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The content of nicotine, a critical component of tobacco, significantly influences

the quality of tobacco leaves. Near-infrared (NIR) spectroscopy is a widely used

technique for rapid, non-destructive, and environmentally friendly analysis of

nicotine levels in tobacco. In this paper, we propose a novel regression model,

Lightweight one-dimensional convolutional neural network (1D-CNN), for

predicting nicotine content in tobacco leaves using one-dimensional (1D) NIR

spectral data and a deep learning approach with convolutional neural network

(CNN). This study employed Savitzky–Golay (SG) smoothing to preprocess NIR

spectra and randomly generate representative training and test datasets. Batch

normalization was used in network regularization to reduce overfitting and

improve the generalization performance of the Lightweight 1D-CNN model

under a limited training dataset. The network structure of this CNN model

consists of four convolutional layers to extract high-level features from the

input data. The output of these layers is then fed into a fully connected layer,

which uses a linear activation function to output the predicted numerical value of

nicotine. After the comparison of the performance of multiple regression

models, including support vector regression (SVR), partial least squares

regression (PLSR), 1D-CNN, and Lightweight 1D-CNN, under the preprocessing

method of SG smoothing, we found that the Lightweight 1D-CNN regression

model with batch normalization achieved root mean square error (RMSE) of 0.14,

coefficient of determination (R2) of 0.95, and residual prediction deviation (RPD)

of 5.09. These results demonstrate that the Lightweight 1D-CNN model is

objective and robust and outperforms existing methods in terms of accuracy,

which has the potential to significantly improve quality control processes in the

tobacco industry by accurately and rapidly analyzing the nicotine content.

KEYWORDS

tobacco, near-infrared spectroscopy, nicotine, lightweight, convolutional
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1 Introduction

The tobacco industry occupies a key position in the economic

development of China (Zhao, 2022). The research found that the

quality of tobacco leaves directly affects the quality of cigarette

products. Nicotine, an alkaloid found in the Solanaceae family, is

one of the important components of tobacco leaves. Especially, the

nicotine content of key chemical components plays an important

role in assessing the quality of tobacco leaves in general (Henry

et al., 2019). Furthermore, besides harm to brain activity and

respiratory health, long-term exposure to nicotine can do even

more damage to the body and negatively affect concentration and

memory. Thus, rapid measurement and stable regulation of

nicotine content are especially critical for industrial companies to

produce tobacco products that meet industry requirements.

However, lab-grade conventional measurement methods for

nicotine generally include several complex processes, such as

grinding samples with special characteristics, preparations of

extraction reagent, and calculations using experimental data

(Hossain and Salehuddin, 2013), which are always time-

consuming, contaminated, and laborious. As a result, selecting a

rapid, cost-effective, and robust analytical technique to assess

nicotine content in tobacco leaves is paramount.

Because chemical substances of the tobacco leaves are complex,

nicotine is the most important alkaloid in tobacco, which directly

affects the quality and industrial availability of tobacco leaves. The

appearances of tobacco leaves in different periods are shown in

Figure 1. Figure 1A illustrates the appearance of fresh tobacco leaves

during the growth of the tobacco plant. The growth and

development of tobacco plants are affected by various

environmental factors including ecology, soil, and fertilizer, which

can alter the synthesis and accumulation of substances such as

nicotine. Figure 1B displays the tobacco leaves after they have

undergone the process of roasting. Determining the nicotine

content of tobacco leaves after roasting is a necessary step in the

industrial production process to ensure that only leaves that meet
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the necessary requirements are selected for use. The chemical

constituents of tobacco plants can be significantly affected by soil

improvement and fertilization practices. In this paper, the research

mainly focuses on the rapid detection and quantitative analysis of

nicotine based on near-infrared (NIR) spectroscopy. The ability to

determine nicotine content rapidly at different stages of plant

growth can provide valuable information for the targeted control

of nicotine content through the manipulation of external factors

such as soil fertilization and moisture levels. Integrating computer

science and plant science can help optimize tobacco production and

improve the quality of tobacco leaves field (Huang and Shu, 2021).

In recent years, NIR spectroscopy as the representative one of

non-destructive analysis technologies has been widely used in the

tobacco industry, which can be employed to measure the quality

and safety attributes of tobacco leaves and tobacco products (Bi

et al., 2019). As a natural plant, tobacco leaves contain a large

number of functional groups such as C–H, O–H, N–H, and C═O,
which are often analyzed by NIR spectroscopy to reduce the

environmental pollution caused by reagents used and time

consumption in conventional chemical analysis (Roy et al., 1993).

