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FLOURY ENDOSPERM 2 (FLO2), encoding a tetratricopeptide repeat domain

(TPR)-containing protein located in the nucleus, is considered to be a regulatory

protein that controls the biosynthesis of seed storage substances. The diversity of

flo2 allele is attributable for the variations in grain appearance, amylose content

(AC), and physicochemical properties, influencing the eating and cooking quality

(ECQ) of rice. In this study, we used CRISPR/Cas9 to introduce loss-of-function

mutations into the FLOURY ENDOSPERM 2 gene in Suken118 (SK118), a widely

cultivated elite japonica rice variety in Jiangsu, China. Physiochemical analyses of

the flo2 mutants were congruent with previous studies, exhibiting lowered AC

and viscosity, risen gel consistency (GC) and gelatinization temperature (GT)

values, which were all instrumental to the improvement of ECQ. However, the

wrinkled opaque appearance and the decrease in grain width, grain thickness and

grain weight imply trade-offs in grain yield. Despite the ex-ante estimation for

low yielding, the superior ECQ in these novel genotypes generated by using

genome editing approach may have the potential for formulating high value

specialty food.

KEYWORDS

FLOURY ENDOSPERM 2, amylose content (AC), eating and cooking quality (ECQ),
japonica rice, CRISPR/Cas9, genome editing
Abbreviations: FLO2, FLOURY ENDOSPERM 2; TPR, tetratricopeptide repeat domain; AC, amylose

content; ECQ, eating and cooking quality; SK118 Suken118; GC, gel consistency; GT, gelatinization

temperature; Wx, waxy gene; SSII-2, soluble starch synthase ii-2; SBEIIb, starch branching enzyme IIb;

BEIIb, branching enzyme IIb; ISA1, isoamylose 1; WT, wild type; Hyg, hygromycin; MNU, nitrogen methyl

nitroso groupurea; EMS, methyl sulfonic acid ethyl ester; RVA, rapid visco analyser; PKV, peak paste

viscosity; HPV, hot paste viscosity; CPV, cool paste viscosity; GS3, grain size 3; TGW6, thousand-grain

weight 6; GS6, grain size 6.

frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1138523/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1138523/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1138523/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1138523/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1138523/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1138523&domain=pdf&date_stamp=2023-03-13
mailto:yangjie168@aliyun.com
https://doi.org/10.3389/fpls.2023.1138523
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1138523
https://www.frontiersin.org/journals/plant-science


Song et al. 10.3389/fpls.2023.1138523
Introduction

Rice (Oryza sativa L.), one of the most important crops

worldwide, provides staple food for feeding half of the world’s

population. The steady increase in grain yield, coupled with the

rapid improvements in human living conditions, has fostered ever

increasing public demands for foods of high quality and high

versatility (Concepcion et al., 2015; Huo et al., 2017).

Consequently, the rice quality, as measured by a range of

standardized parameters, including milling, appearance, nutrition

and eating and cooking quality (ECQ), has been commonly used to

select for and evaluate the breeding lines prior to commercial

release (Zhang et al., 2018; Huang X. et al., 2021; Hu et al., 2021;

Zhang H. et al., 2021). Amylose and amylopectin constitute starch

that is the dominant component in rice grains and accounts for

about 90% of the weight of the rice endosperm (Zhou et al., 2002;

Wang et al., 2018). As the most important quality trait, ECQ is

affected by multiple factors such as amylose content (AC) and an

eclectic list of physicochemical properties of endosperm (Lu et al.,

2013; Chun et al., 2015; Van Hung et al., 2016). Despite the recent

increase in the awareness of the health benefits of high AC rice, it

appears that a seemingly polarized market has emerged, especially

for the formulation of specialty food, where the low AC trait is

desired as it could well be attributed for the favorable food texture

and taste (Sagare et al., 2020; Hu et al., 2021). Further, some rice

cultivars, such as Nanjing 46 and Nanjing 9108, with relatively high

ECQ and low AC (10-15%) are popular with consumers in China

and the broad East Asian region, which are soft yet not sticky after

cooking, and are defined as soft japonica rice (Li et al., 2018; Hu

et al., 2021; Zhang C. et al., 2021). Therefore, there is impetus to

develop rice genotypes with low AC to meet market requirements.

