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Metabolic profiling of
Chimonanthus grammatus
via UHPLC-HRMS-MS
with computer-assisted
structure elucidation and
its antimicrobial activity
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Chimonanthus grammatus is used as Hakka traditional herb to treat cold, flu, etc.

So far, the phytochemistry and antimicrobial compounds have not been well

investigated. In this study, the orbitrap-ion trap MS was used to characterize its

metabolites, combined with a computer-assisted structure elucidation method,

and the antimicrobial activities were assessed by a broth dilution method against

21 human pathogens, as well as the bioassay-guided purification work to clarify

its main antimicrobial compounds. A total of 83 compounds were identified with

their fragmentation patterns, including terpenoids, coumarins, flavonoids,

organic acids, alkaloids, and others. The plant extracts can strongly inhibit the

growth of three Gram-positive and four Gram-negative bacteria, and nine active

compounds were bioassay-guided isolated, including homalomenol C, jasmonic

acid, isofraxidin, quercitrin, stigmasta-7,22-diene-3b,5a,6a-triol, quercetin, 4-
hydroxy-1,10-secocadin-5-ene-1,10-dione, kaempferol, and E-4-(4,8-

dimethylnona-3,7-dienyl)furan-2(5H)-one. Among them, isofraxidin,

kaempferol, and quercitrin showed significant activity against planktonic

Staphylococcus aureus (IC50 = 13.51, 18.08 and 15.86 µg/ml). Moreover, their

antibiofilm activities of S. aureus (BIC50 = 15.43, 17.31, 18.86 µg/ml; BEC50 =

45.86, ≥62.50, and 57.62 µg/ml) are higher than ciprofloxacin. The results

demonstrated that the isolated antimicrobial compounds played the key role
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of this herb in combating microbes and provided benefits for its development

and quality control, and the computer-assisted structure elucidation method

was a powerful tool for chemical analysis, especially for distinguishing isomers

with similar structures, which can be used for other complex samples.
KEYWORDS

Chimonanthus, Chimonanthus grammatus, MS Fragmenter, ChromGenius, isofraxidin,
kaempferol, quercitrin
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Result: Nine antimicrobial compounds were identified via bioassay-guided purification, in which C68 (19.3% relative content),
C79 (6.1%), C47 (4.0%), C62 (3.7%), and C40 (3.1%) dominated in plant extract and played the key role for its antimicrobial
activities. Here is the first time to report the activity against S. aureus of C1, C53, and C79, and the anti S. aureus biofilm activity of
C40 and C79. C40, C68, and C47 have good potential to be developed as reagents against S. aureus biofilm.
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GRAPHICAL ABSTRACT
1 Introduction

As a Hakka herb, Chimonanthus grammatus M.C. Liu (ChG)

is from the Calycanthaceae family and only distributed in

Ganzhou, Jiangxi Province, China. The local Hakka people have

cultivated it for decades and utilized it as a traditional herb with

effects on cold, flu, cough, and rheumatic arthritis (Jiang et al.,

2015; Hu et al., 2022). There is a tradition to put the tender stem

and leaves inside fishpond for protecting fish against infections

(Liu et al., 2011), indicating the plant should have antimicrobial

activities and related active compounds. Although ChG was

documented as a new species in 1984, most local people treat it

as other local Chimonanthus plants, such as C. praecox, C.

salicifolius, or C. nitens, which have much longer history as

herbal medicine (Flora of China Editorial Committee, 2008).

Chimonanthus plants have been developed as several

medicaments, such as ‘Shan la mei ke li’ (granules for wind-heat
02
type common cold, fever, chills, sore throat, etc.), ‘La mei you’ (oil

for skin ulcer, eczema, swelling pain, etc.).

Chimonanthus is only distributed in south China, and by now

most research works have been done for these common species, from

which more than one hundred compounds were isolated, including

alkaloids, sesquiterpenoids, coumarins, flavonoids, organic acids, etc.

(Xiao and Liu, 2003; Deng et al., 2004; Wang et al., 2011; Li and Zou,

2018; Shuaifeng and Zhengrong, 2018; Shu et al., 2019a; Guo et al.,

2021), exhibiting antimicrobial, anti-tumor, anti-inflammatory,

antioxidant, anti-lipids, hypoglycemia, anti-depression, liver

protection, cough suppressant, anti-diarrhea, and other biological

activities (Lingyun et al., 2012; Bingkun and Yaoming, 2003; Zhang

et al., 2016; Zhang et al., 2017; Ye et al., 2020). Chimonanthus plants,

like C. praecox, also showed some toxicity against rats, rabbits, cattle,

or goats, with possible kidney damage, causing hematuria, which was

reported as the reason for its alkaloids. However, rare studies have

been done on ChG, such as genetic diversity and comparison studies
frontiersin.org
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(Jiang et al., 2012; Jiang et al., 2013; Jiang et al., 2015), the essential oil

and its activity (Liu et al., 2011), and several isolated non-volatile

compounds (Wang, 2012; Ling, 2014; Ling and Zou, 2014; Zhang

et al., 2017; Li et al., 2020). By now, the chemical profiling of ChG and

its antimicrobial compound basis have still not been clearly

elucidated. Therefore, we focused on a comprehensive study

investigating the chemical profile via UHPLC-HRMS-MS,

antimicrobial activities against various human pathogens, and

identification of the main antimicrobial compounds via bioassay-

guided purification. In addition, for the active extracts and abundant

compounds, we determined their IC50, MBC, and antibiofilm

activities to help assess their medicinal potentials.
2 Materials and methods

2.1 Botanical sample preparation
and reagents

Herbal materials were collected from Geyou forestry station

(25°28’ N, 115°44’ E) and Maogongfa hill (25°29’ N, 115°45’ E),

Anyuan County, Ganzhou, China. The plant was identified as

Chimonanthus grammatus M.C. Liu according to the Flora of

China and http://www.theplantlist.org. The voucher specimens

(No.GZ1805) were stored in the Herbarium of Chinese Medicine

at Gannan Medical University. The reagents included water,

DMSO, formic acid, trifluoroacetic acid, acetonitrile, methanol,

ethyl acetate, hexane, antibacterial controls (ciprofloxacin and

chloramphenicol), antifungal control (miconazole), and

antibiofilm control (sodium dodecyl sulfate). The stem and leaves,

as well as the reagents, were prepared with the same methods and

resources as previously described (Hu et al., 2021a). Resazurin salt

was from Acros Organics (Lot# AC189900010, Geel, Belgium). A

reference compound, quercetin was purchased from Sigma-Aldrich

(Lot#SLBM7336V, Darmstadt, Germany).
2.2 Antimicrobial and antibiofilm testing

The crude extracts and separated fractions were assessed for their

antimicrobial activities by a broth microdilution method in 96-well
Frontiers in Plant Science 03
microtiter plates, and the IV (inhibition value %), IC50 (concentration

inhibiting growth by 50%) calculations, and heat map analysis were

performed as described before (Hu et al., 2021a). The 21 human

pathogens for assessing the extracts included six Gram-positive (G+)

bacteria [SE: Staphylococcus epidermidis (ATCC 1457), SA:

Staphylococcus aureus (ATCC6538, Rosenbach), LI: Listeria

innocua (LMG 11387), EF: Enterococcus faecalis (HC-1909-5), ML:

Micrococcus luteus (DPMB 3) and BC: Bacillus cereus (LMG9610)],

nine Gram-negative (G–) bacteria [PA: Pseudomonas aeruginosa

(PAO1), EC: Escherichia coli (ATCC 47076), SS: Shigella sonnei

(LMG 10473), SF: Shigella flexneri (LMG10472), EA: Enterobacter

aerogenes (ATCC 13048), AB: Acinetobacter baumannii (RUH134),

SLE: Salmonella enterica subsp. enterica (ATCC 13076), BD:

Brevundimonas diminuta (from Prof. Rob Lavigne at KU Leuven)

and AH: Aeromonas hydrophila (ATCC 7966)], and six fungi [CP:

Candida parapsilosis (ATCC 22019), CA: C. albicans (SC 5314), CG:

C. glabrata (ATCC 2001), CAU: C. auris (OS299), CU: C. utilis

(IHEM 4005), and SC: Saccharomyces cerevisiae (ATCC 7754)]. The

abundant pure compounds were also tested against a biofilm strain:

Staphylococcus aureus (USA 300). The preformed biofilm and biofilm

formation activities were tested for BIC50 (concentration inhibiting

biofilm formation by 50%), and BEC50 (concentration required to

eradicate 50% of a preformed biofilm) as described before (Kipanga

et al., 2020).
2.3 Isolation and purification

The large-scale extracts were prepared by a sonication

assistance method in methanol and ethyl acetate separately, then

combined as the final ChG extract. The mixture of extraction was

separated via a silica gel column in a similar way as the previous

study (Hu et al., 2021a). In brief, 6.4 g of dried extracts (obtained

from 200 g plant materials) was used for the elution by the mobile

phases consisting of hexane (A), ethyl acetate (B), methanol (C),

and 25% acetic acid in methanol (D) with a gradient from 95% A

and 5% B to 100% D (5%-10% difference per 10 min, flow rate: 40

mL/min). Then 242 fractions were collected. The eight most active

fractions were selected for HPLC separation and compound

purification with semi-preparative C18 column using conditions

summarized in Table 1.
TABLE 1 HPLC gradients of selected fractions.

Fractions Dissolved in ACN% Gradients

F30 85% 0-5 min, 20% B; 8-55 min, 20% to 60% B; 55-65 min, 60% to 100% B; 65-80 min, 100% B.

F38 85% 0-5 min, 10% B; 5-10 min, 10% to 40% B; 10-65 min, 40% to 100% B; 65-80 min, 100% B.

F45 80% 0-8 min, 10% B; 8-20 min, 10% to 30% B; 20-80 min, 30% to 35% B.