Previous studies have shown that the chemometrics models built

using the partial least squares (PLS) method for the quantitative

analysis have been used to predict the chemical composition of the

target in agricultural products, for example, sugar, protein, and

alkaloid content (McGlone and Kawano, 1998; Blanco and Peguero,

2010). Additionally, studies that focused on the classification

problem, near-infrared spectra combined with pattern recognition

techniques, divide the sample into several categorical class labels

(Kim et al., 2000). Rapid determination of chemical composition in

tobacco leaves by NIR has become one of the hot spots in tobacco

chemistry research.

Generally, the regression methods can be used to model the

relationship between the NIR spectroscopy and the concentration

of the analyte. However, multicollinearity always occurs when

predictor variables are highly correlated to each other in the

regression model. That makes it difficult to specify the model’s
A B

FIGURE 1

The appearance of tobacco leaves in different periods. (A) Fresh. (B) After the process of roasting.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1138693
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1138693
interpretability and meets an overfitting problem (Wondola et al.,

2020). Previous studies have reported numerous successful

applications of machine learning methods, such as support vector

regression (SVR) (Leng et al., 2021), backpropagation (BP) neural

networks (Li et al., 2021), and artificial neural network (ANN)

(Mutlu et al., 2011) on spectral data, which have shown many

advantages when compared to the partial least squares method

normally used for solving such high multicollinearity problems.

Meanwhile, the number of NIR spectral wavelengths is so much

more than representative samples, which will decrease the

generalized performance of the quantitative analysis model.

Hence, there is a growing body of research in the spectral pre-

processing methods for wavelength selection and dimensionality

reduction, including the successive projection algorithm (SPA) (Liu

et al., 2015), principal component analysis (PCA) (Toscano et al.,

2017), and wavelet transform (WT) (Li et al., 2020). Unfortunately,

the above algorithms will require scientists to master even more

mathematical skills and knowledge to obtain multiple necessary

parameters, which will reduce the efficiency of model construction.

The past decade has seen the great development of artificial

intelligence. Convolutional neural network (CNN) is the most

representative technique of deep learning, which is one of the

most commonly used in the data analysis (Alzubaidi et al., 2021).

Numerous studies have shown much successful application with

CNN, especially in the field of computer vision (Yang et al., 2020),

natural language processing (Young et al., 2018), speech recognition

(Adel-Hamid et al., 2014), etc. In the research of tobacco NIR

spectroscopy, several studies used a deep convolutional neural

network algorithm to classify the regions of tobacco leaves (Wang

et al., 2020). In other studies, a fully convolutional network has been

developed in the quantitative analysis domain of tobacco leaves to

construct analytical models and predict the nicotine volume of

tobacco leaves (Jiang et al., 2021). It has been demonstrated that

deep learning methods can extract useful features automatically

from high-dimensional NIR spectral data without any feature

selection methods.
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We summarized the existingmethods for predicting targets using

NIR spectroscopy in Table 1. Multiple linear regression uses multiple

explanatory variables for quantitative analysis (Liu et al., 2015), and

noise in one or more of the independent variables can have a

substantial impact on the accuracy of the model, which is prone to

noise and has a slow rate of convergence. Kernel regression methods

are sensitive to outliers, which can be computationally expensive,

especially for large datasets (Mora and Schimleck, 2009). Artificial

neural network regression models are prone to overfitting without

any regularization, which is not acceptable in spectral analysis (Mutlu

et al., 2011). An improved deep CNN classification model was

proposed to recognize and discriminate tobacco cultivation regions

accurately. However, the pooling operation used in this model may

reduce its overall representational capacity (Wang et al., 2020).

Selecting the optimal number of Synergy PLS regression model

factors and wavelength intervals can be time-consuming (Sampaio

et al., 2018). The regression based on iterative PLS is extremely

sensitive to the initial values of parameters and more

computationally intensive than other regression techniques in the

quantitative analysis of NIR spectra. Therefore, optimizing the

parameters requires the expertise of a professional and experienced

researcher (Genisheva et al., 2018). MCUVE-PSO-SVR is a

combination of multiple techniques, finding that a near-optimal set

of hyperparameters can require domain expertise, which is more

complex to implement and less interpretable (Wang et al., 2022).