FLOURY ENDOSPERM 2 (FLO2), a member of a conserved

gene family in plants, encodes a tetratricopeptide repeat domain

(TPR)-containing protein located in the nucleus (She et al., 2010;

Wu et al., 2015; Kolli et al., 2019; Suzuki et al., 2020). It has been

reported that FLOURY ENDOSPERM 2 could not only modulate

the expression of starch synthesis-related genes including

OsAGPL2, OsAGPS2b, OsGBSSI, OsBEI, OsBEIIb, OsISA1 and

OsPUL, but also directly impact on the amylose biosynthesis by

manipulating the splicing efficiency of Wx pre-mRNA (Wu et al.,

2015; Cai et al., 2022; Feng et al., 2022; Sreenivasulu et al., 2022).

Previous studies have shown that flo2, the loss-of-function mutant

of FLOURY ENDOSPERM 2, produced two distinct phenotypes,

one with white and floury endosperm, and the other with dull grain

(She et al., 2010; Hunt et al., 2013; Boehlein et al., 2018). In the

former, starch granules were small, spherical and loosely packed

with large air space (Malinova et al., 2017; Jiang et al., 2018; Suzuki

et al., 2020). The FLOURY ENDOSPERM 2 also affected grain size as

demonstrated by both overexpression and null mutation

approaches (She et al., 2010; Zhang et al., 2013). In addition, flo2

mutant was also endowed with alterations in grain physicochemical

properties including grain breakdown, setback and consistency (Wu

et al., 2015; Zhang et al., 2017). Therefore, FLOURY ENDOSPERM

2 plays an important role in the determination of grain quality by

regulating the accumulation of storage substances in the
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endosperm. Previous methods to generate flo2 mutants by

chemical mutagens such as EMS have the disadvantages of safety

risk, low efficiency and uncontrollable direction (Wu et al., 2015;

Kihira et al., 2017; Wu et al., 2019).

In the last few years, as one of the most advanced systems for

genome editing, CRISPR/Cas has been commonly used to make

precise and predictable genome modifications in crop plants to

obtain desired traits (Zhu et al., 2020; Gao, 2021). This is especially

true for rice, where impressive progress has been made and a

plethora of traits have been modified by applying the CRISPR/

Cas9 editing system, by virtue of rice’s economic significance and

the ease of transgenic regeneration (Zhou et al., 2014; Ma et al.,

2021). For grain quality improvement, Wx is a key gene that

encodes granule binding starch synthase I (GBSSI) involved in

amylose biosynthesis. It has been genetically edited to manipulate

AC and/or improve ECQ in a number of recent studies in rice (V.M.

Butardo et al., 2017; Bello et al., 2019; Fei et al., 2019; Huang et al.,

2020; Zeng et al., 2020; Huang L. et al., 2021; Xu et al., 2021).

Likewise, a number of other key genes involved in amylopectin fine

structure, such as SSII-2, SBEIIb, BEIIb and ISA1, have been edited

for ECQ improvements (Crofts et al., 2015; Sun et al., 2017; Chao

et al., 2019; Tappiban et al., 2022).

In this study, to induce AC and improve ECQ of a widely

cultivated elite japonica variety, Suken118 (SK118), two loss-of-

function mutants of FLOURY ENDOSPERM 2 gene were generated

by CRISPR/Cas9 technology. Our results show that knockout of

FLOURY ENDOSPERM 2 gene can significantly reduce the content

of straight chain powder. The physicochemical properties of flo2

mutants showed that lower AC and viscosity, higher gelation degree

and gelatinization temperature were helpful to improve the edible

and cooking quality of rice. Therefore, FLOURY ENDOSPERM 2

has potential application value in green and healthy rice breeding.

