PAGV or PACCGV under CV2. Evaluating the minimum number

of families needed for accurate predictions of genetic values was

more difficult because, as the number of families sampled decreased,

some families in the validation datasets became unrelated with the

training population in CV2 (Table S11). Hence, the reduction in

relatedness between training and validation datasets explained the

larger decrease of PAGV and PACCGVwith decreasing the number of

families versus decreasing the number of trees per family. Perron
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et al. (2013) used similar resampling approaches in open-pollinated

progeny trials of black spruce and tamarack to determine that a

minimum of 75 families and 12 trees per family per site was needed

for accurate estimation of genetic parameters using pedigree-based

models. Similarly, Chen et al. (2018) found that a large number of

families (up to 120) or trees per family (6–18) were required for

accurate prediction of breeding values using GS models in a Norway

spruce full-sib trial. In our study, we did not determine the best

sampling strategy for a given number of sampled trees, that is

sampling more families or more trees per family. Addressing that

question would have required a larger sample size, and the results

would be specific to the breeding population, crossing scheme, and

experimental design employed.
A

B

C

FIGURE 5

Comparisons between the predicted breeding (BVs) and genetic values (GVs) between ABLUP and GBLUP. An example is shown for height growth
on site Asselin (dataset 1) and the cross-validation scenario CV2, which simulated the prediction of new unphenotyped families. (A) correlation
between the predicted BVs from ABLUP-A and GBLUP-A; (B) correlation between the predicted BVs from ABLUP-AD and GBLUP-AD; and (C)
correlation between the predicted GVs from ABLUP-AD and GBLUP-AD. The Pearson correlation coefficient (r) is given for each panel. In each
panel, the top and bottom 10% individuals that would be selected or culled using only GBLUP, but not using ABLUP, are highlighted. The color
gradient for highlighted individuals represents the rank changes between ABLUP and GBLUP selections. The overlap between ABLUP and GBLUP top
and bottom 10% trees was 73% in (A), 64% in (B), and 55% in (C). Note that under ABLUP, only the mid-parent breeding values can be assigned in the
absence of phenotypes. Also, for ABLUP-AD and CV2, the predicted dominance deviations were null for all individuals, such that the predicted BVs
(x-axis in B) were equal to the predicted GVs (x-axis in C).
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An important finding of our study is that GBLUP-AD estimated

genetic parameters and predicted genetic values with greater

accuracy than ABLUP-AD at all sample sizes tested, especially for

growth traits. For these traits, smaller sample sizes were needed in

GBLUP-AD to obtain similar prediction abilities of genetic values

compared to ABLUP-AD under CV2. Similarly, Walker et al.

(2022) showed that GBLUP needed a smaller number of ramets

per clone to obtain similar accuracies compared to ABLUP. We

conclude that GS programs should focus on genotyping a sufficient

number of trees in the phenotyped training population to obtain

accurate genetic parameter estimates and genetic value predictions.
4.8 Conclusion

Using two large full-sib datasets, we evaluated the inclusion of

dominance in pedigree-based ABLUP and genomic-based GBLUP

models for wood and growth traits. Wood traits were found to be

optimal candidates for tree breeding efficiency, as they presented

higher narrow-sense heritabilities and lower GxE than growth traits.

High accuracies of GS models were even maintained when

predicting for new unphenotyped families, which were half-sib

related to a few families in the training dataset, a scenario that is

closer to the production of the next generation.

Predictions for growth traits will highly benefit from application

of GS instead of using pedigree-based methods. GBLUP led to more

realistic estimates of genetic variances and better partitioning of

additive and non-additive variances, thus allowing to better plan the

methods of selection for breeding purposes and the propagation of

reforestation material. For growth traits, the use of GBLUP-AD led

to higher predictive abilities for new families (CV2) than ABLUP-

AD, mainly due to the ability of GBLUP-AD to predict dominance.

The predictive ability of breeding values was slightly improved

under GBLUP-AD for new families, compared with ABLUP-AD.

Dominance was generally predicted with smaller accuracy than

breeding values in GBLUP-AD (CV1). Still, it was sufficiently

accurate to substantially increase predictive abilities and

accuracies for unphenotyped families (CV2), and to outperform

ABLUP-AD. It can be concluded that the dominance term should

always be included into models when significant dominance

variance is expected, such as for growth traits in this study.

By subsampling various sets of families and trees per family, we

found that GBLUP produced better estimates of genetic variances

and higher predictive abilities than ABLUP for all subsamples,

especially for growth traits. Results also highlight the need to rely on

sufficiently large sample sizes to obtain accurate estimates of genetic

parameters and predictions of breeding and genetic values.

The ability of GBLUP to predict for new unphenotyped families

also provided useful insights for next-generation prediction

accuracies. Nonetheless, there is a need for next-generation

studies in white spruce and other important tree breeding species.

Meanwhile, predicting for new crosses may be used to perform

mating allocation and maximize the total genetic values for elite

family or clonal propagation in the current generation.
Frontiers in Plant Science 21
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: https://treesource.rncan.gc.ca/en.
Author contributions

SN, JBe, JBo, and PRNL conceived the study. SN and PRNL

wrote the manuscript. JBo, PRNL, SG, JBe, and MP edited the

manuscript. SN and SG performed the statistical analyses. JBe, JBo,

PRNL, and MP set up and maintained the field trial. JBo, JBe, and

PRNL obtained funding to support genotyping and phenotyping.

All authors contributed to the article and approved the

submitted version.
Funding

This study was made possible through funding from the Natural

Resources Canada Genomics R&D Initiative and the Canadian

Wood Fibre Centre to JBe and PRNL, and through support to

JBo from the Canada Research Chair in Forest Genomics, and to

JBo and PRNL from the Spruce-Up project (234 FOR) co-lead

by JBo and J. Bohlmann, and funded by the Large-Scale Applied

Research Program (LSARP) of Genome Canada, Génome Québec
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Plourde, the late S. Légaré (Natural Resources Canada), A.

Rainville and G. Gagnon (Ministère des Ressources naturelles et
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