While a one-dimensional fully convolutional network (1D-FCN) has

been proposed to quantitatively analyze the nicotine composition of

tobacco leaves, it did not take into account the impact of noise on the

dataset. As a result, the accuracy of the predictive nicotine content

may be affected (Jiang et al., 2021). Based on the prior research, an

imperative in model construction involves the implementation of

facile data pre-processing techniques, a parsimonious network

architecture, a diminished count of layers, and a thorough

evaluation of overfitting propensity.

Hence, the main purpose of this study is to develop a new

approach for predicting the nicotine content of tobacco leaves. This
TABLE 1 Comparison table of related work.

Proposed method Preprocess
method

Limitations

Consensus successive projection algorithm (SPA)–multiple linear regression
(MLR) (Liu et al., 2015)

SG Sensitive to noise and slow to converge

Kernel regression methods (Mora and Schimleck, 2009) SNV, MSC, SG Sensitive to outliers and computationally expensive

Artificial neural network regression model (Mutlu et al., 2011) None Prone to overfitting without any regularization

Improved deep CNN classification model (Wang et al., 2020) None Pooling can reduce the representational capacity of model

Synergy PLS regression model (Sampaio et al., 2018) SNV, MSC, SG The number of PLS factors and wavelength interval selection are
time-consuming

New iterative PLS regression model (Genisheva et al., 2018) SNV Sensitive to the initial values of the parameters and more
computationally expensive

MCUVE-PSO-SVR model (Wang et al., 2022) SNV, SG More complex to implement and less interpretable

A 1D-FCN model (Jiang et al., 2021) None Does not consider the impact of noise on the dataset
SG, Savitzky–Golay; SNV, standard normal variate; MSC, multiplicative scatter correction; CNN, convolutional neural network; PLS, partial least squares.
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paper proposed a CNN‐based method for quantitative modeling of

the NIR spectral dataset, composed of multiple building blocks,

such as four convolution layers and one fully connected layer. In the

meantime, a technique called batch normalization was used to make

the training of neural networks faster and more stable between

convolution layers (Ioffe and Szegedy, 2015), choosing the rectified

linear unit (ReLU) activation function for each deep learning

network to reduce the likelihood of vanishing gradients

(Agarap, 2018).
2 Materials and methods

2.1 Data collection

2.1.1 Near-infrared spectral dataset
In this study, all samples of tobacco leaves were collected from

provincial tobacco industrial companies in China, which were the

most representative sample in 2020. Relying on reference standards

in the tobacco industry, the sample can be crushed with a finger

after the drying process. The Retsch Ultra Centrifugal Mill ZM 200

is used to grind materials to produce particles with a diameter of 1–

10 mm. The resulting powder is sieved through a 0.250-mm (60

mesh) sieve, and the particles that pass through the sieve are mixed

and placed in a sealed bag.

Spectra of tobacco leaves were acquired with the analytical

instrument, which is the MPA II FT-NIR spectrometer made by

Bruker. We have set a series parameter of equipment, such as the

resolution is 8 cm−1, the number of scans is 64, and the NIR spectral

region is from 3,999 to 10,001 cm−1. As a result, the averaged NIR

spectra of 620 samples were collected for analysis, which is shown in

Figure 2. The appearance and trend of spectral profiles of different

samples exhibited similar shapes and trends. Still, some variations

in absorbance reflected the different accumulation of chemical

components in different samples.
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2.1.2 Nicotine content acquisition
As an instrumental analysis method, the continuous flow

technique has been generally used for rapid and accurate analysis

of samples. After a series of sample preparation procedures, tobacco

leaves’ nicotine content was measured with the analytical standards

in the tobacco industry.
2.2 Preprocessing of spectral data

In the original data space, one of the first crucial steps in deep

learning (DL) is the preprocessing of the dataset. Through the

comprehensive analysis of the spectral data, some problems were

found during the process of modeling, such as being inconsistent,

erroneous, and missing. Based on the literature review and the

research finding, there are several existing preprocessing techniques

to assure model robustness.

