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Introduction: Flux phenotypes from different organisms and growth conditions

allow better understanding of differential metabolic networks functions. Fluxes of

metabolic reactions represent the integrated outcome of transcription,

translation, and post-translational modifications, and directly affect growth and

fitness. However, fluxes of intracellular metabolic reactions cannot be directly

measured, but are estimated via metabolic flux analysis (MFA) that integrates data

on isotope labeling patterns of metabolites with metabolic models. While the

application of metabolomics technologies in photosynthetic organisms have

resulted in unprecedented data from 13CO2-labeling experiments, the

bottleneck in flux estimation remains the application of isotopically

nonstationary MFA (INST-MFA). INST-MFA entails fitting a (large) system of

coupled ordinary differential equations, with metabolite pools and reaction

fluxes as parameters. Here, we focus on the Calvin-Benson cycle (CBC) as a

key pathway for carbon fixation in photosynthesizing organisms and ask if

approaches other than classical INST-MFA can provide reliable estimation of

fluxes for reactions comprising this pathway.

Methods: First, we show that flux estimation with the labeling patterns of all CBC

intermediates can be formulated as a single constrained regression problem,

avoiding the need for repeated simulation of time-resolved labeling patterns.

Results: We then compare the flux estimates of the simulation-free constrained

regression approach with those obtained from the classical INST-MFA based on

labeling patterns of metabolites from themicroalgaeChlamydomonas reinhardtii,

Chlorella sorokiniana and Chlorella ohadii under different growth conditions.
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Discussion:Our findings indicate that, in data-rich scenarios, simulation-free regression-

based approaches provide a suitable alternative for flux estimation from classical INST-

MFA since we observe a high qualitative agreement (rs = 0:89) to predictions obtained

from INCA, a state-of-the-art tool for INST-MFA.
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1 Introduction

Rates or fluxes of biochemical reactions shape the pools of

metabolites that perform diverse cellular functions, from serving

as building blocks of cellular components to performing signaling

functions. While metabolite concentrations and contents can be

measured at cell- and (sub)compartment-specific level (Dietz,

2017; Lanekoff et al., 2022), reaction fluxes are estimated by

metabolic flux analysis (MFA). MFA integrates labeling patterns

of metabolites into metabolic network models, often assuming

metabolic steady state, whereby pool sizes of metabolites do not

change over time (Basler et al., 2018; Long and Antoniewicz, 2019;

Kruger and Ratcliffe, 2021). The labeling patterns are obtained

from laborious experiments in which (positionally) labeled

substrates are fed to the studied biological system (e.g. cell

culture or an entire organism). The incorporation of the label in

the internal metabolites is then quantified either in one snapshot,

suitable for studies of isotopic steady states, or over a time course,

allowing the monitoring of isotopic nonstationary state. The latter

allow monitoring of the evolution of label incorporation into

metabolic pools. As a result, there are two classes of MFA

approaches - stationary and nonstationary - that lead to

different experimental and computational advantages and

challenges in their application.

Irrespective of the type of MFA applied, the labeling patterns

can be summarized in different forms [e.g. isotopomers (Wiechert

et al., 1999), cumomers (Wiechert et al., 1999), mass isotopomer

distributions (MIDs) (Antoniewicz et al., 2007)], and their

evolution (and steady states) is described by a system of

ordinary differential equations (ODEs) obtained by using atom

transition mappings (Huß et al., 2022). These equations can be

employed to simulate labeling patterns given a (steady-state) flux

distribution along with initial labeling state and/or pool sizes of

the considered metabolites. The problem of flux estimation is then

tantamount to estimating a flux distribution for which the

simulated labeling patterns are an acceptable fit for the

experimentally measured. The acceptability of the fit is assessed

by a goodness-of-fit measure of choice. To this end, algorithmic

advances have led to decreasing the number of simulated variables

[e.g. via elementary metabolite units (EMUs)] and expanding the
02
applicability to networks of large size (Gopalakrishnan et al., 2018;

Hendry et al., 2020). This workflow for flux estimation from so-

called global MFA approaches is well established even for the

isotopic nonstationary state and implemented in toolboxes like

INCA (Young, 2014). However, the bottleneck remains the

comparison of flux estimations from multiple model scenarios.

This is largely due to the massive systems of ODEs and

corresponding optimization problems whose solution to global

optimality remains problematic.

One way to address this issue is to move away from estimating

steady-state flux distributions for the entire network, and instead to

rely on local approaches. In their simplest form, local approaches

allow the estimation of flux ratios around a metabolite of interest

given the labeling patterns [in the form of MIDs for the metabolite

and its precursors (Hörl et al., 2013)]. With data about the evolution

of all labeling patterns appearing for a considerably smaller system

of ODE, the problem of flux estimation can be cast as simulation-

free constrained regression (SFCR), where constraints correspond

to the relationship between fluxes at steady state.

This idea readily extends to any subnetwork for which there are

sufficient data about the labeling patterns of the metabolites

involved. One such system for which the MIDs of practically all

involved intermediates can be measured includes the Calvin-

Benson cycle (CBC) and related canonical processes, namely

starch and sucrose syntheses. Estimating fluxes in the CBC

and other downstream processes in metabolic networks of

photosynthetic organism in photoautotrophic growth conditions

necessitates the usage of isotopically nonstationary MFA (INST-

MFA). This is the case since under photoautotrophic growth

conditions, feeding 13CO2 leads to an isotopic steady state that is

not informative for flux estimation. As a result, relying on an

approach formulated in terms of constrained regression can

greatly simplify the flux estimation for metabolic processes in

photosynthesis, like the CBC, and can also help investigate the

effects of different model structures often used for flux estimation.