Results

Generation and identification of flo2
mutants in rice

To generate flo2 mutants with the expectation to produce null

mutations, sgRNA was designed in the coding region of FLOURY

ENDOSPERM 2. The constructed expression vector flo2 gRNA was

expressed and driven by the OsU3 promoter, and the Cas9 cassette

was driven by the ubiquitin promoter (Figure 1A). We took

advantage of these CRISPR/Cas expression vectors to transform

rice variety Sk118 by Agrobacterium tumefaciens infecting rice calli

(Figure 1B). Positive T0 transgenic plants were identified by PCR

amplification of a fragment of the Hyg gene that was used as the

selection marker. The target genomic region of FLOURY

ENDOSPERM 2 was amplified by a pair of primers (FLO2-TF/TR;

Table S1) flanking the target site and sequenced. In addition, we

failed to find any mutations in any of the potential off-target sites

(Figure 1C). The sequencing results of T0 plants showed that the

mutation rate was as high as 74.19%, among which the percentages

of mutation by inserting the base “T” and “A” were the highest,

being 30.43% and 19.57%, respectively. Two homozygous T1
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mutant lines free of T-DNAs, named d29-2 and d29-3, were selected

for further research, featuring the insertion of a single base of “T”

and “A”, respectively, resulting in frame shift and premature

termination of translation (Figure 2C).
Knockout of FLOURY ENDOSPERM 2 gene
has multiple effects on agronomic traits

All the plants were grown in the experimental field in Jiangsu

Academy of Agricultural Sciences, Nanjing, China, during normal

rice-growing seasons. The edited plants derived from d29-2 and

d29-3 did not exhibit discernible variations from wild type (WT)

control in grain length, plant height, the panicle length, the number

of grains per panicle and tiller numbers per plant (Figure 2A,

Figures 3A, B, E–H). In contrast, the grain width and grain

thickness of the flo2 mutants were significantly lesser than WT

control, which is congruent with the previous studies on chemically

induced flo2 mutants (She et al., 2010); (Figures 3C, D).

Conceivably, the 1000-grain weights of d29-2 and d29-3 were

reduced by 26.50% and 20.90%, respectively (Figure 3I).

Rice yield and grain appearance quality are complex

quantitative characters, which are influenced by genetic

background and environmental factors. Although FLOURY

ENDOSPERM 2 gene knockout mutants have multiple negative

effects on grain appearance and yield, rice with low amylose content

and high cooking quality has a huge market demand. In future

studies, FLOURY ENDOSPERM 2 gene and yield trait genes can be
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combined, and the mutual balance between yield and trait can be

realized by using the interaction effect between different genes.
Improvement of ECQ and taste value of
flo2 transgenic rice

To further assess the effects of flo2 mutants on rice ECQ, we

performed a number of assays on the grain. The gel consistency

(GC) in d29-2 and d29-3 increased significantly relative to WT by

11.6 mm and 18.0 mm, respectively (Figure 4A). The gelatinization

temperature (GT) of the mutant lines was about 22°C higher than

WT (Figure 4D). The increases in GC and GT in flo2 mutant

relative to WT are favorable for improving ECQ in rice (Zhang

et al., 2020; Sreenivasulu et al., 2022). The RVA pasting profiles of

the flo2 mutants were also distinct from WT, specifically, the peak

paste viscosity (PKV), hot paste viscosity (HPV) and cold paste

viscosity (CPV) of the mutants were significantly lower than those

of WT (Figure 4B). The protein content (PC) was only increased of

1.68% and 1.64% in d29-2 and d29-3 mutants, respectively

(Figure 4C), which had no significant effect on ECQ (Sreenivasulu

et al., 2022). Generally, the increase of gel consistency is conducive

to improving the taste quality of rice. Taken together, these results

manifest the complex changes in the physicochemical properties of

cooked rice grains in the flo2 mutants, which are generally

conducive to ECQ improvements.