To minimize the unwanted negative influence of any external

factors on the measured spectra, especially the effects of instrument

noise, the standard normal variate (SNV) algorithm calculates the

mean and standard deviation over the spectral wavelengths of all

samples. Its purpose is to reduce the potential impact of different

measurements (Mishra and Lohumi, 2021). In the multiplicative

scatter correction (MSC) method (Helland et al., 1995), it is

assumed that scattering effects in spectral data cause a shift in the

baseline of the spectra. The average spectrum is calculated and used

as a reference spectrum to correct this shift. However, NIR spectral

signals are highly overlapping and strongly correlated; SNV is

exclusively used to eliminate the effect on the spectra due to the

uneven distribution of particle, without considering the other

random noise. Moreover, it is supposed that spectral data follow a

normal distribution, and the dataset may lose some necessary

information for model calibration after SNV processing. By

contrast, the Savitzky–Golay (SG) filter has been developed as a

popular method for spectral smoothing. (Savitzky and Golay, 1964),

which can locally fit a specialized polynomial of moving window to

remove an amount of noise and improve the signal-to-noise ratio

(SNR) of a spectral dataset. The desired signal of the original dataset

was a significant enhancement, as well as the excellent and much

more efficient preservation of sharp absorbance peak.

In this research, all spectral data with obvious errors are

eliminated. To avoid an overfitting problem, we assume the spectral

dataset was divided into two pieces by the train_test_split function

from the scikit-learn module (Bi and Hu, 2020): 80% is the training

dataset (validation set is taken out of them), and the remaining 20% is

the test dataset. After the application of PCA to the overall dataset, it

was observed fromFigure 3 that the distribution of the divided training

dataset and the test dataset was consistent under the first two principal

components. This indicates that the split strategy is suitable for use in

machine learning models, as the training and test datasets are

representative of the same underlying distribution. At the same time,

SG smoothing is selected for preprocessing; the results are displayed in

Figure 4. Previous parameter optimization of experiments shows that

the following set of parameter values gave the best results (Rozov,

2020): window_length = 17, polyorder = 2, and deriv = 1.
FIGURE 2

NIR spectra for tobacco leaves collected from various samples. NIR,
near-infrared.
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2.3 Lightweight 1D-CNN model

A CNN-based prediction model for nicotine content is

proposed in this paper. The goal of CNN is to discover the

relationship between the input feature and the target data (O'Shea

and Nash, 2015). The input is convolved with multiple

convolutional layers, enabling the network to obtain and

implicitly weigh the contributions of the unintuitive feature. In

order to minimize the estimated prediction error, the

backpropagation algorithm is applied during the training process.

This algorithm updates the model’s parameters by calculating the

gradient of the loss function with respect to the input data and the

model’s parameters. The Lightweight 1D-CNN model consists of

multiple convolutional layers that extract features from the one-

dimensional spectral signal of tobacco leaf samples. This model is

designed to accelerate the prediction of tobacco nicotine content.

The present information in Figure 5 shows that the Lightweight

1D-CNN architecture consists of seven layers: one input layer, four

convolutional layers, one flatten layer, one fully connected layer,
Frontiers in Plant Science 05
and one output layer. After the data preprocessing, all training

datasets through the input layer are calculated by convolutional

layers, which effectively extract the features of the high-dimensional

spectral dataset with a set of filters. In general, the purpose of

pooling layers is to reduce the dimensions of the feature map and

increase the receptive field (Tolias et al., 2015). Considering the

limited number of spectral samples, this work does not add the

pooling operation to the back of individual convolutional layers. As

a linear transformation on the input vector, each neuron is

connected to the output node by a weight matrix within the

dense layer. In addition, instead of a random dropout operation,

batch normalization is selected in CNN to keep the spectral variance

relatively stable, speed up model training, and enhance the

generalization capability (Li et al., 2019). For each layer, the ReLU

is set as an activation function to overcome the problem of

vanishing or exploding gradients, which can enhance the weight

sparsity of the network. Finally, models are optimized in this

research by minimizing mean squared error (MSE). The nicotine

content is generated from the prediction model based on CNN and

the original input spectra.

As can be seen from Table 2, for each sample, the NIR spectra

have 1,557 points, which are taken as one-dimensional spectral

input features. Each convolutional layer has 32, 64,128, and 256

channels with a kernel of size 1 × 2 and a stride of 2, separately.

After the fourth convolution operation, the data size is reshaped

from 256 × 97 to 1 × 24,832, which represents the input vector to a

fully connected layer. In quantitative analysis of nicotine, as a

regression issue, the result is computed by the fully connected

layer and the output node.