As a result, the approach is also readily applicable to plants provided

enough data on the labeling kinetics of metabolites in the metabolic

process of interest.

Here we show that under certain mild assumptions, fluxes in the

CBC can be estimated based on a SFCR approach. We used this
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formulation to compare the flux estimates from two model scenarios,

with and without consideration of pool compartmentation, allowing

further generalization of the approach at little computational cost.

Our results demonstrate that fluxes from the easy-to-implement and

solve SFCR are in high qualitative agreement with estimates from the

state-of-the-art tool for nonstationary 13C-MFA, INCA (Young,

2014). However, we also find that SFCR is more sensitive to fitting

of exchange fluxes, since it does not introduce multiple scaling

parameters of the MIDs which are optimized during flux

estimation as implemented in INCA. Given the recent increased

interest in flux estimation from nonstationary 13C-MFA (Fu et al.,

2022; Koley et al., 2022), the analysis points at factors that need to be

considered and carefully compared when presenting the findings

from flux estimations based on isotopic nonstationary experiments.
2 Results

2.1 Flux estimation from 13C labeling data
using a SFCR approach

Based on a metabolic network, described by the stoichiometric

matrix N ∈ Rm�r , and given measurements of metabolite pool

sizes, gathered in a diagonal matrix P ∈ Rk�k, for all metabolites

with available fractional amount of measured MIDs, denoted
Frontiers in Plant Science 03
by x ∈ Rk�1   whose appropriate combinations are gathered in a

matrix S ∈ Rk�r , one can write the system of ODEs for the

fractional amount of measured MIDs as follows:

P
dx
dt

= Sv;

where v ∈ Rr�1 is the vector of fluxes we aim to estimate. For

an example of how S looks like for the two CBC models, consult the

Supplementary Material and implementation available on GitHub,

the matrix S for a toy example is shown in Figure 1. This ODEs can

be discretized following Forward Euler approximation as follows:

Px(ti + Dti) − Px(ti) = S(ti)vDti,

corresponding to a system of linear equations. The

approximation error by the Forward Euler method is in the order

of Dti and hence, sufficiently small time steps should be considered

in the analyzed labeling experiment. The flux distribution, v, does

not depend on time, since we assume, as in other MFA approaches,

that the network is in a metabolic steady state.

Let eMID(ti) ∈ Rk�1 denote the deviation between measured and

predicted change in concentration of isotopomers obtained by

multiplication of metabolite pool size P and fractional amount of

MIDs x(ti) :Further, letQMID(ti) ∈ Rk�k represent a diagonal matrix

that contains the variance of the change in isotopomer concentration

between two time points ti and ti + Dti, i.e. Y(ti) = Px(ti + Dti) −
FIGURE 1

Overview of the presented flux estimation approach. Input: As input we require the structure of a metabolic network represented by a stoichiometric
matrix N. The toy metabolic network consists of four metabolites (A–D) and five reactions (v1, v2, v3, vin , vexc). In addition, we need measurements of
mass isotopomer distributions, total metabolite pool sizes for metabolites with fitted change in MID concentration (optional, see Methods Section
4.6) as well as measurements of exchange fluxes (optional) from which we can directly assign vexc,measured and Qv including the mean and variance
of the measured fluxes, respectively. Precalculations: Given the network structure and MID data we can build matrix S for each measurement time
point. Matrix QMID is a diagonal matrix including the measurement error chosen to be the maximum variance observed for a MID across all time
points. Hence, QMID is not dependent on time and is the same for each time point. Flux estimation: We solve the presented quadratic program and
obtain flux estimates for all model reactions, residuals to the measurements integrated and the chi-square goodness-of-fit measure used to assess
quality of the fit.
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Px(ti) :Assuming that Px(ti + Dti) and Px(ti) are independent

random variables, both of variance s 2, it follows that the variance

of Y(ti) is 2ṡs
2. In this study, we assume that measurement error, s ,

does not depend on time (see Materials and Methods); therefore,

QMID will not differ between time points. In addition to these

constraints, we also use measurements of particular exchange fluxes

to further constrain the feasible flux distributions. Let eV ∈ R2�1

denote the deviation between measured and estimated exchange

fluxes and QV ∈ R2�2 be a diagonal matrix that contains the

variance for the measured exchange fluxes.

Based on these simplifying assumptions, flux estimation

corresponds to the following quadratic programming problem

(QP) that can be regarded as a constraint-regression problem in

which we minimize the chi-square goodness-of-fit measure for the

change in MID concentration over time as well as external fluxes.

The minimization is performed under the constraint that the entire

system, represented by stoichiometric matrix N, is at metabolic

steady state (see Figure 1 for a graphical overview of the workflow

for the presented approach):

min 
v,eMID ,eV

eMID �QMID � e T
MID + eV �QV � e T

V

s : t :

S(ti)vDti + eMID(ti) = Px(ti + Dti) − Px(ti)

Nv = 0

vexc + eV = vexc,measured

vmin1 ≤ v ≤ vmax1

− 1061 ≤ eMID ≤ 1061

− 1061 ≤ eV ≤ 1061 ;

with vmax = 106   nmol   gDW−1s−1, vmin = −106   nmol   gDW−1

s−1 for reversible reactions, and 0 otherwise.
2.2 Validation of assumptions and model
set-up for estimation of fluxes in the CBC

To compare the findings of our SFCR approach with those from

the state-of-the-art tool INCA, using an EMU-based global approach,

we employed data onMIDs from three different algae previously used

for flux estimation (Treves et al., 2021). Since we have access to the

majority of MIDs of metabolites that participate in the CBC cycle, we

formulate constraints for the MIDs of seven metabolites measured in

Chlamydomonas reinhardtii and Chlorella sorokiniana under low

light (LL, 100 μmol photonsm-2 s-1), and in Chlorella ohadii under LL

and extreme illumination levels (EIL, 3000 μmol photons m-2 s-1).