F52 75% 0-8 min, 10% B; 8-62 min, 10% to 65% B; 62-72 min, 65% to 100% B; 72-80 min, 100% B.

F59 75% 0-8 min, 10% B; 8-62 min, 10% to 60% B; 62-72 min, 60% to 100% B; 72-80 min, 100% B.

F130 15% 0-8 min, 10% B; 8-60 min, 10% to 60% B; 60-70 min, 60% to 100% B; 70-80 min, 100% B.

F138 15% 0-8 min, 5% B; 8-65 min, 5% to 40% B; 65-72 min, 40% to 100% B; 72-80 min, 100% B.

F200 10% 0-8 min, 5% B; 8-65 min, 5% to 30% B; 65-72 min, 30% to 100% B; 72-80 min, 100% B.
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2.4 UHPLC-HRMS-MS condition
and data analysis

The MS samples were randomly sampled from the extract and

redissolved in MeOH at 0.1 mg/mL, then 5 ml of 20-times dilution

was injected for each MS detection. An Ultimate 3000 UHPLC

system coupled to an ultra-high resolution Orbitrap Elite hybrid

mass spectrometer was used. The equipment setting, data analysis,

and heat map were done as described before (Hu et al., 2021a), from

which small changes were made for the MS optimization like the

previous study (Hu et al., 2021b), as follows: full scan mode with

100-1500 m/z mass range, MS/MS fragmentation for top 10

precursors (dd-MS2-TOP 10) with repetition in the range of 100-

1500 m/z. The MS data were analyzed by the software packages,

Xcalibur 4.2, Freestyle™ 1.5, ACD/MS Workbook Suite 2021 with

MS Fragmenter, and ChromGenius.
3 Results and discussion

3.1 Chemical profiling of ChG

The MS data of ChG extract was automatically matched with a

manually built database via ACD/MS Workbook Suite. The total

ion chromatogram (TIC) of the plant extract was extracted by the

matched ions and the results of extracted ion chromatogram (EIC)

in positive ion mode were shown as an example in Figure 1. The

identified compounds and their fragmentations were listed in

Table 2. A total of 83 components were tentatively identified,

including 21 terpenoids, 20 coumarins, 19 flavonoids, 15 organic

acids, 4 alkaloids, 2 glycosides, 1 anthraquinone, and 1 steroid. Of

note, 5,6,7-trimethoxycoumarin and kaempferol had the highest

relative contents (23% and 19%, respectively) according to the peak

area comparison, and the other main components with more than

2% contents are E-4-(4,8-dimethylnona-3,7-dienyl)furan-2(5H)-

one, scopoletin, nicotiflorin, scoparone, quercitrin, quercetin,

isofraxidin, fraxetin, luteolin, cucumin E, and melanoxetin. To

date, this is the first report on the chemical profiling of ChG non-

volatile compounds by mass spectrometry, as well as the

fragmentation patterns of most compounds here.
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3.2 Computer-assisted structure
elucidation by MS

UHPLC-HRMS-MS data was analyzed for chemical

identification in several steps. Firstly, precursor ions were obtained

by auto calculation in the ACD/MSWorkbook Suite. Then, the ultra-

high-resolution mass was searched in chemical databases, such as

COCONUT (https://coconut.naturalproducts.net/), and a manually

built database of Chimonanthus plants. The latter (custom) database

(Supplementary Material 1) should provide the best chance for

correct identifications, because these compounds were isolated and

identified from Chimonanthus plants before. In all, 83 compounds

were identified from the ChG extract, including 17 isomers of 39

compounds. To illustrate the details, taking [M+H]+ 303.0499 m/z

and [M-H]- 301.0350m/z precursor ions as an example, there were 4

peaks from the ChG extract with the same ions eluting at the

retention times of 12.997, 13.330, 13.902, and 15.840 min

(Figure 2-S1). The mass was compatible with the chemical

formulas C15H10O7 or C15H11O7
+. After searching the ultra-high-

resolution mass in databases, 55 isomers were found (Figure 2-S2), of

which only quercetin was reported in Chimonanthus plants before

(Shu et al., 2019). Therefore, public databases were searched for

fragmentation spectra corresponding to the experimental MS2

spectra(Figure 2-S3a). In addition, MS Fragmenter was used to

predict the fragmentation patterns for the compounds without

available spectra (Figure 2-S3b). Those four isomers have quite

similar fragments in MS2 spectra, suggesting that their structures

could come from the same chemical class. In this step, most of the 55

isomers were eliminated, and several possible ones were retained as

candidates according to the fragmentation pattern predictions. The

main fragmentation pathway of quercetin is shown in Figure 2-S3B,

in which the most intense peaks were assigned by MS Fragmenter,

such as 257 (C14H11O6
+), 229 (C13H9O4

+), 165 (C8H5O4
+), 137

(C7H5O3
+), 285 (C15H9O6

+), 303 (C15H11O7
+), 247 (C13H11O5

+),

111 (C6H7O2
+), 121 (C7H5O3

+), 275 (C14H11O6
+), 193 (C9H5O5

+),

etc. To confirm these predictions and also distinguish the isomers

with similar structures, ChromGenius was used for retention time

calculations (Figure 2-S4), then those four isomers were assigned as

the final identifications.

Based on those steps, the spectra of all four compounds can be

interpreted and verified: 2’,4’,5,7,8-pentahydroxyisoflavone (IS1), 3-

(3,4-dihydroxyphenyl)-2,6,8-trihydroxy-4H-chromen-4-one (IS2),

melanoxetin, and quercetin. Those four compounds come from

two core structures, isoflavone (IS1, IS2) and flavones (melanoxetin,

quercetin) substituted with hydroxyl groups at different positions.

This leads to different polarity notwithstanding chemical similarity

(Willett et al., 1998), so they can be distinguished via ChromGenius

for retention time prediction. The calculation of retention time was

performed under the same UHPLC-HRMS-MS condition for all 55

isomers. The chromatography of the final four isomers was

generated by the calculation with the regression equation:

0.03*tR2 + 1.936*tR - 6.696, and are listed in Figure 2-S4c, where

these four components gave k’ values (retention time factor) and

similarity coefficients (Sim Coeff) as 24.228, 25.569, 26.744, 29.371,
3432302826242220181614121086420
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FIGURE 1

Total ion chromatogram of Chimonanthus grammatus, and the
main components (marked with the same number as in Table 2).
frontiersin.org

https://coconut.naturalproducts.net/
javascript:;
https://doi.org/10.3389/fpls.2023.1138913
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu et al. 10.3389/fpls.2023.1138913
TABLE 2 MS identification of compounds from Chimonanthus grammatus.

No. Name RT Formula Ion
Mode

Calculated
m/z

Observed
m/z

Diff.
(ppm)

MS/MS
Fragments

RC a

(%)

1 Homalomenol C 9.90 C15H26O3 [M
+H]+

255.1955 255.1955 0.00 237.2567, 219.2709,
201.3904, 163.2317,
159.2447, 95.2578

0.043

[M-H]- 253.1810 253.1806 -1.58 235.0760, 225.8991,
209.1213, 191.1002,
183.1498, 164.9577

2 Casimiroedine 10.29 C21H27N3O6 [M
+H]+

418.1973 418.1973 0.00 401.3553, 282.1857,
265.1134, 193.9913,
137.0768

0.090

3 Methyl b-hydroxy-benzoate 10.36 C8H8O3 [M
+H]+

153.0546 153.0546 0.00 135.1994, 125.0194,
109.0685, 93.1375

0.003

4 Chlorogenic acid 10.80 C16H18O9 [M
+H]+

355.1024 355.1022 -0.56 337.4137, 285.1088,
266.9599, 193.0769,
163.1834

0.002

5 Methyl 4-b-d-glucopyranosyl-ferulate 10.94 C17H22O9 [M
+H]+

371.1337 371.1331 -1.62 355.1042, 311.5054,
209.0489, 179.1788,
147.2108

0.001

6 Fraxin/7-Hydroxy-6-methoxy-2-oxo-2H-
chromen-8-yl a-L-galactopyranoside

11.03 C16H18O10 [M
+H]+

371.0973 371.0974 0.27 355.1338, 226.9893,
217.4950, 209.0205,
163.2549

0.229

7 (+)-Calycanthine/(-)-calycanthine/(-)iso-
calycanthine

11.22 C22H26N4 [M
+H]+

347.2230 347.2231 0.29 304.3145, 290.1706,
285.3776, 273.2586,
173.2570

0.748

8 Meratin 11.29 C27H30O17 [M
+H]+

627.1556 627.1559 0.48 609.1452, 595.1294,
567.1346, 447.0924,
325.1132, 163.0604

0.014

9 Scopolin 11.31 C16H18O9 [M
+H]+

355.1024 355.1021 -0.84 267.2575, 251.4835,
193.0445, 163.0500

0.259

10 Isoscopoletin 11.33 C10H8O4 [M
+H]+

193.0495 193.0493 -1.04 178.2558, 165.1324,
161.0099, 149.3918,
133.0560, 117.0862

0.565

11 Methylparaben 11.61 C8H8O3 [M
+H]+

153.0546 153.0547 0.65 135.2316, 125.0681,
121.0431, 109.1384,
93.0598

0.015

12 (+)-Vomifoliol 11.61 C13H20O3 [M
+H]+

225.1485 225.1488 1.33 207.1083, 183.2634,
167.0187, 149.2507,
123.1946, 109.2451

0.060

13 Fraxetin 11.63 C10H8O5 [M
+H]+

209.0444 209.0445 0.48 194.2644, 181.1243,
177.2570, 163.1661,
149.1060

2.929

14 Kuromanin 11.67 C21H21O11
+ [M]+ 449.1078 449.1079 0.22 431.4693, 413.4693,

353.2398, 287.1261
0.017

15 Calycanthoside 11.69 C17H20O10 [M
+H]+

385.1129 385.1130 0.26 367.1024, 353.0867,
335.0761, 325.0918,
163.0601

0.003

16 Benzyl alcohol a-L-rhamnopyranosyl
(1!6)-b-D-glucopyranoside/Phenethyl
alcohol-b-D-xylopyranosyl (1!6)-b-D-
glucopyranoside