Rice starch with a higher amylose content always shows faster

retrogradation, leading to higher setback viscosity (SBV) of the
A

B

C

FIGURE 1

CRISPR/Cas9-induced mutations in the FLOURY ENDOSPERM 2 genes. (A) Schematic of the FLOURY ENDOSPERM 2 gene structures and target
sites. Exons and introns are indicated with black rectangles and black lines, respectively. The spacer and PAM sequences were marked in black and
orange. (B) The expression vector of pYLCRISPR/Cas9-Flo2. The expression of Cas9 is driven by the maize ubiquitin promoter (OsUBQ); the
expression of the sgRNA scaffold is driven by the rice OsU3 small nuclear RNA promoter; the expression of hygromycin (HPT) is driven by CaMV35S
promoter. Tnos, the terminator; LB and RB, left border and right border, respectively. (C) Potential miss analysis. Red fonts indicate different bases.
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starch, while starch with a lower amylose content has a higher

relative crystallinity and short-range molecular order, resulting in

higher swelling power, PKV and breakdown viscosity (BDV)

(Wang et al., 2017; Cai et al., 2022). Previous studies showed that

AC was positively correlated with PKV, HPV, CPV in a significant

manner, whereas it was negatively correlated with adhesiveness,

cohesiveness, and GT (Kong et al., 2015). Our results in this study

on flo2 lines that were endowed with low AC was concurrent with

the reductions in these RVA pasting values, corroborating the

previous reports. GC is an important indicator for distinguishing

rice grains that do not undergo retrogradation (i.e., rice remains soft

after cooking and cooling) (Zhang et al., 2020; Sreenivasulu et al.,

2022). GT is also a crucial factor that affects rice ECQ. It is generally

recognized that the rice grains with high GT would need more time

to cook, and the texture of the cooked rice tends to be less sticky,

especially when the cooked rice is cooled (Li et al., 2021;

Sreenivasulu et al., 2022). The enhancements in GC and GT

values in the flo2 mutants, as unraveled in this study, are clearly

favorable for ECQ amelioration.
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Opaque appearance phenotype of flo2
mutants rice grain

The polished rice grains derived from d29-2 and d29-3 were

featured with distinctive opaque and shriveled appearance

(Figure 5A). There might be some phenotypic variations in grain

appearance between the FLO-edited lines and the flo2 mutants that

were reported in previous studies, which could well be attributed to

the different genetic backgrounds and cultivation practices used

between different studies (She et al., 2010; Wu et al., 2015). The

images of transverse sections showed that the endosperm of the flo2

mutants were more opaque and powdery compared to WT at the

center of the endosperm, but such differences were diminished away

from the center region (Figure 5B).

We speculate that this is mainly due to the fact that there are

many gaps between the poorly filled starch bodies in the

endosperm. When the light shines on the endosperm in the

internal area, the light diffuses between the gaps, causing the

endosperm to appear powdery. When the inner amyloplasts are
A B

C

FIGURE 2

Phenotype and amino acid variations assays. (A) Phenotypes of flo2 mutant lines (d291-2 and d291-3) in SK118 background. Bar = 5 cm. (B) Amylose
content (%). Data are given as the mean ± S.D. (n ≥ 3). Student’s t test: *P < 0.05; **P < 0.01; ns, no significance. (C) Amino acid variations of the
FLO2 protein in the flo2 mutant. Wild-type, SK118. Homozygous mutations identified at the target sites of d291-2 and d291-3 mutant lines in the T1
generation. Amino acid variations were indicated in red box, with the number representing the order in the proteins. The ellipsis dots represent
premature stop codons.
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closely arranged and there is no gap, the light can directly pass

through and present transparent endosperm. Such spatial variation

in endosperm between flo2 and WT is intriguing and warrants

further investigation.
Genome editing of FLOURY ENDOSPERM 2
decreases amylose content significantly