Like in Treves et al. (Treves et al., 2021), we also assume that: (i) the

structure of the CBC in the considered algae is the same, (ii) there are

no microcompartmentation effects on the MIDs of ribulose-1,5-
Frontiers in Plant Science 04
bisophosphate (RuBP), (iii) dihydroxyacetonphosphate (DHAP) is

the predominant form of triose phosphates (T3P), hence, its labeling

follows the DHAP labeling measured, and (iv) the labeling of

ribulose-5-phosphate follows the labeling of pentose phosphates

(PP) measured.

We compared flux estimates resulting from integration of data

about MIDs in two model variants of different complexity. The

model denoted as ‘simple CBC model’, includes reactions of the

CBC with only a branch towards starch synthesis; further,

metabolites in the simple CBC model are not compartmentalized

between the chloroplast and cytosol. The ‘simple CBC model’

included ODEs that describe the nonstationary 13C labeling of

RuBP, F6P, FBP, G1P, G6P, and ADPG by using the MIDs of PP,

RuBP, DHAP, FBP, F6P, G1P, G6P, and ADPG (see Supplementary

Information 1.1 for a full list of model reactions and ODEs as well as

the full names of the metabolites, and Figure 2 for a graphical model

representation). The second model denoted as ‘compartmented

CBC model’, includes reactions of the CBC, photorespiration,

starch and sucrose syntheses, and considers metabolite

compartmentation between chloroplast and cytosol. Based on the

structure of the ‘compartmented CBC model’, in addition to the

ODEs for MIDs of RuBP, F6P, FBP, G1P, G6P, ADPG, we also

formulated ODEs for the MIDs of UDPG (see Supplementary

Information 1.2 for a full list of model reactions and ODEs and

Figure 2 for a graphical model representation).

Since the proposed estimation of fluxes using SFCR, like other

MFA approaches, assumes metabolic steady state, we next

determined if this assumption held for the metabolites whose

MIDs are described in the model of the investigated algae species.

To this end, we conducted ANOVA with the metabolite pool sizes

over time. Our findings indicated that RuBP, FBP and ADPG were

not at steady state over the investigated time course of C.

reinhardtii. For C. ohadii under EIL, ADPG was the only

metabolite not at steady state, while for C. sorokiniana all

metabolites were found to be at steady state (Supplementary

Table S1). Since steady state was ensured for the majority of

metabolites, we enforced this constraint in flux estimation. In

contrast, for C. ohadii under LL, we found RuBP and PP to be

the only metabolite pools at steady state over the entire time course

of the measurement. However, if we take out the last time point

(40s) FBP, ADPG and UDPG were the only metabolites not at

steady state (Supplementary Table S1). Therefore, we only used the

first four time points (0s, 5s, 10s and 20s) for flux estimation in C.

ohadii under LL.
2.3 Goodness-of-fit values for models and
data sets from the investigated algae

With these assumptions, we cast the problem of flux estimation

as a quadratic optimization problem in which we minimized the

chi-squared goodness-of-fit statistic (c2) for the considered MIDs

along four time points (three time points in case of C. ohadii under

LL) as well as flux values for starch and sucrose synthesis reactions

(see Materials and Methods). This approach was possible since all

MIDs included in the ODEs were measured (Supplementary Table
frontiersin.org
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S2). To determine robustness of flux estimates we calculate

confidence intervals (CI) for all reaction fluxes (see Methods

Section 4.4, Supplementary Table S3, S4, S8) and report c2 for

the best fit and CI.

Simple CBC model At a significance level a = 0:05, fitting the

MIDs for six metabolites and starch synthesis rate using the ‘simple

CBC model’ resulted in a system with 149 degrees of freedom for

which the expected range of c2, the range where c2 is considered

statistically acceptable (Young, 2014), is [117.1, 184.7]. For C.

reinhardtii and C. sorokiniana the c2 was 87.4 and 85.7 with CI

[84.7, 108.6] and [78, 96.5], respectively. Since the obtained c2
Frontiers in Plant Science 05
values were smaller than the lower bound of the interval for the

expected c2, there may be an issue of over-fitting. Nevertheless,

since we wanted to compare flux estimates across algae under

matching set of assumptions, we used the corresponding flux

estimates in the comparative analysis. The c2 for C. ohadii under

LL and EIL were 159.7 (with 108 degrees of freedom, since the last

time point was not considered) and 520.6 (149 degrees of freedom),

respectively, and were not considered statistically acceptable. Since

the relative error in measurements under EIL is not significantly

lower than in the other algae, there is no experimental basis for

omitting the last time point, as there was for C. ohadii under LL.
FIGURE 2

Graphical illustration of model structure. Reactions in the ‘simple CBC model’ are shown with black arrows. The set of reactions in the
‘compartmented CBC model’ are the union of reactions illustrated by black and blue arrows. A list of abbreviations used can be found in
Supplementary Information 1.2.
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Our previous modeling efforts with INCA did not find acceptable fit

for the data of C. ohadii under EIL (Treves et al., 2021). Possible

differences in the model structure for C. ohadii under EIL provides

one explanation for the discrepancy.

Compartmented model of CBC and related pathways At a

significance level a = 0:05 , fitting the MIDs for seven metabolites

using the ‘compartmented CBC model’ variant as well as starch and

sucrose synthesis rates resulted in a system with 166 degrees of

freedom for which in the expected range of the c2 is [132.2, 203.6].

Parameters modeling compartmentation were fixed to random

numbers sampled from the interval [0.1, 0.9], with 50 repetitions.