11.78 C19H28O10 [M
+H]+

417.1755 417.1751 -0.96 399.3967, 385.2809,
329.2489, 255.1477,
194.1008,

0.002

17 Tomenin 11.97 C17H20O10 [M
+H]+

385.1129 385.1131 0.52 367.1026, 349.0918,
325.0920, 179.0550,
163.0602

0.001

(Continued)
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TABLE 2 Continued

No. Name RT Formula Ion
Mode

Calculated
m/z

Observed
m/z

Diff.
(ppm)

MS/MS
Fragments

RC a

(%)

18 (3-Acetyl-6-acetyloxy-7-hydroxy-7-
methyl-4-propan-2-yl-1,2,3,3a,4,5,6,7a-
octahydroinden-5-yl) acetate

11.99 C19H30O6 [M
+H]+

355.2115 355.2120 1.41 337.4359, 301.1819,
267.0030, 211.2492,
193.2132, 163.1808

0.038

19 Syringic acid 12.08 C9H10O5 [M
+H]+

199.0601 199.0599 -1.00 199.0601, 181.0498,
166.0266, 151.0392,
122.0367

0.010

20 Cyanidin 3-O-rutinoside 12.12 [C27H31O15]
+ [M]+ 595.1657 595.1661 0.67 577.5649, 449.0775,

433.4061, 432.6970,
415.2662, 287.1130

0.034

21 p-Coumaroylquinic acid 12.33 C16H18O8 [M
+H]+

339.1074 339.1076 0.59 321.3571, 311.1271,
273.2238, 176.9738,
146.9915

0.147

22 3-Hydroxy-5,6-epoxy-b-ionol 3-O-b-D-
glucopyranoside

12.35 C19H32O8 [M
+H]+

389.2170 389.2172 0.51 371.2066, 328.1887,
316.1520, 163.0609

0.013

23 Pisonin C 12.42 C10H8O5 [M
+H]+

209.0444 209.0445 0.48 194.2037, 181.2864,
163.2250, 148.9003,
107.2939

0.684

24 trans-p-Coumaraldehyde 12.63 C9H8O2 [M
+H]+

149.0597 149.0599 1.34 131.2086, 121.1665,
107.1090, 93.6356,
79.1051

0.013

25 7-Hydroxy-4-isopropyl-6-
methylcoumarin

12.72 C13H14O3 [M
+H]+

219.1016 219.1017 0.46 201.2499, 189.1153,
174.2192, 159.3086,
131.2345

0.289

26 Salifoxacine A/Salifoxacine B 12.93 C22H26N4O [M
+H]+

363.2179 363.2186 1.93 345.2668, 332.4304,
175.2455, 173.1292,
130.1643

0.360

27 2’,4’,5,7,8-Pentahydroxyisoflavone 13.00 C15H10O7 [M
+H]+

303.0499 303.0500 0.33 285.0612, 257.1276,
229.1588, 201.2081,
165.1519

0.952

28 Rutin 13.02 C27H30O16 [M
+H]+

611.1607 611.1608 0.16 575.5147, 465.2427,
449.2732, 303.0549

1.468

29 p-Coumaric acid 13.08 C9H8O3 [M
+H]+

165.0546 165.0547 0.61 165. 0556, 147.0444,
130.0416, 118.0420,
102.0464

0.028

30 Caffeic acid 13.21 C9H8O4 [M
+H]+

181.0495 181.0498 1.66 163.1955, 153.2260,
139.1021, 135.1369,
121.0201

0.052

31 Jasmonic acid 13.29 C12H18O3 [M
+H]+

211.1329 211.1330 0.47 193.1317, 183.0209,
165.3889, 123.1810,
95.2296

0.183

[M-H]- 209.1180 209.1187 3.35 165.1991, 163.0641,
124.9956, 95.0152,
82.8971

32 Isoquercitrin 13.31 C21H20O12 [M
+H]+

465.1028 465.1029 0.22 447.3377, 429.3558,
415.5456, 399.2437,
367.5966, 343.0088,
303.0803

0.822

33 3-(3,4-Dihydroxyphenyl)-2,6,8-
trihydroxy-4H-chromen-4-one

13.33 C15H10O7 [M
+H]+

303.0499 303.0500 0.33 303.2198, 257.1329,
229.1967, 165.1119,
153.0812

1.352

34 Scopoletin 13.45 C10H8O4 [M
+H]+

193.0495 193.0497 1.04 178.1470, 165.1160,
160.9847, 147.2249,
133.1324

5.484
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TABLE 2 Continued

No. Name RT Formula Ion
Mode

Calculated
m/z

Observed
m/z

Diff.
(ppm)

MS/MS
Fragments

RC a

(%)

35 Luteoloside 13.45 C21H20O11 [M
+H]+

449.1078 449.1086 1.78 431.4451, 395.3226,
384.2781, 329.3301,
287.1150

0.354

36 Nicotiflorin 13.45 C27H30O15 [M
+H]+

595.1657 595.1665 1.34 449.3987,433.5779,
431.4893, 287.1202,
213.2154

5.072

37 2,6,2’,6’-Tetra-methoxy-4,4’-bis (2,3-
epoxy-1-hydroxyl-propyl)-biphenyl

13.49 C22H26O8 [M
+H]+

419.1700 419.1695 -1.19 401.2791, 282.2223,
208.0349, 194.0492,
136.9383

0.015

38 Narcissin 13.51 C28H32O16 [M
+H]+

625.1763 625.1758 -0.80 607.1663, 565.1555,
461.1083, 309.1187,
147.0654

0.004

39 7-Hydroxy-6-methoxych roman-2-one 13.53 C10H10O4 [M
+H]+

195.0652 195.0650 -1.03 177.0824, 135.1149,
133.0601, 121.0901,
81.0978

0.026

40 Isofraxidin 13.59 C11H10O5 [M
+H]+

223.0601 223.0599 -0.90 208.0067, 195.2093,
191.4253, 181.4583,
162.9882

3.083

[M-H]- 221.0460 221.0461 0.45 205.0729, 176.8949,
149.0305, 126.8071

41 Cleomiscosin B 13.66 C20H18O8 [M
+H]+

387.1074 387.1073 -0.26 369.2598, 298.2961,
234.8281, 225.2734,
207.3047

0.061

42 Astralgin 13.66 C21H20O11 [M
+H]+

449.1078 449.1077 -0.22 383.4879, 353.0158,
287.0600

0.999

43 Cleomiscosin C 13.68 C21H20O9 [M
+H]+

417.1180 417.1180 0.00 399.5276, 389.4977,
282.3288, 255.1120,
194.0420, 165.4308

0.055

44 (-)-Loliolide 13.70 C11H16O3 [M
+H]+

197.1172 197.1173 0.51 179.2507, 160.6769,
135.2392, 107.1514

0.324

45 Luteolin 13.80 C15H10O6 [M
+H]+

287.0550 287.0552 0.70 287.0794, 258.2573,
213.2696, 153.1762,
141.2531

2.419

46 meso-Chimonanthine/Chimonanthine 13.80 C22H26N4 [M
+H]+

347.2230 347.2226 -1.15 316.2624, 290.3053,
285.1615, 237.2980,
173.0902, 144.1213

0.049

47 Quercitrin 13.80 C21H20O11 [M
+H]+

449.1078 449.1081 0.67 431.3559, 303.2665,
287.1027

4.000

[M-H]- 447.0930 447.0931 0.22 429.0628, 367.3325,
327.0300, 300.9843,
284.0090, 254.9638,
198.8138

48 Blumenol C 13.88 C13H22O2 [M
+H]+

211.1693 211.1693 0.00 193.1203, 169.2938,
133.2207, 105.1861,
91.0543

0.049

49 Melanoxetin 13.90 C15H10O7 [M
+H]+

303.0499 303.0498 -0.33 303.2515, 257.1025,
229.2363, 164.9839

2.188

50 Luteolin 7-O-(6-O-Malonyl-b-D-
Glucoside)

14.36 C24H22O14 [M
+H]+

535.1082 535.1088 1.12 517.2321, 395.1935,
329.2661, 287.1368

0.422

51 Chimsalicifoliusin B 14.48 C20H14O8 [M
+H]+

383.0761 383.0764 0.78 351.2394, 319.2092,
267.1504, 201.0965,
160.0562

0.008
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TABLE 2 Continued

No. Name RT Formula Ion
Mode

Calculated
m/z

Observed
m/z

Diff.
(ppm)

MS/MS
Fragments

RC a

(%)

53 Stigmasta-7,22-diene-3b,5a,6a-triol 14.50 C28H46O3 [M
+H]+

431.3520 431.3521 0.23 413.4407, 385.3807,
343.2612, 311.4564,
277.4949

0.013

54 Emodin-8-O-b-D-glucopyranoside 14.52 C21H20O10 [M
+H]+

433.1129 433.1136 1.62 397.2943, 329.1075,
287.2781, 271.3486,
144.1353

0.520

54 Yingzhaosu C 14.82 C15H22O3 [M
+H]+

251.1642 251.1643 0.40 233.2981, 215.0963,
205.5200, 161.0398

1.693

55 Scoparone 14.89 C11H10O4 [M
+H]+

207.0652 207.0653 0.48 191.4636, 179.1335,
175.1765, 164.1226,
151.1009

4.232

56 Benzyl acetate 14.90 C9H10O2 [M
+H]+

151.0754 151.0755 0.66 133.1454, 123.0562,
109.0509, 107.0399,
81.1841

0.049

57 trans-Cinnamic acid 15.40 C9H8O2 [M
+H]+

149.0597 149.0598 0.67 121.2588, 107.1200,
103.1292, 93.0771

0.036

58 6,7,8-Trimethoxycoumarin 15.45 C12H12O5 [M
+H]+

237.0757 237.0758 0.42 222.0765, 209.1855,
193.0954, 176.1606,
149.2395

0.402

59 Ethylparaben 15.53 C9H10O3 [M
+H]+

167.0703 167.0701 -1.20 149.0444, 125.0413,
121.1554, 107.1059,
95.7185

0.082

60 Cleomiscosin A 15.78 C20H18O8 [M
+H]+

387.1074 387.1076 0.52 369.2173, 357.1235,
337.2031, 263.2182,
161.2504

0.186

61 5,6,7-Trimethoxycoumarin 15.82 C12H12O5 [M
+H]+

237.0757 237.0757 0.00 222.0461, 209.0504,
204.0299, 193.1172,
176.0104

23.311

62 Quercetin 15.84 C15H10O7 [M
+H]+

303.0499 303.0498 -0.33 303.3013, 285.2981,
257.3037, 229.0610,
164.9685, 137.1835