Specifically, we choose several hyperparameters that control the

performance of the model, such as the optimizer function, learning

rate, batch size, weight decay, and the number of epochs. The values

of these hyperparameters are shown in Table 3. Instead of the

classical gradient descent procedure, the Adam optimizer can be

used to update network weights iteratively based on the spectral

training dataset (Kingma and Ba, 2014). The learning rate is one of

the most important hyperparameters, which controls how much to

adjust the model weights in response to the estimated error each

time. The batch size determines the number of training samples that

will be processed through the model at once; all the samples in the
FIGURE 4

NIR spectra for tobacco leaves after SG smoothing preprocess. NIR,
near-infrared; SG, Savitzky–Golay.
FIGURE 3

The distribution of the training dataset and test dataset under the
first two principal components.
FIGURE 5

Schematic diagram of Lightweight 1D-CNN model. 1D-CNN, one-
dimensional convolutional neural network.
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same batch size will be trained together as a group. Weight decay is

the most widely used regularization technique during training to

improve generalization performance by reducing complexity. The

number of epochs defines the number of times the complete

training dataset will be propagated through the neural network,

which equals the number of iterations if the entire training dataset is

the batch size. We can improve the model’s performance and

accuracy by carefully choosing these hyperparameters.

For an enhanced demonstration of the superiority of our

proposed model, we have conducted an analysis by comparing

two distinct forms of neural network models (1D-FCN (Jiang et al.,

2021) and Lightweight 1D-CNN) with regard to their parameters

count, number of layers, and average prediction time, and the

results are presented in Table 4. The Lightweight 1D-CNN model is

more space-efficient and faster in terms of prediction time, while the

1D-FCN model is more complex.

In the current study, we design a predictive model using Python

and the PyTorch framework (1.10.2). The CNN network

architecture was implemented using PyTorch. The model was

trained and evaluated on a workstation equipped with an i9-

12900K CPU, 256G RAM, and two NVIDIA 24GB GeForce RTX

3090 GPUs. The runtime environment for the python program was
Frontiers in Plant Science 06
created using Docker and Windows subsystem for Linux (WSL2),

which allowed for efficient and stable execution of the program.
2.4 Evaluation metrics

In order to evaluate the generalization performance of the

proposed model, there are three popular metrics selected for

analysis: root mean square error (RMSE), coefficient of

determination (R2), and residual prediction deviation (RPD).

Meanwhile, we compared the performance of different regression

models between partial least squares regression (PLSR), SVR, 1D-

CNN, and Lightweight 1D-CNN approaches to explore the best

quantitative analysis method.

The RMSE is a measure of the difference between the measured

values and the predicted values of a regression model. It is

commonly used to evaluate the average performance over the

whole dataset, which can be calculated by Equation 1, where the

variable n denotes the number of samples in the test dataset, and ŷ i

and yi are the predicted value and the measured value of the i th test

sample, respectively.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(ŷ i − yi)
2

n

s
:                                               (1)

The R2 is an important measure of the fit and accuracy of

different models in NIR spectroscopy, which can be calculated by

Equation 2, where SSE denotes the residual sum of squares, SST is

the total sum of squares, and �y is the mean measured value of the

test dataset. The value of R2 lies between 0 and 1, with higher values

indicating a stronger and more accurate model.

R2 = 1 −
SSE
SST

= 1 −o
n
i=1(ŷ i − yi)

2

on
i=1(yi − �y)2

:                                   (2)

The RPD is the ratio of the standard deviation (SD) of the

measured value to the RMSE, which can be calculated by Equation

3. The findings from prior studies classified RPD as follows

(Viscarra Rossel et al., 2006): RPD less than 1.0 indicates a very

poor predictive model, a value between 1.0 and 1.4 indicates poor

model predictions, a value between 1.4 and 1.8 indicates fair model,

a value between 1.8 and 2.0 indicates good model, a value between

2.0 and 2.5 indicates very good model predictions, and a value

higher than 2.5 indicates excellent model.

RPD =
SD

RMSE
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i=1(yi − �y)2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i=1(ŷ i − yi)
2

q :                                     (3)
3 Results

3.1 The preprocessing method

Numerous studies have found that the NIR spectral signals have

a great deal of information: the amount of substance and

configuration of a molecule, even though there are some
TABLE 2 The architecture settings of Lightweight 1D-CNN model.