We reported the parameterization of c that resulted in the best fit;

this may not correspond to the global optima, over all possible

parameterizations for c, which is anyhow difficult to ensure for such

nonlinear optimization problems. Following this procedure, we

found parameterization of c for which the c2 CI for C. reinhardtii

and C. sorokiniana were not above the expected range with [87,

111] and [110, 132.3], respectively. In case of C. ohadii under LL, we

fit a system with 118 degrees of freedom; therefore, at the

significance level a = 0:05, the expected range of c2 that would

allow to accept model fit is [89.8, 150]. However, the CI for the c2 of

fit to labeling patterns of C. ohadii was [121.1, 163.7], i.e. the upper

bound of the CI was above the expected range. However, the

majority (81.6%) of bootstrap samples were within the acceptable

range (Supplementary Figure S1); and therefore, we used the flux

estimates for comparison across algae. The c2 for the fit of 13C

labeling data from C. ohadii under EIL was 598.6 and hence is not

statistically acceptable. Hence, like above, it is likely that

modification of the model structure may be required to model

labeling dynamics in C. ohadii under EIL.
2.4 Effects of model complexity on
estimated fluxes

Both model variants allowed us to fit labeling kinetics for C.

reinhardtii and C. sorokiniana. Next, we compared the flux
Frontiers in Plant Science 06
estimates to investigate the effects of model structure used in the

fitting. We found that CI for the flux estimates of the reactions in

the CBC overlap for the majority of reactions (Figure 3,

Supplementary Table S3). In addition, mean flux values were

highly correlated with rP = 0:995 (Spearman rS = 0:998) for C.

reinhardtii and rP = 1 (Spearman rS = 1) for C. sorokiniana. As a

result, we concluded that the complexity of the model had only a

slight effect on the estimated flux ranges with the labeling patterns

of C. reinhardtii and C. sorokiniana.
2.5 Comparison of flux estimates
across algae

Given that the complexity of the model resulted in small effects

on the flux estimates and the goodness-of-fit values, here we provide

a more detailed comparative analysis using the more complex,

compartmented CBC model across the three algal species under LL.

C. ohadhii is the fastest growing green algae known to date,

with high photoprotection capacity that facilitates growth under

extreme light conditions (Ananyev et al., 2017). Hence,

identification of differential fluxes in comparison to algae with

slow growth rates provides the potential to understand the

underlying molecular mechanisms that underpin the capacity for

fast growth (Treves et al., 2021). We found that the estimated mean

flux of the carboxylation reaction of RuBisCO under LL condition

was the largest in C. ohadii (6:7   nmol   gDW−1s−1), followed

by C. sorokiniana (4.5   nmol   gDW−1s−1) and C. reinhardtii

(1:9   nmol   gDW−1s−1) (Figures 4A, B). The mean values for

RuBisCO carboxylation were in the expected order across algae,

as were the upper bounds of the 95% CI. In line with this

observation, previous studies found high photosynthetic rates for

C. ohadii (Treves et al., 2016).

However, it must be also noted that the CI for C. sorokiniana and

C. ohadii overlap (Figures 4A, B) and the difference between the

fluxes was not statistically significant (t-test p-value=0.89). The mean

estimated flux through RuBisCO oxygenation reaction was zero for
BA

FIGURE 3

Flux range of Calvin-Benson cycle (CBC) reactions estimated from simulation-free constrained regression using models of different complexity. Flux
ranges are estimated using the ‘simple CBC model’, (see Figure 1 and Supplementary Information 1.1 for the list of reactions and long names of
reaction abbreviations used on x-axis) and the compartmented model of CBC and related pathways (‘compartmented CBC model’, see Figure 1 and
Supplementary Information 1.2 for a list of reactions) for (A) C. reinhardtii and (B) C. sorkiniana.
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all algae. In line with the observation for RuBisCO carboxylation,

mean flux through SBPase is highest in C. ohadii followed by C.

sorokiniana and C. reinhradtii (Figures 4A, D). However, the increase

in flux for C. ohadii in comparison to C. sorokiniana was not

significant (t-test p-value=0.08). For reactions PFP/FBA

(Figures 4A, C), we found the smallest flux for C. reinhardtii.

While the estimated mean flux of PFP/FBA in C. sorokiniana and

C. ohadii were similar, flux sampled by the bootstrap procedure

indicated that PFP flux could have significantly larger values in C.

sorokiniana than C. ohadii, as observed in the CI. Measured starch

synthesis rates for the three algae under LL (Treves et al., 2021)

showed that starch synthesis rate was increasing with increasing
Frontiers in Plant Science 07
photosynthesis rate and hence, growth. Moreover, the measured

sucrose rates indicated a lack in sucrose production for C.

reinhardtii, while both C. sorokiniana and C. ohadii showed similar

levels of sucrose synthesis. Using these measurements to fit external

fluxes in the QP, we would expect reactions PGM and PGI, the first

steps in starch synthesis from CBC intermediates, to show the highest

flux in C. ohadii, followed by C. sorokiniana and C. reinhadtii

(Figures 4A, E). However, we observed the highest flux towards

starch synthesis in C. sorokiniana and zero mean flux in C. ohadii.