3.694

[M-H]- 301.0350 301.0356 1.99 282.9657, 272.9723,
256.9994, 206.9231,
162.9725

63 4,4’-Biisofraxidin/3,3’-Biisofraxidin 16.40 C22H18O10 [M
+H]+

443.0973 443.0972 -0.23 428.3538, 415.1752,
387.1393, 383.1222,
355.1165, 327.1256

0.049

64 Hymenain 16.70 C20H14O8 [M
+H]+

383.0761 383.0762 0.26 351.2722, 267.2624,
241.2161, 201.1194,
158.1122

0.017

65 Chimsalicifoliusin A 16.74 C21H16O9 [M
+H]+

413.0867 413.0858 -2.18 413.4084, 395.4293,
385.3285, 367.6625,
275.2887, 227.5899

0.022

66 Arteminorin A 16.84 C22H18O10 [M
+H]+

443.0973 443.0979 1.35 425.4505, 387.3369,
237.0622, 221.2556,
207.0823, 179.2379

0.028

67 4-Hydroxy-1,10-secocadin-5-ene-1,10-
dione

16.95 C15H24O3 [M
+H]+

253.1798 253.1799 0.39 235.4263, 217.3340,
199.3908, 289.1205,
169.1463, 111.2576

0.641

[M-H]- 251.1650 251.1658 3.19 233.1077, 207.0895,
205.1244, 189.1191,
153.0140, 111.2131,
95.2395
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and 0.794, 0.785, 0.790, 0.790, respectively. The k’ values measured

the period of time that the sample component resided in a

stationary phase relative to the time it resides in the mobile

phase, and it was calculated as (tR – t0)/t0, in which tR and t0

implied the retention time and dead time, respectively. According to
Frontiers in Plant Science 09
the definition in ChromGenius, Sim Coeff is applied by the

structural similarity to the current, and the value which stands

closer to 1 provides better results for the calculation. Hence, it was

considered that the calculation of these four isomers in Figure 2-S4

exhibited sufficient reliability. Moreover, to check the mass
TABLE 2 Continued

No. Name RT Formula Ion
Mode

Calculated
m/z

Observed
m/z

Diff.
(ppm)

MS/MS
Fragments

RC a

(%)

68 Kaempferol 17.07 C15H10O6 [M
+H]+

287.0550 287.0553 1.05 287.0768, 241.1896,
213.2784, 165.0745,
153.1658

19.285

69 Cucumin E 17.18 C15H20O2 [M
+H]+

233.1537 233.1535 -0.86 215.2999, 187.2966,
177.3355, 147.2748,
134.9405

2.291

70 (3-Acetyl-6,7-dihydroxy-7-methyl-4-
propan-2-yl-1, 2,3,3a,4,5,6,7a-
octahydroinden-5-yl) acetate

17.47 C17H28O5 [M
+H]+

313.2010 313.2007 -0.96 314.2581, 257.3080,
239.5158, 165.3440,
123.0718, 109.1681

0.034

71 Robinlin 17.79 C11H18O3 [M
+H]+

199.1329 199.1333 2.01 183.1020, 181.1223,
167.1069, 164.0834

0.011

72 Bullatantriol/4-epi-Bullanatanriol
(1b,4a,11-oppositanetriol)

18.53 C15H28O3 [M
+H]+

257.2111 257.2104 -2.72 239.2010, 223.1692,
211.1699, 181.1230

0.003

73 Oplodiol 18.94 C15H26O2 [M
+H]+

239.2006 239.2003 -1.25 221.3019, 203.2772,
175.3271, 163.2742,
143.2712

0.049

74 Oxyphyllenodiol A/B 19.40 C14H22O3 [M
+H]+

239.1642 239.1640 -0.84 221.2058, 203.2982,
185.1899, 161.2310,
95.2554

0.538

75 (1R,3R,6S,7R,10S)-7-Isopropyl-4,10-
dimethylbicyclo[4.4.0]-dec-4-ene-3,10-
diol (Y., 2013)

19.82 C14H24O2 [M
+H]+

225.1849 225.1850 0.44 207.2649, 189.2796,
267.2000, 147.1779

0.426

76 4-Eudesmene-1b,11-diol 20.31 C15H26O2 [M
+H]+

239.2006 239.2002 -1.67 221.2938, 203.4146,
185.2233, 129.1857,
121.0872

0.019

77 2,6-Dihydroxyhumula-3(12),7(13), 9(E)-
triene

20.98 C14H24O2 [M
+H]+

225.1849 225.1844 -2.22 207.3901, 189.3300,
147.1490, 133.2743

0.011

78 Pyrocatechol 21.41 C6H6O2 [M
+H]+

111.0441 111.0438 -2.70 0.021

79 E-4-(4,8-dimethylnona-3,7-dienyl)
furan-2(5H)-one

21.89 C15H22O2 [M
+H]+

235.1693 235.1690 -1.28 217.1238, 189.2911,
175.2929, 165.0198,
139.1942

6.063

[M-H]- 233.1550 233.1547 -1.29 233.1511, 217.0485,
204.9865, 189.1096,
134.7004

80 Homalomenol A 22.12 C15H26O2 [M
+H]+

239.2006 239.2002 -1.67 221.4045, 203.1988,
175.2854, 161.2711,
95.2178

0.033

81 (+)-D-Cadinene 22.61 C15H24 [M
+H]+

205.1951 205.1949 -0.97 163.2395, 149.2708,
135.2421, 121.2355,
109.2559

0.147

82 Diisobutyl phalate 22.68 C16H22O4 [M
+H]+

279.1591 279.1596 1.79 261.2416, 219.1435,
205.0251, 201.3139,
149.1031

0.047

83 Farnesyl acetate 22.88 C17H28O2 [M
+H]+

265.2162 265.2163 0.38 247.3895, 233.3257,
221.4232, 205.3046,
189.3889

0.013
frontie
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identification and computer-assistant elucidation method

(McEachran et al., 2018; Hu et al., 2021a), a reference compound

(quercetin) was measured under the same condition, and the

retention time and fragmentation pattern were used to confirm

the predicted results.

Another 16 sets of isomers were similarly analyzed based on their

calculated tR: isomers in positive mode of m/z 149.0597 (C9H8O2),

153.0546 (C8H8O3), 193.0495 (C10H8O4), 209.0444 (C10H8O5),

225.1849 (C14H24O2), 237.0757 (C12H12O5), 239.2006

(C15H26O2), 287.0550 (C15H10O6), 347.2230 (C22H26N4), 355.1024

(C16H18O9), 383.0761 (C20H14O8), 385.1129 (C17H20O10),

387.1074 (C20H18O8), 443.0973 (C22H18O10), 449.1078 (C21H21O11
+

or C21H20O11), and 595.1657 (C27H31O15
+ or C27H30O15). Although

the MS with the computer-assisted method is excellent to distinguish

most isomers, there are still 2 types of isomers not identified due to

their quite similar structures which require NMR identification for the

pure compounds, such as m/z 347.2230 (C22H26N4) and m/z 443.0973

(C22H18O10). Form/z 347.2230, there are two isomer peaks in the ChG

extract, where the first peak corresponds to either (+)-calycanthine,

(-)-calycanthine, or (-)iso-calycanthine, and the second peak is meso-

chimonanthine or chimonanthine. The two peaks of m/z 443.0973

were identified as 4,4’-biisofraxidin (or 3,3’-biisofraxidin), and

arteminorin A, respectively.

The fragmentation prediction and retention time calculation

provided additional information to narrow the scope of chemical

candidates and have been used by many researchers before(Pelander

et al., 2009; Blaženović et al., 2018; McEachran et al., 2018; Tabudravu

et al., 2019). However, the method could be doubted, especially for the

reliability of the compound fragmentation patterns, which can be

influenced by experimental factors, such as instrument type,

dissociation technique, ionization mode, collision energy, etc.
Frontiers in Plant Science 10
According to previous studies, the fragmentation mechanisms are

highly reproducible even across instruments (Stein, 2012; Hufsky

et al., 2014), and the variations were mainly from the intensity of the

fragments. Hence, it is feasible to do the comparison based on the

predicted fragments (Champarnaud and Hopley, 2011). In MS

Fragmenter, the identification scores for comparing the experimental

fragmentation with the predictions were ranked, but it is clear that if we

only focus on the scores generated by software, the fragmentation

predictions will not be reliable for chemical identification (Schymanski

et al., 2009). Therefore, we also used ChromGenius to check the

retention time of all the chemical candidates. Afterward, the final

results were generated according to both of them.
3.3 Antimicrobial activities of
C. grammatus extracts

Four solvents with different polarities (water, methanol, ethyl

acetate, and hexane), were used to extract the stem and leaf powder of

ChG. The dried extracts, redissolved in DMSO, were tested against 21

different microbes, and the antimicrobial activities were shown in

Figure 3A. ChG extracts inhibited the growth of three G+ and four G–

bacteria (IV>50%), and their IC50 values are lower than 1 mg/mL

estimated from a two-fold dilution series. So far, other bioactivities of

different ChG parts have also been reported: antioxidant activity (IC50 =

0.5-10 mg/mL by DPPH assay) of flower extracts due to the flavonoids

(Zhang et al., 2017), antioxidant (IC50 = 12.145mg/mL byDPPH assay)

and antimicrobial activity of leaf essential oil (MIC = 2.25-4.5 mg/mL

against E. coli, P. aeruginosa, S. aureus, S. typhi, S. dysenteriae, B.

subtilis, B. thuringiensis, S. luteus, and A. aerogenes (Liu et al., 2011),

AChE activity (IC50 = 8.153 and 4.812 mg/mL for petroleum ether
FIGURE 2

MS data analysis method. S1-4: identification steps 1-4. S1: the extracted ion chromatography XIC of 303.0499 m/z [C15H11O7]
+ in positive mode.