Layer Name Channels Size

1 Inputs 1 (1, 1,557)

2
Covolution1

Batch normalization
ReLU

32
-
-

(32, 778)
-
-

3
Covolution2

Batch normalization
ReLU

64
-
-

(64, 389)
-
-

4
Covolution3

Batch normalization
ReLU

128
-
-

(128, 194)
-
-

5
Covolution4

Batch normalization
ReLU

256
-
-

(256, 97)
-
-

6 Flatten layer – 24,832

7
Fully connected

ReLU
-
-

500
-

8 Output 1 1
1D-CNN, one-dimensional convolutional neural network; ReLU, rectified linear unit.
TABLE 3 The training hyperparameters settings of CNN-based model.

Parameter Settings

Optimizer Adam

Learning rate 1 × 10−4

Batch size 16

Weight decay 1 × 10−8

Epochs 1,000
CNN, convolutional neural network.
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problems such as sample thickness, the noise of the instrument, and

baseline drift, which will cause great trouble in the qualitative and

quantitative analysis of samples. In this research, the collected

samples of tobacco leaves were preprocessed by SG smoothing.

The comparison before and after spectral preprocessing, as shown

in Figure 6, indicates that the original spectra were greatly affected

by noise signal and that the multicollinearity problem among the

wavenumbers is serious. In particular, Figure 6A shows that the

predictor variables in the wavenumber ranges of 4,000–7,000 and

7,000–10,000 (the region of yellow values) are more strongly

correlated with each other; their correlation coefficients (r) are

between 0.75 and 1. Figure 6B presents the correlation between the

predictor variables after applying the MSC method. Compared to

the original data, the wavenumber bands below 7,500 showed a

reduction in multicollinearity; other wavenumber bands did not

show a significant improvement. Figure 6C is the correlation

heatmap of spectra after SG smoothing, and the predictor

variables in a total of approximately 10 wavenumber bands

(4,000–4,100, 4,500–4,700, 4,700–5,000, 5,200–5,500, 6,200–6,500,

6,500–6,800, 7,000–7,700, 8,000–8,200, 8,200–9,000, and 9,000–

10,000) are strongly correlated with one another.

The RMSE results of the prediction model with different

preprocessing methods are shown in Table 5. The Lightweight

1D-CNN achieved the same RMSE of 0.04 when applied separately

to the raw data and the data preprocessed using the MSC and SG

methods on the training dataset. When the model was tested on the

independent test dataset, the RMSE values were 0.24, 0.14, and 0.21

for the raw data, the MSC-processed data, and the SG-processed

data, respectively. Moreover, it is evident that other models

outperformed both the MSC-processed data and the raw data

when applied to the SG-processed data. The SG method could be

selected for data preprocessing during the model construction to

improve model performance.
3.2 Performance analysis of
different models

In this paper, we aimed to reduce the complexity of neural

networks by using regularization techniques, such as dropout and

batch normalization, during training. We also minimize the impact

of data preprocessing on model construction by using cross-

validation to evaluate the performance of different models on a

held-out test dataset.
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To clearly demonstrate the effects of SG smoothing and dropout

on model performance, we established four different CNN models

to predict the nicotine content of tobacco leaves. After odd spectral

samples were excluded, we split the remaining 617 samples into a

training dataset of 493 samples and a test dataset of 124 samples

using an 80/20 strategy. The MSE loss during the training and test

process is shown in Figure 7. As can be seen from Figure 7A, for the

CNN models without SG smoothing, the training loss values are

both relatively large initially. Especially 1D-CNN, using the dropout

technique, has a larger initial loss value, which is higher than 1.1,

and the minimum loss value is 0.15 at the end of training. At the

same time, 1D-CNN and Lightweight 1D-CNN are both trained

with 1,000 epochs after SG smoothing; their loss values drop really

fast to 0.02, and it has been observed that the Lightweight 1D-CNN

model without the dropout procedure converges faster than the

other one. From Figure 7B, we can see that after preprocessing the

data with SG smoothing, we finished the training process, and the

loss function of the Lightweight 1D-CNN has the minimum value

on the test dataset, which is 0.05. In another model with dropout

regularization, 1D-CNN reaches convergence with the same

preprocessing method, and its loss value is 0.15. The remaining

two models, without any preprocessing applied, have the same

performance in terms of loss values, which are 0.1 and

0.12, respectively.