Flux towards sucrose synthesis was found not to be zero only for C.

ohadii (Figures 4A, F). While the absence of sucrose synthesis flux is

expected form experimental data integrated in the QP for C.
B C

D E

F G

H I

A

FIGURE 4

Flux estimation for reactions in the Calvin-Benson cycle (CBC) from mass isotopomer distributions using a ‘compartmented CBC model’ for three
model species grown under low light conditions. (A) Simplified illustration of underlying CBC model. Reactions catalyzed by enzymes PGK, GAPDH
and TPI are lumped and convert 3PGA into T3P. Based on the model, reactions of same color carry the same steady-state flux. For a full list of
reactions and abbreviations see Supplementary Information 1.2, for graphical representation of the entire model see Figure 1. (B–F) Estimated flux
and 95% confidence interval obtained from bootstrapped sampling indicated by error bars for the respective group of reactions; asterisk indicate
significant difference in flux (p-value< 0.05); (B) Rubisco carboxylation (deep purple). Oxygenation was estimated to be zero for all algae and
therefore, is not shown. In addition, note that GAPDH flux is twice the flux through Rubisco carboxylation and, therefore, is not shown in a separate
panel; (C) FBA and PFP; (D) TK3, ALD, SBPase and PPI; (E) PGI and PGM; (F) Transport of T3P towards cytosol for sucrose production. (G–I) Turnover
of metabolites (G) RuBP, (H) FBP and (I) SBP calculated from the average measured pool size and flux through reactions PRK, PFP and SBPase,
respectively.
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reinhardtii, this is not the case for C. sorokiniana. In addition, it must

be noted that the estimated flux values for starch and sucrose

synthesis rate are two orders of magnitude smaller in comparison

to the measured. The work of Treves et al. (2021) indicated that flux

through PEP is differential in C. ohadii compared with the other algae

and might also explain differences in growth. However, our analysis

was not able to predict these differences. The reason for this lies in the

missing coverage of MIDs in the TCA cycle as well as MIDs of PEP

needed to correctly predict this flux.

In line with the findings on individual reaction level (e.g.

RuBisCO carboxylation, PFP/FBA) the sum of flux through the

entire CBC was the highest for C. sorokiniana and the smallest for

C. reinhardtii (Supplementary Table S4). However, photosynthesis

rates measured for the three algae suggest highest flux in C. ohadii

(Treves et al., 2021). For a detailed examination of possible reasons,

we point the reader to the Discussion.

Considering the ordering of fluxes based on their magnitudes, we

found a very high correlation (Spearman, rS = 1) between mean flux of

C. reinhardtii and C. sorokiniana. Interestingly, the Spearman

correlation of the flux distribution for C. ohadii to that of either C.

reinhardtii orC. sorokinianawas smaller (rS = 0:75, in both cases). The

decrease in correlation for the flux distribution of C. ohadii with those

of the other algae can be explained by the complementary pattern of

carbon partitioning between starch and sucrose syntheses; specifically,

in C. ohadii there was only positive flux towards sucrose synthesis, but

no flux through starch synthesis, in contrast to the findings for C.

reinhardtii and C. sorokiniana (Figures 4E, F). For a detailed

examination of possible reasons, we point the reader to the Discussion.

We also determined the turnover times for three modeled

metabolites (Figures 4G–I; Supplementary Table S5). Using the

measured pool sizes, we found that the turnover of RuBP was the

fastest in C. ohadii (40s), followed by C. reinhardtii (66s) and C.

sorokiniana (6min). In line with the observed turnover of RuBP, we

found that turnover of FBP was the fastest in C. ohadii (15s),

followed by C. reinhardtii (22s) and C. sorokiniana (31s). However,

while SBP exhibited the fastest turnover in C. ohadii (18s), C.

sorokiniana (24s) showed similar turnover as C. ohadii, followed by

C. reinhadtii (49s) with the slowest turnover for SBP. Together,

these findings indicated that C. ohadii has more efficient

photosynthesis in comparison to C. reinhardtii, indicated by

higher carboxylation rates in comparison to C. reinhardtii, while

metabolites pool sizes are in the same order of magnitude for both

algae. In addition, it can be also concluded that C. ohadii has more

efficient photosynthesis in comparison to C. sorokiniana, indicated

by similar carboxylation rates for C. ohadii in comparison with C.

sorokiniana, despite pool sizes in C. ohadii which are one order of

magnitude smaller than those observed for C. sorokiniana

(Supplementary Table S7). In addition, C. ohadii has a faster

turnover of metabolite pool sizes in comparison to the other algae.
2.6 Comparison to flux estimates obtained
from INCA

To compare the estimates from the SFCR approach to those

from global MFA flux estimation, we used the state-of-the-art tool
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INCA (Young, 2014) with the ‘compartmented CBC model’. In

addition to MID entering the SFCR formulation, the underlying

model structure in INCA allowed us to use the MIDs for 3PGA,

SBP, S7P, R5P, PEP and 2PG in flux estimation. Therefore, we

estimated fluxes using INCA in two scenarios using: (1) MIDs fitted

in the SFCR formulation and (2) all MIDs that can be used in INCA.

We opted to include MIDs for more metabolites with the aim of

increasing the precision of the estimates (expected due to the usage

of more data). Altogether, the flux estimation included fitting of

pool size, starch and sucrose synthesis rates as well as data on the

aforementioned metabolite MIDs for both approaches. For a

comparison of fitted labelling pattern obtained by SFCR and

INCA see Supplementary Figures S3–S5.

In line with observations from the regression approach, using

INCA we obtained a statistically acceptable fit for C. ohadii under

LL only when considering time points 0s to 20s. For C. ohadii under

EIL no acceptable fit was obtained for both sets of integrated MID

data. Using the mean flux estimates from INCA as well as mean flux

estimated from SFCR (Supplementary Table S4), we calculated

Spearman correlation and found a high qualitative agreement

between flux estimates in each algae (C. reinhardtii rs = 1,   p −

value < 10−10, C. sorokiniana rs = 0:91,   p − value < 10−10, C. ohadii

rs = 0:89,   p − value < 10−10, Supplementary Table S9). In contrast

to SFCR, INCA was able to match measured starch and sucrose

synthesis rates resulting in a two order increase of absolute flux

values in comparison to the SFCR approach (Figure 5). In addition,

this discrepancy resulted in different conclusions that can be drawn

from the two approaches. SFCR indicated that the main difference

across algae was the sugar produced, i.e. starch in C. reinhardtii and

C. sorokiniana and, in contrast, sucrose in C. ohadii; in comparison,

the results from INCA showed that, in line with the fitted

experimental evidence, starch is the main sugar produced across

all algae, with increased production for C. sorokiniana and highest

for C. ohadii (see Supplementary Table S4 for a list of mean flux as

well as CI of all model reactions obtained from SFCR and INCA).