S2: search with the exact mass in the COCONUT database. S3A: fragments of the four ions in MS2 spectra. S3B: the main fragmentation pathway of
quercetin predicted by MS Fragmenter. S4: chromatographic retention time predictions (a), regression curves (b) of four isomers by ChromGenius,
and the calculated parameters (c).
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and n-BuOH extract, respectively) and cytotoxicity of leaf extracts

(0.5-1mg/mLagainstA549cells) (Ling, 2014).Here, thehexane extract

of ChG showed activity against B. diminuta andM. luteus (IC50 = 933

and 957 mg/mL, respectively), and the EtOAc extract exhibited good

inhibition against M. luteus (IC50 = 497 mg/mL). The MeOH extract

had broad spectrum against five bacteria, including two G+ bacteria

(Staphylococcus epidermidis and S. aureus, IC50 = 926 and 498 mg/mL,

respectively), and three G– bacteria (Escherichia coli, S. flexneri and

S. enterica subsp. enterica, IC50 = 863, 907 and 964 mg/mL,

respectively), while the water extract only inhibited the growth of

B. diminuta (IC50 = 935 mg/mL). The MeOH and EtOAc extracts

showed broad spectrum with high inhibition values, thus, they were

used to extract ChG for bioassay-guided purification to identify the

bioactive compounds.

In Chimonanthus genus, there are five other species, including C.

praecox, C. salicifolius, C. nitens, C. zhejiangensis, and C.

campanulatus. Previous studies mainly concentrated on the first

three species, which extracts had activity on antimicrobial, anti-

inflammatory, anti-tumor, analgesic, antitussive, expectorant,

antipyretic, etc. (Shu et al., 2019) By now, the antimicrobial

activities have been reported for the extracts of C. nitens leaves, C.

salicifolius leaves, C. zhejiangensis leaves, C. praecox seed, as well as

the essential oil of C. praecox leaves, C. grammatus leaves, and the

total flavonoids of C. salicifolius leaves. The methanol extract of C.

praecox seed can inhibit several plant pathogens, such as Fusarium

oxysporum, Sclerotinia sderotiorum, Alternaria solani, Setosphaeria

turcica, and Bipolaris maydis (Jiwen et al., 2005). The water extract of
Frontiers in Plant Science 11
C. nitens leaves was active against S. aureus, E. coli, P. aeruginosa, S.

flexneri, Diplococcus pneumoniae, Hemolytic Streptococcus B, and

Influenza Bacillus (Ping et al., 1996; JC et al., 2002). The ethyl acetate,

dichloromethane, and n-hexane fractions from the methanol extract

of C. salicifolius leaves were reported to inhibit S. aureus, E. coli,

Bacillus subtilis, and P. aeruginosa (Yongxiang et al., 2017). The water

and ethanol extracts of C. zhejiangensis can inhibit S. aureus, E. coli,

P. aeruginosa, Klebsiella aerogenes, Salmonella typhi, K. pneumoniae,

S. pneumoniae, Haemophilus influenzae (Dongqing et al., 2005).

Moreover, the essential oil of C. praecox leaves inhibited S. aureus,

B. subtilis, and Proteus species (Zhuxiang and Gongxi, 2010), and the

essential oil of C. praecox root and fruits were active against S. aureus

and C. albicans (Zhifen et al., 2019), while C. praecox flower esential

oil inhibited S. epidermidis, E. coli, Bacillus coagulans, Sarcina luteu, S.

aureus, B. subtilis, K. pneumoniae, Proteus vulgaris, S. epidermidis

(Ying et al., 2010). The total flavonoids of C. salicifolius leaves

exhibited activity against S. typhimurium, S. enteritidis, E. sakazakii,

S. paratyphi B, S. castellani. E. coli and B. cereus (Huiping et al., 2018).

Compared with other Chimonanthus plants, the different ChG

extracts showed the antimicrobial activity against several pathogens

in this study, supporting its potential as a medicinal herb.

3.4 Active compounds elucidated via
bioassay-guided purification

A total of 6.4 g ChG extracts were obtained from the plant

materials, then resolved on a normal-phase Silica gel column
B C

D

E

A

FIGURE 3

Bioassay-guided purification work of antimicrobial compounds in C grammatus. (A) Image of plant materials and the heat map of antimicrobial
activities (IC50 in mg/mL) of different extracts; (B) Normal-phase (silica gel) column; (C) Heat map of antimicrobial activity of chromatographic
fractions; (D) reversed-phase (C18) column; (E) Heat map of activity of subfractions against SA, EC, and CA, as representatives of G+, G–

bacteria, and fungi. IV: inhibition value; The microbes’ abbreviations are six fungi, nine G– bacteria, and six G+ bacteria marked in blue, black,
and red, respectively.
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(Figure 3B) into 242 fractions. Several microorganisms were tested

with each fraction, and the inhibition values of all 242 fractions were

clustered in a heat map (Figure 3C). The eight most active fractions

(F30, 38, 45, 52, 59, 130, 138, and 200) were selected for further

purification. Afterward, around 2 mg of these fractions were

injected into HPLC with a semipreparative reversed phase C18

column for isolating the active compounds. From each HPLC run,

80 subfractions were collected after optimizing separation

conditions (see Table 1) and tested against selected

microorganisms: S. aureus (Gram-positive), E. coli (Gram-

negative), and C. albicans (fungus), which were amongst the most

prevalent causes of bacterial and fungal infections in humans. The

inhibition values of each subfraction were shown in Figure 3D, and

their HPLC-DAD chromatographs in Figure 4A. Thus, 12, 6, and 1

active subfractions were obtained and assigned in the peaks of

chromatographs. These peaks were collected and retested for their

antimicrobial effects to confirm their activity, then they were

analyzed by UHPLC-HRMS-MS for chemical identification.

The active peaks were analyzed in both positive and negative

ion mode by the mass spectrometer, showing that all 13 peaks

corresponded to nine different compounds, homalomenol C (1),

isofraxidin (40), 4-hydroxy-1,10-secocadin-5-ene-1,10-dione (67),

stigmasta-7,22-diene-3b,5a,6a-triol (53), kaempferol (68), E-4-

(4,8-dimethylnona-3,7-dienyl)furan-2(5H)-one (79), quercitrin

(47), jasmonic acid (31), and quercetin (62) (for their

identification, see 3.2). All these compounds were already isolated

from Chimonanthus plants, which supports their identification.

Their structures were shown in Figure 4B. According to the

bioassay-guided purification, all nine compounds inhibited the

growth of the Gram-positive bacterium, S. aureus, while

compounds 40, 68, and 62 were also active against E. coli, and

only compound 31 was active against C. albicans (Figures 3E, 4A).
3.5 Antimicrobial and antibiofilm
assessments against S. aureus

For the active compounds, only four of them can be collected

for more than 1 mg in this study due to the method limitation,

which we used to do the further activity tests, including 2.6 mg
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isofraxidin (40), 5.3 mg kaempferol (68), 2.8 mg quercitrin (47), 1.1

mg E-4-(4,8-dimethylnona-3,7-dienyl)furan-2(5H)-one (79). They

were evaluated against two strains of S. aureus (ATCC6538 and

USA300) for their potentials as antimicrobial reagents, including

IC50 and MBC for antimicrobial activity, as well as BIC50 and BEC50

for anti-biofilm activity. For MBC, colony-forming units (CFU)

were calculated to determine if the bactericidal effect was greater

than 99%. All these tests were done by two-fold serial dilutions in

DMSO with concentrations ranging from 0.12-250 µg/ml. The

positive controls were ciprofloxacin and sodium dodecyl sulfate

(SDS), which were diluted as 0.15-31.3 µg/ml and 0.02%-20%,

respectively. The inhibition curves were analyzed by GraphPad

and inferred parameters were listed in Table 3 and Figure 5.

Here we noticed that higher concentrations (250, 125 µg/ml) of

compounds 40, 68, and 79 showed lower inhibition values than the low

concentrations (62.50, 31.30, 15.65 µg/ml) according to the OD and

fluorescence measurements (Figures 5A–C). A similar phenomenon of

kaempferol was reported against Bacillus cereus, which showed strong

inhibition with ≥14mm inhibition zone in 10 mM (2.9 mg/mL) while 5

and 20 mM (1.4 and 5.7 mg/mL) had moderate activity with a 12-

13.9 mm inhibition zone (Lee et al., 2011). The same was also observed

for nalidixic acid against E.coli, where increasing the concentration

after a certain point showed decreased bactericidal activity (Crumplin

and Smith, 1975). Nalidixic acid at low concentrations can cause single-

strand nicks in DNA, leading to DNA degradation and bacterial death,

while higher concentrations can also inhibit RNA and protein

synthesis, which prevents the synthesis of nucleases and reduce the

DNA nicks because nucleases are needed to generate DNA nicks. The

fact that a compound is bacteriostatic in high concentrations and

bactericidal in low concentrations has important clinical implications

since these compounds should preferably be used at a suitable low

concentration, which may also provide other advantages like less

adverse effects and less resistance development. Moreover, this

interesting observation deserve further research, especially given its

relevance for their mechanism of action.