In order to compare the generalization performance of different

models after SG smoothing, we evaluated the CNN models with

various structures and traditional chemometrics methods like PLSR

and SVR. The experimental results of the training dataset and test

dataset are shown in Table 6. The experimental results showed that

the Lightweight 1D-CNNmodel performed better on the regression

problem without making use of dropout compared with PLSR and

SVR. The model has an RMSE of 0.04 and an R2 of 0.99 on the

training dataset and an RMSE of 0.14 and an R2 of 0.95 on the test

dataset. In contrast, the 1D-CNN model does not perform well

enough, as evidenced by its low R2 of 0.79 on the test dataset and

0.83 on the training dataset. As shown, PLSR performed better than

SVR at predicting the content of nicotine on the training dataset,

but the model performed poorly on the test dataset. Regarding RPD,

we only consider the model’s performance on the test dataset. The

proposed Lightweight 1D-CNN model has the largest RPD of 5.09

among the models tested, as shown in Table 6. This suggests that the

Lightweight 1D-CNN model is more effective at achieving the

desired outcome compared to the other models.
Discussion

Confronted with a limited amount of data but a high

dimensional NIR spectral dataset, researchers must carefully

select and apply appropriate methods to extract meaningful

information from the data. Numerous studies have been

conducted to investigate the effects of different preprocessing

methods on the accuracy and reliability of NIR spectral data.
TABLE 4 The regression report of the proposed model.

Parameter 1D-FCN Lightweight 1D-CNN

Number of model parameters 591,901,201 12,504,521

Number of layers 9 7

Average time for prediction (min) 204 32
1D-FCN, one-dimensional fully convolutional network; 1D-CNN, one-dimensional
convolutional neural network.
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In the traditional chemometrics analysis, the most commonly

used preprocessing methods are SG smoothing, SNV, and MSC,

which are applied to correct for various sources of noise and error in
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the NIR spectral data. The results of the model prediction error

regarding the use of different data preprocessing methods are

shown in Table 5. The results indicate that SG smoothing is more

suitable than MSC for the construction of a 1D-CNN model. There

are two reasons for this. First, MSC is a parametric method, which

means that it makes assumptions about the underlying distribution

or shape of the data. Specifically, MSC assumes that the spectral

data contain a baseline shift and scatter that can be corrected by

dividing the data by a reference spectrum (Smith et al., 2019). On

the contrary, as a non-parametric method, SG smoothing does not

make any assumptions about the underlying distribution or shape

of the data. This makes SG smoothing applicable to a wider range of

datasets, regardless of the characteristics of the spectral data (Zhang

et al., 2020). Second, MSC is known to sometimes overcorrect the

data, particularly when the range of concentrations is large and the

SNR is low, which can result in poor prediction accuracy. In

contrast, SG smoothing has the advantage of being a non-

parametric method, which makes it applicable to a wider range of

datasets. The use of SG smoothing has been shown to improve the

SNR of the data in several studies and enhance the correlation

between wavenumbers in spectral data, which can improve the

generalization performance of a prediction model (Acharya et al.,

2016). As shown in Figure 6, SG smoothing can help make the

absorbance peak more distinct by reducing the noise in the data,

while preserving the shape and features of the data, which can

improve the accuracy and reliability of the analysis. In this study, we

explored the use of different methods for data pre-processing when

modeling with 1D-CNN, Lightweight 1D-CNN, PLSR, and SVR. As

shown in Table 5, after comparing the performance of MSC-

processed SG-processed and raw data, we found that using SG

smoothing provided the best results.