Amylose has high binding capacity with iodine. The higher the

AC is, the deeper the staining in the starch-iodine reaction becomes

(Agasimani et al., 2013). As expected, the iodine staining of the

endosperms in the transverse sections of flo2 seeds were overtly

lighter than WT, indicative of AC reduction in the mutants

(Figure 5C). The measurement of AC by using AA3 continuous

flow analyzer showed that the AC of d29-2 and d29-3 were 8.20%

and 8.56%, respectively, which are in sharp contrast to that of WT

(17.35%) (Figure 2B). Rather, AC in the flo2 mutants resemble that

of a typical soft rice (Wu et al., 2015). Starch is the first kind of

storage material in rice. The reduction of 1000 grain weight of flo2

mutants is mainly caused by the reduction of total starch content in

endosperm of seeds. Furthermore, we detected the transcript levels

of FLOURY ENDOSPERM 2 in the WT (SK118), d291-2 and d291-3

plants. The transcript levels of FLOURY ENDOSPERM 2 were

decreased in the d291-2 and d291-3 plants, consistent with the

previous study (Figure S1) (She et al., 2010).
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Morphology of starch granules in
endosperm cells of flo2 mutants

To explore the causes of endosperm changes, we observed the

endosperm of wild type seeds and two mutant seeds with scanning

electron microscopy. Further, scanning electron microscopy images

showed that the starch grains of the flo2 mutants were irregularly

spherical and loosely arranged, contrary to the regular spherical

shape and uniformity in size, and tight arrangement (Figure 6A).

The loose arrangement of flo2 mutants starch granules is the main

reason for its opaque appearance.

We speculated that the starch accumulation in flo2mutants was

poor, which led to the loose endosperm structure. During the

ripening process of rice, the powder region of endosperm is easy

to be broken under external pressure such as water loss, forming sub

grains. A large number of cavities were left between loose starch

grains, which led to diffuse reflection of light to form a silty, opaque

endosperm phenotype.
Discussion

In summary, in this study we have generated low AC/high ECQ

rice genotypes through targeted mutagenesis of FLOURY

ENDOSPERM 2 by using CRISPR/Cas9 approach and

demonstrated that editing of FLOURY ENDOSPERM 2 could be an
D

A

B E

F G IH

C

FIGURE 3

Knockout of FLOURY ENDOSPERM 2 gene has multiple effects on agronomic traits. (A) Grain phenotypes of flo2 mutant lines (d291-2 and d291-3) in
SK118 background. Bar = 1 cm. (B) grain length (mm). (C) grain width (mm). (D) grain thickness (mm). (E) plant height(cm). (F) panicle length (cm). (G)
grain numbers per panicle. (H) tiller numbers per plant. (I) 1000-grain weight (G). Data are given as the mean ± S.D. (n ≥ 20). Student’s t test: **P <
0.01; ns, not significance.
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effective route to reduce AC and accelerate rice breeding to achieve

desired high ECQ trait. We have also analyzed the physicochemical

properties of the flo2 mutants, which have not only verified the

improvements in rice ECQ, but also provided useful data for

industrial evaluation of these potentially useful germplasm.

Undesired, the mutations of FLOURY ENDOSPERM 2 have led to

a significant reduction in seed weight, which may imply a possible

reduction in grain yield. This necessitates further evaluation for their

agronomic performance, especially in the field conditions.

Nevertheless, there might be a net gain in its output value given

that the high value niche market for high-ECQ grains is rapidly

expanding. Future studies could also be directed to the incorporation

of high yielding traits, for example, by simultaneous targeting a

number of negative regulatory genes, such as GS3 (Zeng et al., 2019),

TGW6 (Hang et al., 2018; Zeng et al., 2019) and GS6 (Sun et al.,

2013), leading to an optimal balance between quality and yield traits.
Frontiers in Plant Science 06
Materials and methods

Plant materials and growth conditions
Suken118 (SK118) is an elite japonica rice variety with good

resistance and quality, which is cultivated widely in the central of

Jiangsu Province, China (http://ricedata.cn). The 20bp long target

sites were chosen in the FLOURY ENDOSPERM 2 codon region.