While the solution obtained from INCA included the correct values

for starch and sucrose synthesis rates, it should be also noted that CI

obtained from INCA often span several orders of magnitude. In

contrast, SFCR was able to predict considerably smaller CIs

(Supplementary Table S4).

Therefore, we next examined possible reasons for the two order

of magnitude difference in flux estimates between INCA and SFCR.

The main difference between the modeling with INCA and SFCR is

the consideration of pool size as variable or constant

(corresponding to mean measurements). Hence, we investigated if

the difference of flux estimates may be due to variance in metabolite

pool sizes used in INCA and measured pool sizes integrated in the

SFCR approach. While the estimated total pool size from INCA

matched the measured content for ADPG, RuBP and UDPG,

estimates of pool sizes for F6P, FBP, G1P and G6P were different

from mean measurements by at least one order of magnitude

(Supplementary Table S7), underlining that the used metabolic

pool size might be the origin of discrepancy in estimated fluxes.

Therefore, as a last check, we repeated the estimation of fluxes with

SFCR by fixing the pool sizes to those estimated from INCA. This

modeling scenario indicated that pool size from INCA cannot
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explain the differences of two orders of magnitude to estimates from

SFCR. In addition, for C. sorokiniana we even obtained no

acceptable fit to experimental data based on the c2 = 53812. Since

no flux towards starch and sucrose synthesis is predicted for C.

sorokiniana (Figure 5B), we also found a decrease in qualitative

agreement (rs = 0:52) between the estimates from SFCR with

measured and estimated pool size from INCA (Supplementary

Table S9). Similarly, also for C. reinhardtii no flux towards starch

or sucrose synthesis is predicted (Figure 5A), although, in contrast

to C. sorokiniana the c2 is acceptable (c2 = 128:8). The only flux

distribution that remains unchanged considering the ordering of

fluxes is the one of C. ohadii (rs = 1) (Figure 5C). Therefore, pool

sizes cannot explain the order difference in estimated flux between

INCA and the proposed SFCR approach.

As shown in Section 2.1. the SFCR approach makes use of the

Forward Euler approximation to discretize the ODEs. Hence, flux

predictions might be affected by large approximation errors as a

result of large time steps considered in the experimental setup. To

investigate the extent the experimental time steps affect flux

predictions from SFCR we used the interpolation of the measured

MID data to compare previous results with flux estimation from

denser time series (see Methods). We found that the flux estimates

obtained from the original time series and the time series with Änt

being 1 sec are highly correlated (r = 0.97, Supplementary Table S8)

and had no effect on the order of magnitude difference in the

estimated fluxes between SFCR and INCA.
3 Discussion

The availability of flux estimates for reactions in a metabolic

network provides several possible applications. In scenarios in

which fluxes are compared between conditions for the same

organism, reactions with differential fluxes can be seen as main

drivers for the differential behavior for a related trait at a higher

level (e.g. growth). Further, in scenarios in which fluxes of the same

pathway or network are compared across organisms (e.g. algal

species), the reactions with differential fluxes between organisms,
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can indicate points of intervention to drive the high-level trait

towards a desired biotechnological goal. To this end, the fluxes

estimated from integration of labeling data can be integrated in

genome-scale metabolic networks as constraints in various

constraint-based approaches. However, obtaining flux estimates

for photosynthetic organisms, particularly in plants, remains

challenging due to the large experimental efforts as well as the

related computational problems associated with the relevant

mathematical formulations.

Here we presented a simple approach, termed SFCR, for flux

estimation from nonstationary labeling states in data rich cases. In

such data-rich cases, there is no need to simulate MIDs for the

considered metabolites, allowing a one-shot robust estimation of

fluxes from a single QP formulation. This allows us to speed up the

computations at least 100-fold (find best fit for one algae INCA ~7

min vs. ~4 sec in SFCR, considering calculation of CI the speed up is

at least 1000-fold, INCA several days vs. ~5 min SFCR) and obtain

flux estimates as well as consider multiple modeling scenarios which

we discuss here. Interestingly, the SFCR formulation allowed us to

investigate compartmentation via a simple sampling approach,

significantly reducing the time for parameter estimation. The

sampling approach assumed that the ratio between cytosolic and

chloroplastic pool is between 0.1 and 0.9. This assumption is in

line with predictions from INCA (Supplementary Table S6) for

C. reinhardtii and C. sorokiniana; however, it could be further

refined by experimental knowledge in later studies. For C. ohadii,

the compartmentation predicted in INCA indicates larger

cytosolic than chloroplastic pools for T3P, FBP and G6P.