In this study, IC50, BIC50, and BEC50 were calculated by the

front part of each curve (Figures 5A–C), which means the low

inhibition values of these high concentrations for each compound

were not included in these calculations. Based on this, the isolated

compounds, isofraxidin (40), kaempferol (68), and quercitrin (47)
FIGURE 4

Antimicrobial compounds in the HPLC–DAD chromatograms (A) from C. grammatus, and their structures (B).
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showed significant activity against planktonic S. aureus (IC50 = 13.5,

18.08, and 15.86 µg/ml), while E-4-(4,8-dimethylnona-3,7-dienyl)

furan-2(5H)-one (79) exhibited slight activity (IC50 > 250 µg/ml).

Although the positive control, ciprofloxacin, has roughly a 100-fold

lower IC50 value (0.16 µg/ml), the compounds 40, 47, and 68 can

nonetheless be considered as potential antimicrobial reagents.

Indeed the well-known natural product, berberine, showed similar

IC50 values (14.6 µg/ml) (Cernakova and Kosťá̌lová, 2008), and has

been widely used as a herbal antibiotic for treating diarrhea and

other gastrointestinal disorders for several decades (Gaba et al.,

2021). On the other hand, they showed much higher antibiofilm

activity (BIC50 = 15.43, 17.31, 18.86 µg/ml) than ciprofloxacin,

especially for inhibiting biofilm formation. Also, these three

compounds (BEC50 = 45.86, ≥62.50, and 57.62 µg/ml) can

eradicate a preformed biofilm of S. aureus.
3.6 Discussion on the bioactivity of ChG
active compounds

All nine active compounds were already reported in

Chimonanthus species. Here, we list their published bioactivities
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(Table 4) and compare those with our results. Homalomenol C (1)

was already reported to have antiplasmodial activity, cytotoxicity,

and antifungal activities, while this is the first report about its

activity against S. aureus. Jasmonic acid (31) is a fatty acid

distributed in higher plants, bacteria, and fungi. In addition to

being a famous plant hormone, it also has multiple bioactivities,

including anticancer, antidepressant, anti-aggressive, antimicrobial,

antioxidant, anti-inflammatory, anti-nociceptive, antiparasitic, etc.

It was identified as an antifungal component against Pyricularia

oryzae (syn. Magnaporthe oryzae) from wild rice. Isofraxidin (40)

exerts cytotoxic, anti-fatigue, anti-stress, cholagogic, anti-

inflammatory effects, protection against acute lung injury in mice,

antimalarial, analgesic, sedative, hypnotic, anti-complement,

antitussive, antioxidant, anti-diabetic, antilipidemic, antiviral

activity, and antimicrobial activity against B. subtilis, S. aureus, E.

coli, C. albicans, Aspergillus niger, and Ralstonia solanacearum. Our

study adds antibiofilm activity against S. aureus. Quercitrin (47) is a

component commonly found in various plants. So far, many

bioactivities have been documented, including antiinflammation,

antioxidative stress, antimicrobial, immunomodulation, analgesia,

wound healing, vasodilation, etc. Increasing evidence has implied its

antimicrobial effect against various microbes (viruses, in addition to
FIGURE 5

Antimicrobial and anti-biofilm activity against S. aureus of crude extracts and four pure compounds from C grammatus. (A) IC50 test; (B) biofilm
formation test; (C) preformed biofilm test; P, Ciprofloxacin; EX, ChG extract (two-fold serial dilutions from 1000 µg/mL).
TABLE 3 Antimicrobial and anti-biofilm activity against S. aureus.

Activity
Methanol
extract
(µg/mL)

Isolated compounds (µg/mL) Positive control

Isofraxidin (40) Kaempferol (68) C79* Quercitrin
(47)

Ciprofloxacin
(µg/mL)

SDS (%)

IC50 498 13.51 18.08 > 250 15.86 0.16 NT

MBC > 2000 > 250 > 250 > 250 > 250 ≥ 1.25 NT

BIC50 > 1000 15.43 17.31 > 250 18.86 > 31.30 < 0.625%

BEC50 > 1000 45.86 ≥ 62.50 > 250 57.62 > 31.30 < 0.625%
fro
* C79: E-4-(4,8-dimethylnona-3,7-dienyl)furan-2(5H)-one
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TABLE 4 Bioactivities of nine compounds from C. grammatus.

Compound Activities IC50
(mg/
ml)

MIC
(mg/
ml)

Inhibition
zone
(mm)

Literature

C1:
Homalomenol C

antiplasmodial activity against Plasmodium falciparum 1.2 – – (Henchiri et al., 2009)

none significant cytotoxicity against human diploid lung cell
line MRC-5

> 100 – –

cytotoxicity against human hepatocarcinoma SNU739 cancer
cells and gastric carcinoma NUGC3

– – – (Wang et al., 2011)

moderate cytotoxicity against HL-60 cell lines 9.64 – – (Yang et al., 2016b)

cytotoxicity against SMMC-7721 cell lines 12.06 – –

cytotoxicity against HeLa cell lines 9.54 – –

a stimulative effect on the proliferation and differentiation of
culture osteoblasts

0.03 ~ 3 (Hu et al., 2008)

antifungal activity against Penicillium italicum 14.37 – – (Yang et al., 2016b)

antifungal activity against Rhizoctonia solani 12.54 – –

none or slightly anti-inflammatory activity of NO-production
inhibition in LPS-stimulated RAW 264.7 cells

24.95 ±
1.69

– – (Yang et al., 2019)
(Thuy et al., 2022)

C40:
Isofraxidin

inhibit matrix metalloproteinase-7 expression and cell Invasion
of human hepatoma cells

– – – (Yamazaki and Tokiwa, 2010)

cytotoxicity against A549 human lung cancer cells 9.49±0.90 for 24 h treatment (Zhang et al., 2018)

cytotoxicity against BEAS-2B normal lung epithelial cells 18.96±0.52 for 48 h treatment

cytotoxicity against human colorectal cancer HT-29 cells 8.89 – – (Shen et al., 2017)

cytotoxicity against human colorectal cancer SW-480 cells 17.78 – –

anti-fatigue, anti-stress – – – (Sun et al., 2007)

cholagogic, anti-inflammatory effects – – – (Niu et al., 2012; Liu et al.,
2015)

acute lung injury protection in mice – – – (Niu et al., 2015)

antimalarial activity against Plasmodium falciparum 7.95 – – (Cubukcu et al., 1990)

analgesic effect – – – (Okuyama et al., 2001)

sedative and hypnotic effects – – – (Kang and Li, 2016)

anti-complement and antitussive activities – – – (Huang et al., 2020)

antioxidant activity – – – (Wang et al., 2015)

anti-diabetic, antili-pidemic effects – – – (Lu et al., 2022)

antiviral activity against influenza A virus 250 – – (Wang et al., 2017)

antimicrobial activity against Bacillus subtilis – 37.5 – (Hanmin, 2019)

antimicrobial activity against Escherichia coli – 75 –

antimicrobial activity against Staphylococcus aureus – 7 in 50 mg/ml (Acharyya and Sarma, 2014)

antimicrobial activity against Candida albicans – 6.5 in 50 mg/ml

antimicrobial activity against Aspergillus niger – 6.5 in 50 mg/ml

antimicrobial activity against Ralstonia solanacearum – – – (Yang et al., 2016a)

C67: 4-Hydroxy-1,10-
secocadin-5-ene-1,10-
dione

antimicrobial activity against Staphylococcus aureus – 7 in 100 mg/disk (Liu et al., 2017)
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TABLE 4 Continued

Compound Activities IC50
(mg/
ml)

MIC
(mg/
ml)

Inhibition
zone
(mm)

Literature

C53: Stigmasta-7,22-
diene-3b,5a,6a-triol

none activity reported – – – (Li et al., 2016)

C68: Kaempferol antioxidant, anti-inflammatory, antibacterial, antiviral,
antifungal, antiprotozoal, anticancer, hepatoprotective,
neuroprotective, and cardioprotective activity, etc.

– – – (Calderon-Montano et al., 2011;
Punia Bangar et al., 2022)

antimicrobial activity against Staphylococcus aureus – >50 – (Lin et al., 2020)

antimicrobial activity against Escherichia coli – 32 – (Deng et al., 2021)

antimicrobial activity against Staphylococcus pneumoniae – 256 – (Otsuka et al., 2008)

antimicrobial activity against Serratia marcescens – >256 –

antimicrobial activity against Enterococcus faecium – >256 –

antimicrobial activity against Enterococcus faecalis – 130.55 and 114.58 for
different strains

(del Valle et al., 2016)

antimicrobial activity against Porphyromonas gingivalis – 20 – (Cai and Wu, 1996)

antimicrobial activity against Prevotella intermedia – 20 –

antimicrobial activity against Streptococcus mutans – 2500 –

antimicrobial activity against Actinomyces viscosus – 1250 –

antimicrobial activity against Helicobacter pylori – MBC=6 – (Kataoka et al., 2001; Martini
et al., 2009)

antimicrobial activity against Propionibacterium acnes – ≤32 – (Lim et al., 2007)

antimicrobial activity against Bacillus subtilis – – 1.33 (Sati et al., 2019)

antimicrobial activity against Micrococcus roseus – – 1.00

antimicrobial activity against Pesudomanas putida – – 1.37

antimicrobial activity against Fusarium oxysporum – – 1.67

antimicrobial activity against Trametes hirsuta – – 1.33

antimicrobial activity against Staphylococcus epidermidis – >1024 – (Siriwong et al., 2016)

antimicrobial activity against Bacillus cereus ≥14 in 2.86 mg/ml (Lee et al., 2011)

antimicrobial activity against Pseudomonas aeruginosa – ≥59 – (Lee et al., 2014)

antimicrobial activity against Micrococcus luteus – 28.62 – (Ulanowska et al., 2007)

antimicrobial activity against Sarcina sp. – 28.62 –

antimicrobial activity against Vibrio harveyi – ≤2.86 –

antimicrobial activity against Vibrio cholerae – 32-128 – (Tatsimo et al., 2017)

antimicrobial activity against Shigella flexneri – 128 –

antimicrobial activity against Salmonella typhi – – 10 (Aye et al., 2018)

antimicrobial activity against Shigella boydii – – 10

antimicrobial activity against Plesiomonas shigelloides – – 12

antimicrobial activity against Enterobacter aerogenes – 128 and 256 for different
strains