The CRISPR/Cas9 vector was constructed as previously described

then the cassette was transferred into SK118 callus by

Agrobacterium tumefaciens-mediated transformation using the

strain EHA105 (Hiei et al., 1997; Ma et al., 2015). Transgenic rice

lines were grown in greenhouse and test fields in Jiangsu Academy

of Agricultural Sciences in Nanjing, China, during normal rice-

growing seasons.
D

A B

C

FIGURE 4

Improvement of ECQ and taste value of flo2 transgenic rice. (A) Gel consistency (mm). (B) RVA spectra of rice flours. (C) Total protein content of the
rice flours (%). (D) Gelatinization temperature (GT) of rice flours from SK118, d291-2 and d291-3. Data are given as the mean ± S.D. (n ≥ 3). Student’s
t test: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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FIGURE 5

Appearance phenotype analysis of flo2 mutants rice grain. (A) Appearance of polished rice from flo2 mutant lines (d291-2 and d291-3) in SK118
background. Bar = 1 cm. (B) Transverse sections of rice grains. Bar = 300 mm. (C) Rice grains stained with KI-I2. Bar = 300 mm.
FIGURE 6

Morphology of starch granules in endosperm cells of flo2 mutants. (A) Scanning electron microscopy images of the transverse section of flo2
mutants and wild-type. 25×, Bars = 200mm. 500×, Bars = 20 mm. 1000×, Bars = 10 mm.
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Genotype assays and phenotype

Positive T0 transgenic plants were identified by PCR

amplification of a fragment of the Hyg gene that was used as a

selection marker. The target genomic region of FLOURY

ENDOSPERM 2 was amplified by a pair of primers (FLO2-TF/TR;

Table S1) flanking the target site and sequenced. Seeds were

collected for each plant from WT and homozygous mutant lines.

Grain length, plant height, the panicle length, the number of grains

per panicle and tiller numbers per plant were measured in the fields.

The 1,000 grains weight was measured after the oven at 45°C until

constant weight. The grain length, width, and thickness were

measured using a vernier caliper.
Grain phenotype and iodine staining
of endosperm

The hulls of rice seeds were removed to observe the external

appearance of the grain in both WT and mutant lines. Grains were

cut through the center to expose the endosperm; 1mL 0.1% iodine-

potassium iodide solution was dropped on the endosperm surface

and photographs were taken after 3-5 min by VHX-500FE.
RNA isolation and qPCR

Total RNAs were extracted from the rice endosperm of rice

using a TRIzol kit according to the user’s manual (Invitrogen) for

expression analysis. And then reverse-transcribed into cDNA from

1 mg of total RNA following the manufacturer’s instructions

(Fastking RT Kit; TIANGEN). qRT-PCR analysis was performed

using a Light Cycler 480 system (Roche) and SYBR Green Real-time

PCR Master Mix. The relative expression levels of FLOURY

ENDOSPERM 2 were normalized to the rice UBIQUITIN

(Os03g0234200) gene, which was used as an internal control. All

date were measured by three individual replicates. The transcript

levels were calculated by the 2-DDCT method. The primer sequences

are listed in Table S1.
Determination of AC and total
protein content

Amylose content (AC) was measured using an AA3 continuous

flow analyzer set. Flour from WT, mutant lines and four rice

samples with known apparent amylose content was taken 0.05 g

to determine. AA3 continuous flow analyzer set was also used to

determine total protein content by measuring 0.2 g of flour from
Frontiers in Plant Science 08
WT and mutant lines. The conversion coefficient is 5.95. All

samples were repeated three times.
Evaluation of grain GC, GT and
viscosity property

Gel consistency (GC) was measured following the procedure

described in GB/T 22294-2008/ISO 11747:2012. Gelatinization

temperature (GT) was indirectly estimated via the alkali digestion

test. Rice viscosity properties were determined using a Rapid Visco

Analyser (RVA-TecMaster, Newport Scientific, Warriewood,

Australia). Rice flour (3g, 12% m.b.) was mixed with 25 g of

double-deionized water in the RVA sample can. Thrice

measurements were performed for each sample.
Scanning electron microscopy of seed
cross-section

After drying, the mature seeds with shelling were frozen in liquid

nitrogen for 5S then the cross-section of the samples was manually

snapped and sputter-coated with gold palladium on copper studs.

Magnifications of about 25×, 500×, and 1000× were used to observe

endosperm cross-section and starch granule morphology.
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