Note that compartmentation values obtained from INCA

correspond to those obtained from the pseudo-reaction added for

compartmentation effects. Furthermore, we found differences

between the compartmentation ratio from the ratio of estimated

pool sizes used in INCA (compare ratios in Supplementary Table S6

and S7). Our aim was to then compare the flux estimations from

SFCR with those obtained from INCA, as the state-of-the-art

approach for flux estimation with data from isotopic

nonstationary states in plants (Young et al., 2011; Jazmin et al.,

2014; Allen and Young, 2020; Xu et al., 2021; Chu et al., 2022; Xu
B CA

FIGURE 5

Flux range of Calvin-Benson cycle reactions, starch (SS) and sucrose synthesis (SPS) estimated from simulation-free constrained regression (SFCR)
and INCA. The estimated fluxes for (A) C. reinhardtii, (B) C. sorokiniana and (C) C. ohadii from the presented SFCR approach (orange bars) are in high
qualitative agreement with estimations from INCA (Supplementary Table S9), but lack quantitative agreement. To test if differences in metabolite
pool size can explain the difference in flux between constrained regression and INCA, we calculate flux from SFCR integrating pool size estimates
from INCA (red bars). See Supplementary Information 1.2 for a full list of reactions in ‘compartmented CBC model’ and list of abbreviations.
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et al., 2022; Smith et al., 2023). The comparison was meant to point

at issues with the assumptions and formulations used by the

existing contenders.

While the flux estimates from SFCR seem to match the results

from the differential analysis based on the flux distributions from

INCA, we observed that the former are two orders of magnitude

smaller. Careful investigation suggests that the discrepancies can be

due to at least four factors dealing with the treatment of: (1) total

pool sizes, (2) sizes of pools actively involved in photosynthetic

processes, (3) pool compartmentation, and (4) constraints on

boundary fluxes to the modeled system.

Regarding the total pool sizes, we found that usage of the estimates

of pool sizes from INCA, for which some metabolites (e.g. F6P and

FBP) differ by an order or magnitude, result in no acceptable fit for C.

sorokiniana and no sugar production for C. reinhardtii and C.

sorokiniana (Supplementary Table S7, S8). Thereby, the result shows

the importance of precise pool size measurements when integrating

them in the approach for flux estimation. In addition, experiments in

which we treated pool sizes as free parameters, using compartmentation

values from INCA, indicated that no acceptable fit could be achieved

for C. reinhardtii and that RuBisCO carboxylation rates in C. ohadii

dropped to values two order of magnitude below those estimated for C.

sorokiniana (Supplementary Table S8).

Another possibility is that only a fraction of the measured pool

actively participates in photosynthesis, due to various reasons [e.g.

different cell types, microcompartmentation issues (Küken et al.,

2018)]. Repeating the analysis with the fixed pool sizes to

measurements, with compartmentation from INCA, and rescaling of

labelled fraction according to the last time point indicated that the pool

size cannot explain the discrepancy in starch and sucrose synthesis flux

as well as the difference of two orders of magnitude in absolute flux

(Supplementary Table S8). The observation that none of the parameter

sets taken from INCA (i.e. pool size and compartmentation ratio)

resulted in improved agreement between expected flux distribution

with respect to order of magnitude and/or sugar synthesis flux indicate

that only the interplay of all optimized parameters in INCA (i.e.

(compartmented) pool size, compartmentation by pseudo-reactions

and isotopomer-specific scaling factor) allows to match the measured

starch and sucrose synthesis rates.

Lastly, it is known that boundary fluxes have a large effect on the

flux estimates and often lead to numerical issues, which has prompted

the usage of local approach that motivated our work. Rescaling the

experimental exchange fluxes used by division with factor 100 results in

starch and sucrose synthesis rate estimated from SFCR that match the

observed pattern, underlining the issue of numerical problems. The

rescaling of the exchange flux leads to a good qualitative agreement

between flux estimated for individual algae from SFCR and INCA

indicated by rS ≥ 0:88 (Supplementary Table S9). Similar agreement

was obtained with the original implementation of the SFCR approach

(rS ≥ 0:87) and treating pool sizes as predicted variables (rS ≥ 0:87). It

remains to be investigated how better estimates of the boundary fluxes

can be obtained, given the fact that thesemetabolites are not excreted in

the medium, but are integral to the algal cells, unlike other microbial

studies (Davidi et al., 2016; Chen and Nielsen, 2021).

Our study showed that in data-rich scenarios, as it is the case for

the CBC, as one of the major pathways in photosynthesis, SFCR
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provides a suitable alternative to INST-MFA approaches (e.g. as

implemented in INCA). Recent developments in omics technologies

result in high coverage in terms of data for other pathways, including:

the TCA cycle and amino acid biosynthesis, and parts of lipid

metabolism, for which SFCR can be applied in the future. In

addition, the formulation of SFCR could be used to compare the

extent to which flux distributions obtained from different constrained-

based approaches fit experimentally measured labeling pattern.

However, our study also pointed at several issues with flux

estimation, even in data rich scenarios, and indicated that future

efforts must focus on careful comparison of multiple alternative

model structures and provide validations and plausible explanations

for the discrepancy between measured and fitted (compartmented)

pool sizes. To this end modifications to the approach may need to be

introduced, such as rendering it applicable to estimation of fluxes akin

to local approaches (Huß and Nikoloski, 2023).
4 Methods

4.1 Metabolic models

We used two variants of a metabolic model for the CBC differing

in their complexity. The first model version, denoted as ‘simple CBC

model’, considers only CBC with a branch towards starch synthesis

and no compartmentation of metabolite pools. The second model

version, denoted as ‘compartmented CBC model’, includes reactions

for the CBC and related processes, i.e. photorespiration, starch and

sucrose synthesis. The model considers metabolite compartmentation

into chloroplast and cytosol. Under the assumptions indicated in the

main text, ODEs for the MIDs of RuBP, F6P, FBP, G6P, G1P, and

ADPG could be written for the ‘simple CBC model’ and ODEs for the

MIDs of RuBP, F6P, FBP, G1P, G6P, UDPG, and ADPG could be

written using the ‘compartmented CBC model’. A full list of model

reactions and ordinary differential equations can be found in

Supplementary Information 1.1 and 1.2 for the ‘simple CBC model’

and ‘compartmented CBC model’, respectively. Combined with MID

measurements for metabolites RuBP, DHAP (used as MID for T3P),

F6P, FBP, G1P, G6P, UDPG and ADPG we used the ODEs to find

reaction flux distributions that allow to fit measured labeling patterns.
4.2 Considered measurement error of MID
data for model fit

To assess the quality of the fit we used: (i) the c2 statistic with

degrees of freedom corresponding to the difference of the number of

measurements and the number of modelled parameters

(corresponding to the rank of stoichiometric matrix N); (ii) the

distribution of residuals over the individual measurements, and

assessed whether it follows a normal distribution with a mean of

zero and standard deviation of one (Supplementary Figure S2).