(Kuete et al., 2011)

antimicrobial activity against Klebsiella pneumonia – 256 –

antimicrobial activity against Acinetobacter baumannii – 1000 – (Rofeal et al., 2021)

antimicrobial activity against fish spoilage bacteria (Proteus
mirabilis, Photobacterium damselae, Enterobacter cloacea,

– – – (Özkütük, 2022)

(Continued)
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TABLE 4 Continued

Compound Activities IC50
(mg/
ml)

MIC
(mg/
ml)

Inhibition
zone
(mm)

Literature

Serratia liquefaciens and Pseudomonas luteola) and food-borne
pathogens (Yersinia enterocolitica, etc.) via biogenic amine
production test

antimicrobial activity against Candida albicans – 15 – (Lee et al., 2012)

antimicrobial activity against Aspergillus niger – 15 –

antimicrobial activity against Candida parapsilosis – 32-128 – (Rocha et al., 2019)

antimicrobial activity against Candida orthopsilosis – 64 –

antimicrobial activity against Candida metapsilosis – 32-64 –

antimicrobial activity against Candida krusei – 64 –

antimicrobial activity against Cryptococcus neoformans – 16 – (Tatsimo et al., 2012)

antimicrobial activity against Candida glabrata – 31.2 – (Salazar-Aranda et al., 2015)

antimicrobial activity against Candida tropicalis – >83 –

antibiofilm against Streptococcus mutans, Staphylococcus
aureus, Candida albicans, Candida parapsilosis, C. orthopsilosis,
and C. metapsilosis.

– – – (Rocha et al., 2019; Zeng et al.,
2019; Lan et al., 2020; Gao et al.,
2021)

C79: E-4-(4,8-
dimethylnona-3,7-dienyl)
furan-2(5H)-one

antimicrobial activity against Bacillus subtilis – 2000 – (Ya et al., 2013)

antimicrobial activity against Escherichia coli – 1500 –

C47: Quercitrin antiinflammation, antioxidative stress, antimicrobial,
immunomodulation, analgesia, wound healing, vasodilation,
etc. treating metabolic diseases, gastrointestinal diseases,
cardiovascular, cerebrovascular diseases, etc.

– – – (Chen et al., 2022)

antimicrobial activity against Escherichia coli – 100 – (Ajibesin et al., 2011)

antimicrobial activity against Bacillus cereus – 50 –

antimicrobial activity against Staphylococcus aureus – 50 –

antimicrobial activity against Pseudomonas aeruginosa – 100 –

antimicrobial activity against Streptococcus mutans – 64 – (Hasan et al., 2014)

antimicrobial activity against Propionibacterium acnes – 200 – (Luan et al., 2019)

antimicrobial activity against Serratia marcescens – 1024 – (Dong et al., 2016)

antimicrobial activity against Staphylococcus epidermidis <0.45 – (Gómez-Florit et al., 2014)

antimicrobial activity against Vibrio anguillarum – >2000 – (Jang et al., 2018)

antimicrobial activity against Edwardsiella tarda – 2000 –

antimicrobial activity against Streptococcus iniae – 2000 –

antimicrobial activity against Salmonella typhimurium ≈8 – – (Li et al., 2021)

antimicrobial activity against Salmonella enteritidis – 800 – (Arima et al., 2002)

antimicrobial activity against Klebsiella pneumonia >256 – (Lin et al., 2005)

antimicrobial activity against Bacillus subtilis – 200 – (Gehrke et al., 2013)

antimicrobial activity against Staphylococcus epidermid – 200 –

antimicrobial activity against Streptococcus pyogen – 200 –

antimicrobial activity against Staphylococcus saprophyti – 100 –

antimicrobial activity against Shigella sonnei – 100 –

(Continued)
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TABLE 4 Continued

Compound Activities IC50
(mg/
ml)

MIC
(mg/
ml)

Inhibition
zone
(mm)

Literature

antimicrobial activity against Cryptococcus neoformans – 100 –

antimicrobial activity against Candida tropicalis – 100 –

antimicrobial activity against Saccharomyces cerevisiae – 200 –

antimicrobial activity against Listeria monocytogenes – 150 – (Elansary et al., 2020)

antimicrobial activity against Mariniluteicoccus flavus – 130 –

antimicrobial activity against Aspergillus flavus – 170 –

antimicrobial activity against Aspergillus ochraceus – 180 –

antimicrobial activity against Aspergillus niger – 120 –

antimicrobial activity against Candida albicans – 270 –

antimicrobial activity against Penicillium funiculosum – 270 –

antimicrobial activity against Penicillium ochrochloron – 200 –

antimicrobial activity against Candida glabrata – 7.8-
62.5

– (Salazar-Aranda et al., 2015)

antimicrobial activity against Candida tropicalis – >83 –

antimicrobial activity against Helminthosporium sativum – 50 – (Lu et al., 2002)

C31: Jasmonic acid anticancer, antidepressant, anti-aggressive, antimicrobial,
antioxidant, anti-inflammatory, anti-nociceptive, antiparasitic,
etc.

– – – (Pirbalouti et al., 2014)

antifungal activity against Pyricularia oryzae (syn.
Magnaporthe oryzae) from wild rice

– 250 – (Neto et al., 1991)

C62: Quercetin antioxidant, anticancer, anti‐inflammatory, antioxidant,
hepato‐protective, antiallergic, and antimicrobial activities, etc.,
preventing various diseases, e.g., osteoporosis, some forms of
cancer, tumors, lung and cardiovascular diseases, even against
aging, etc.

– – – (Patel et al., 2018) (Rauf et al.,
2018; Xu et al., 2019)

antimicrobial activity against Staphylococcus aureus – 33.8 – (Lin et al., 2020)

antimicrobial activity against Escherichia coli – 77.4 – (Alvarez et al., 2008)

antimicrobial activity against Streptococcus mutans – 2000 – (Shu et al., 2011)

antimicrobial activity against Streptococcus sobrinus – 1000 –

antimicrobial activity against Streptococcus sanguis – 2000 –

antimicrobial activity against Lactobacillus acidophilu – 2000 –

antimicrobial activity against Porphyromonas gingivalis – 4000 –

antimicrobial activity against Aggregatibacter
actinomycetemcomitans

– 2000 –

antimicrobial activity against Helicobacter pylori – 10 in 100 mg/disk (Ramos et al., 2006)

antimicrobial activity against Proteus vulgaris – 300 – (Jaisinghani, 2017)

antimicrobial activity against Salmonella enterica serotype
Typhimurium

– 2.18 – (Wang et al., 2018)

antimicrobial activity against Micrococcus roseus – – 2.33 (Sati et al., 2019)

antimicrobial activity against Pesudomanas putida – – 1.67

antimicrobial activity against Serratia marcescens – – 2.00

antimicrobial activity against Fusarium oxysporum – – 2.33
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F
rontiers in Plant Science
 17
 frontiersin.org

https://doi.org/10.3389/fpls.2023.1138913
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu et al. 10.3389/fpls.2023.1138913
over 22 bacteria, and 12 fungi), including S. aureus, E. coli, C.

albicans, etc. Stigmasta-7,22-diene-3b,5a,6a-triol (53), and 4-

hydroxy-1,10-secocadin-5-ene-1,10-dione (67) were active against

S. aureus in this study; this activity of compound 67 was reported

before, while the antimicrobial activity of compound 53 has not

been published before. So far, no other bioactivity has been reported

for them; this will require further research. Quercetin (62) is also a

common compound represented in various plants, which was first

described in 1936 and widely used due to its various actions,
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including antioxidant, anticancer, anti-inflammatory, hepato-

protective, antiallergic, and antimicrobial activities. Its wide

antimicrobial spectrum has been proven against over 32 bacteria

and nine fungi. In addition, it also shows anti-biofilm activity

against S. aureus. Kaempferol (68) is a very common compound

that has been found in many herbal medicines and edible plants. It

gained popularity due to its pharmacological properties, including

antioxidant, anti-inflammatory, antibacterial, antiviral, antifungal,

antiprotozoal, anticancer, hepatoprotective, neuroprotective, and
TABLE 4 Continued

Compound Activities IC50
(mg/
ml)

MIC
(mg/
ml)

Inhibition
zone
(mm)

Literature

antimicrobial activity against Trametes hirsuta – – 1.00

antimicrobial activity against Propionibacterium acnes – ≤64 – (Lim et al., 2007; Lee et al.,
2014)

antimicrobial activity against Salmonella enteritidis – 250 – (Arima et al., 2002)

antimicrobial activity against Bacillus cereus – 350 –

antimicrobial activity against Salmonella typhi – – 12 (Aye et al., 2018)

antimicrobial activity against Shigella boydii – – 12

antimicrobial activity against Plesiomonas shigelloides – – 14

antimicrobial activity against Enterobacter aerogenes – 128 – (Kuete et al., 2011)

antimicrobial activity against Klebsiella pneumonia – 256 –

antimicrobial activity against Bacillus subtilis – 100 – (Gehrke et al., 2013)

antimicrobial activity against Staphylococcus epidermid – 100 –

antimicrobial activity against Streptococcus pyogen – 100 –

antimicrobial activity against Staphylococcus saprophyti – 100 –

antimicrobial activity against Escherichia coli – 100 –

antimicrobial activity against Pseudomonas aeruginosa – 100 –

antimicrobial activity against Shigella sonnei – 100 –

antimicrobial activity against Micrococcus kristinae – 2500 – (Abdel-Raouf et al., 2011)

antimicrobial activity against Sarcina maxima – 2500 –

antimicrobial activity against Helminthosporium sativum – 50 – (LLu et al., 2002)

antimicrobial activity against Candida albicans – 100 – (Gehrke et al., 2013)

antimicrobial activity against Cryptococcus neoformans – 100 –

antimicrobial activity against Candida tropicalis – 100 –

antimicrobial activity against Saccharomyces cerevisiae – 100 –

antimicrobial activity against Candida parapsilosis – 0.5-4 – (Rocha et al., 2019)

antimicrobial activity against Candida orthopsilosis – 2-8 –

antimicrobial activity against Candida metapsilosis – 0.5-16 –

antimicrobial activity against Candida krusei – 2 –

antibiofilm against Bacillus subtilis, Enterococcus faecalis, E.
faecium, Listeria monocytogenes, Staphylococcus aureus,
Staphylococcus saprophyticus, Streptococcus mutans,
Streptococcus pneumoniae, Candida parapsilosis, Candida
orthopsilosis, Candida metapsilosis, Candida krusei etc.