After application of the smoothing technique known as SG

preprocessing, the correlation of the data is reduced, as shown in

Figure 6, which displays the smoothed dataset. We performed a

modeling analysis on the smoothed data using several different

regression methods, including 1D-CNN, Lightweight-CNN, PLSR,

and SVR. As Table 6 shows, the Lightweight 1D-CNNmodel had the

lowest prediction loss and higher R2 and RPD, followed by the SVR,

1D-CNN, and PLSRmodels. Compared to CNN, SVR is not effective

at modeling complex non-linear relationships in the NIR spectral

data. Especially in kernel-based SVR, the kernel function is used to

transform the input NIR spectral data into a higher-dimensional

space. This is necessary because SVR uses a linear decision boundary

in the transformed feature space, and the kernel function allows for

more complex decision boundaries to be learned. However, SVR is

sensitive to the choice of the kernel function, as demonstrated in

several studies (Chen et al., 2007; Mora and Schimleck, 2009). When

the wrong kernel function was selected, the performance of SVR was

consistently poorer than when the appropriate kernel function was

used. In addition, PLSR has been demonstrated to be a popular and

effective method for modeling NIR spectroscopic data in the

literature (Gowen et al., 2011). Nonetheless, PLSR is sensitive to

multicollinearity among the predictor variables like wavenumbers in

NIR spectral data. If a robust model is to be constructed, finding the

best principal components and latent variables is necessary. This

process can require a significant amount of time and effort, as it
A

B

C

FIGURE 6

Wavelength–wavelength two-dimensional correlation of NIR spectra.
(A) Raw data. (B) MSC. (C) SG. NIR, near-infrared; MSC, multiplicative
scatter correction; SG, Savitzky–Golay.
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involves carefully selecting the appropriate number of components

and optimizing the model using various techniques. According to

Table 6, the PLSRmodel is still prone to overfitting despite the use of

cross-validation, as indicated by the difference in performance
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between the training and test datasets. This suggests that PLSR

may be particularly susceptible to overfitting in this dataset, and

further research is needed to identify potential solutions. In our

experiments, the results in Table 6 show that using batch

normalization as a regularization technique in network

Lightweight the performance of our model compared to using

dropout in the traditional CNN model in terms of RMSE, R2, and

RPD. The RPD of the Lightweight 1D-CNN model is greater than

2.5, which means that the model has a relatively high degree of

accuracy. Batch normalization regularizes the activations of the

layers, which has several benefits, including reducing internal

covariate shifts and improving the stability of the model’s learning

process. In contrast, dropout regularizes only the weights of a model

by randomly dropping neurons during training. This can slow down

the training process and shift the variance of individual neurons

when the model transitions from training to test. Overall, the results

provide evidence that using a CNNmodel with batch normalization

can be an effective approach for predicting nicotine concentration by

NIR spectra. Further research could investigate the interpretability

of the neural network model.
Conclusion

In this study, based on NIR spectral data, we developed and

evaluated a Lightweight 1D-CNN regression model to rapidly and

accurately quantify nicotine content in tobacco leaves. The model

was trained using a dataset of NIR spectra and corresponding

nicotine levels and evaluated using a separate test dataset. The

results of experiments indicate that the proposed model achieved

higher accuracy and robustness when compared to traditional

methods such as PLSR and SVR. Additionally, we implemented SG

smoothing as a preprocessing step and added batch normalization to

each convolutional layer in place of the dropout used in traditional

1D-CNN models; the performance of the Lightweight 1D-CNN

model was further improved, resulting in a statistically significant

reduction in RMSE and increases in R2 and RPD, when the model

was evaluated on the test dataset. Our findings have potential

applications in the tobacco industry and may enable more efficient
TABLE 5 The RMSE results of models with different preprocessing methods.

Preprocessing method
Raw SG MSC

Training Test Training Test Training Test

1D-CNN 0.29 0.31 0.24 0.29 0.25 0.32

Lightweight 1D-CNN 0.04 0.24 0.04 0.14 0.04 0.21

PLSR (Gowen et al., 2011) 0.22 0.45 0.14 0.31 0.05 0.42

SVR (Leng et al., 2021) 0.24 0.33 0.25 0.29 0.59 0.63
frontier
RMSE, root mean square error; SG, Savitzky–Golay; MSC, multiplicative scatter correction; 1D-CNN, one-dimensional convolutional neural network; PLSR, partial least squares regression; SVR,
support vector regression.
A

B

FIGURE 7

The mean squared error loss of Lightweight 1D-CNN and 1D-CNN
models with and without SG smoothing on two different datasets.
(A) Training dataset. (B) Test dataset. 1D-CNN, one-dimensional
convolutional neural network; SG, Savitzky–Golay.
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and effective quality control processes. Further empirical studies are

required to explore its potential for other applications and enhance

the interpretability of the model. In addition, as part of future work,

we plan to observe how the amount of training data can affect the

deep learning models with data augmentation or generative

adversarial network (GAN)-based approaches.
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