Using the c2 statistic, the model fit strongly depends on the

underlying measurement error. For MID data the standard

deviation is often zero for high labeled isotopologues at early time

points preventing the model to fit the data. To overcome this
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problem, we assumed that measurement error, s , does not depend
on time and considered the maximum standard deviation for each

isotopologue observed over time as measurement error. In case an

isotopologue Mm+j had standard deviation of zero across all

measured time points, we considered the standard deviation of

Mm+j−1 as measurement error for Mm+j in data fitting. The code to

obtain the measurement error used in model fit, that was calculated

based on the standard deviation of measured MID data, can be

found on GitHub (https://github.com/ankueken/MFA_Reg).
4.3 Data used in formulation of problems

Having measurements of absolute pool size concentrations and

MIDs at five time points 0, 5, 10, 20 and 40s, ti and Dti being {0, 5, 10,
20} and {5, 5, 10, 20}, respectively. Note, that for flux estimation in C.

ohadii under LL we did not consider the last time point (see main

text). Data on metabolite pool size, MID level and starch/sucrose

synthesis rates that entered in the program above can be found in

Supplementary Table S2. To avoid describing differences that only

arise due to reactions that carry flux below solver tolerance, we

consider reactions with flux below 10-6 nmol   gDW−1s−1 to carry no

flux. We used B-splines as implemented in Python package Scipy to

interpolate the MIDs using each individual replicate.
4.4 Bootstrap confidence intervals

To obtain CI and c2 for the model fit, we used non-parametric

bootstrap by running the following procedure: we resampled the

residuals e, obtained from the QP above, with replacement to

generate a new set of residuals e*. To generate a new bootstrap data

set, e* is added to the measured MIDs. Then the bootstrap dataset was

used as an independent replicate experiment, and the QP was solved to

calculate new estimates of model parameters. The procedure was

repeated 1000 times and bootstrap model parameters as well as

bootstrap c2 were stored. To obtain 95% CI we computed the 97.5th

and the 2.5th percentile of the obtained bootstrap distribution for

model parameters and c2.

The fit between model prediction and data can be accepted if the

obtained c2 for model fit falls within the interval ½c2
a
2
(df ),   c2

1−a
2
(df )�,

where a is the significance level, here we use 0.05, and df is the

degree of freedom, corresponding to the difference of the number of

measurements and the number of modelled parameters (i.e. the

rank of the stoichiometric matrix N) (Young, 2014).
4.5 Implementing compartmentation
coefficients

For a metabolite present in both the chloroplast ½p� and cytosol

½c�, the dynamics of the 13C labeling of the total pool are the

summation of the labeling dynamics observed in the plastid and

those observed in the cytosol.

Px(ti + Dti) − Px(ti) = S½p�(ti)vDti + S½c�(ti)vDti�
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Hence, in the QP above matrix S = S½p� + S½c�, with S½p� combining

MID data for plastidial labeling dynamics and S½c� combining MID

data for cytosolic labeling dynamics. However, compartment specific

MID data were not available. Therefore, we substitute MID data in S

that model cytosolic labeling dynamics by M½c�
m+j = c �M½p�

m+j, with c

denoting the fraction of
M½c�

m+j

M½p�
m+j

. Assuming that the labeling dynamics of

the total pool are predominantly driven by the reactions in the

chloroplast, we sampled values for c from the interval [0.1, 0.9].

Since we assume parameters c to show no drastic change for

bootstrapped data, we limit the deviation of parameters c chosen

during bootstrap sampling to be at most ±2.5% from the

parameterization of c used in the best fit.
4.6 Flux estimation from SFCR with
variable pool sizes

The SFCR approach also allows to treat the pool size parameter

P as an unknown variable. This assumption will result in the

following change in variance s 2 entering QMID in the QP.

Assuming that P and x(ti) are independent variables the variance

of Y(ti) is s 2
P � s 2

x(ti)
+ s 2

P (mx(ti))
2 + s 2

x(ti)
(mP)

2. Moreover, the QP

solved included eP ∈ Rn�1 denote the deviation between measured

and estimated pool size for metabolites n whose MIDs enter S and

QP ∈ Rn�n be a diagonal matrix that contains the variance for the

measured pool size. Based on these simplifying assumptions, flux

estimation with variable pool size corresponds to the following QP

in which we minimize chi-square goodness-of-fit measure:

min 
v,eMID ,eV ,eP

eMID � QMID � e T
MID + eP �QP � ϵ T

P + eV � QV � e T
V

s : t :

S(ti)vDti + eMID(ti) = Px(ti + Dti) − Px(ti)

Nv = 0

vexc + eV = vexc,measured

P + eP = Pmeasured

vmin1 ≤ v ≤ vmax1

− 1061 ≤ eMID ≤ 1061

− 1061 ≤ eP ≤ 1061 ;

− 1061 ≤ eV ≤ 1061
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