– – – (Memariani et al., 2019; Rocha
et al., 2019)
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cardioprotective activity, etc. As an antimicrobial, kaempferol is

active against over 37 bacteria and nine fungi, including S. aureus, E.

coli, C. albicans, etc. Kaempferol was also found active against

biofilms, including S. aureus, C. parapsilosis, etc. E-4-(4,8-

dimethylnona-3,7-dienyl)furan-2(5H)-one (79) has been isolated

from Chimonanthus species and was reported to be active against B.

subtilis, and E. coli, as well as diisobutyl phalate and 4-hydroxy-3-

[(2E,6E)-3,7,11-trimethyl-2,6,10-dodecatrien-1-yl] benzoic acid,

while scopoletin only showed activity against B. subtilis. (Ya et al.,

2013). However, this study didn’t show its activity against E. coli

during bioassay-guided separation, which could be the reason for

the low content.

According to the previous study, there are many other compounds

with antimicrobial activities isolated from Chimonanthus plants,

including the alkaloids (calycanthine against plant pathogens, such as

Alternaria brassicicola, Cladosporium fulvum and Botrytis cinerea; d-

calycanthine and l-folicanthine against Exserohilum turcicum, Bipolaris

maydis, Alternaria solani, Sclerotinia sderotiorum, and Fusarium

oxysportium; etc.), the coumarins (scopoletin against M. lutus and

E.coli; 5,6,7-trimethoxycoumarin, calycanthoside, and xeroboside

against M. lutus; etc.) (Shu et al., 2019), the flavonoids, terpenoids,

essential oil, etc. The chemical investigations in Chimonanthus revealed

that these plants have high content of flavonoids (such as quercetin,

kaempferol, rutin, hyperin, isoquercitrin, afzelin, etc.), coumarins and

terpenoids [such as 21.43% 3-(4,8-dimethylnona-3,7-dienyl)-furan,

10.51% longifolenaldehyde, 11.85% (+)-2-bornanone, 5.69% D-
cadinene of Chimonanthus nitens], while with low yield of bioactive

alkaloids (Shu et al., 2019; He et al., 2022; Chen et al., 2023). The results

of this study matched well with the chemical investigations of

Chimonanthus plants, and the nine active compounds isolated from

C. grammatus included three flavonoids (47, 62, 68), three terpenoids

(1, 67, 79), one coumarin (40), steroid (53) and organic acid (31). These

nine compounds have been reported in other Chimonanthus plants,

such as homalomenol C from C. praecox fruit (Wang et al., 2011);

Jasmonic acid from C. praecox flower bud (Zhang and Chen, 2012);

isofraxidin from C. praecox flower bud, root, stem, C. salicifolius aerial

parts and C. nitens leaf; quercitrin from C. praecox flower (Shu et al.,

2019); stigmasta-7,22-diene-3b,5a,6a-triol from C. salicifolius aerial

parts (Li et al., 2016); 4-hydroxy-1,10-secocadin-5-ene-1,10-dione from

C. praecox rhizome (Y., 2013); quercetin from flower and leaf of C.

praecox, C. salicifolius, C. nitens, C. zhejiangensis, and C. grammatus;

kaempferol from flower, leaf in C. praecox, C. salicifolius, C. nitens, C.

zhejiangensis, and C. grammatus; E-4-(4,8-dimethylnona-3,7-dienyl)

furan-2(5H)-one from C. grammatus leaf (Wang, 2012; Shu

et al., 2019).

However, many natural compounds were not very clear for

their bioactivities, such as antimicrobial activities. Hence, it is worth

doing the biotest even if they are known. The bioassay-guided

purification work normally obtains the main active compounds

from plant extracts, as well as their activities, which can be quite

useful to know the chemical basis of medicinal herb’s bioactivities.

Although these nine compounds isolated here are known, it is still

important to figure out all of them from C. grammatus via bioassay-

guided purification. These active compounds can be used for quality

control when developing the plant as medicine. Furthermore, we
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report for the first time the activity of compounds 1, 53, and 79

against S. aureus, and the antibiofilm activity of compounds 40 and

79. The BIC50 and BEC50 of compounds 40, 47, and 68 were

measured for the first time via a resazurin-based viability staining

method for microbial biofi lms. According to the MS

semiquantitative analysis, compounds 68 (19.3% content), 79

(6.1%), 47 (4.0%), 62 (3.7%), and 40 (3.1%) dominated in the

ChG extract, which are the main roles in the antimicrobial activities

of ChG, according to the bioassay in this study. Kaempferol (68)

most likely accounts for much of the antimicrobial activity of the

ChG extracts, but its oral bioavailability is limited and its

pharmacokinetics are unfavorable (rapid elimination and

metabolism) (Barve et al., 2009; Zabela et al., 2016). Bioactive

analogs or certain formulations may circumvent these limitations

(Ren et al., 2019), and topical use may be possible (Özay et al.,

2019). Its safety permits use in food products as a preservative

(Martinengo et al., 2021). In this study, some minor compounds

also showed antimicrobial activity, suggesting that it is worth

pursuing even those by bioassay-guided purification. To

summarize, all nine compounds could contribute to the

antimicrobial activity of ChG extracts and their potential additive,

synergistic or antagonistic effects remain to be established.
4 Conclusions

We showed activity of different C. grammatus extracts against

SA (IC50 = 498 mg/mL for methanol extract), ML (IC50 = 957 mg/mL

for hexane extract, 494 mg/mL for EtOAc extract), BD (IC50 = 933

mg/mL for hexane extract, 935 mg/mL for water extract), EC (IC50 =

863 mg/mL for methanol extract), SF (IC50 = 907 mg/mL for

methanol extract), SLE (IC50 = 964 mg/mL for methanol extract),

and SE (IC50 = 926 mg/mL for methanol extract). These different

extracts are active against different microorganisms, which may

suggest that the plant contains different antimicrobial compounds,

presumably with different mechanisms of action. Via bioassay-

guided purification work, nine active compounds were identified,

and all are active against S. aureus, meanwhile compounds 40, 47,

62, and 68 are active against E. coli, and only compound 1 is active

against C. albicans in this study. Activity against biofilm formation

and preformed biofilms of S. aureus strains was found for

compound 40 (IC50 = 13.51, MBC≥250, BIC50 = 15.43, BEC50 =

45.86 µg/mL), 47 (IC50 = 15.86, MBC≥250, BIC50 = 18.86, BEC50 =

57.62 µg/mL) and 68 (IC50 = 18.1, MBC≥250, BIC50 = 17.31,

BEC50≥62.50 µg/mL), but not for compound 79 (IC50>250,

MBC>250, BIC50>250, BEC50>250 µg/mL). In addition, the MS

identification approach used in this study demonstrated that

computer-assisted structure elucidation with UHPLC-HRMS-MS

can work well for compound identifications, especially for

distinguishing isomers with similar structures. Combined with

chromatographic separation, it can be used for the phytochemical

analysis of herbal medicine and other complex samples. The

antimicrobial compounds reported here provide the chemical

basis of C. grammatus bioactivity and support the scientific

development of its quality control and therapeutic use.
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(2019). LC-HRMS-Database screening metrics for rapid prioritization of samples to
accelerate the discovery of structurally new natural products. J. Nat. Prod. 82, 211–220.
doi: 10.1021/ACS.JNATPROD.8B00575

Tatsimo, S. J. N., Tamokou, J. D. D., Havyarimana, L., Csupor, D., Forgo, P.,
Hohmann, J., et al. (2012). Antimicrobial and antioxidant activity of kaempferol
rhamnoside derivatives from Bryophyllum pinnatum. BMC Res. Notes 5, 1–6.
doi: 10.1186/1756-0500-5-158

Tatsimo, S. J. N., Tamokou, J.-D., Tsague, V. T., Lamshoft, M., Sarkar, P., Bag, P. K.,
et al. (2017). Antibacterial-guided isolation of constituents from Senna alata leaves with
a particular reference against multi-Drug-Resistant Vibrio cholerae and Shigella
flexneri. Int. J. Biol. Chem. Sci. 11, 46–53. doi: 10.4314/ijbcs.v11i1.4

Thuy, L., Nguyen, K., Nhu, H., Hoang, T., Do, T. T., Van, T., et al. (2022).
Sesquiterpenoids from the rhizomes of Homalomena pendula and their
anti- inflammatory act ivi t ies . Nat. Prod. Res . 25, 1–9. doi : 10.1080/
14786419.2022.2056182

Ulanowska, K., Majchrzyk, A., Moskot, M., Jakóbkiewicz-Banecka, J., and Węgrzyn, G.
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