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Rice sheath blight (ShB) disease poses a major threat to rice yield throughout the

world. However, the defense mechanisms against ShB in rice remain largely

unknown. ShB resistance is a typical quantitative trait controlled by multiple

genes. With the rapid development of molecular methods, many quantitative trait

loci (QTLs) related to agronomic traits, biotic and abiotic stresses, and yield have

been identified by genome-wide association studies. The interactions between

plants and pathogens are controlled by various plant hormone signaling

pathways, and the pathways synergistically or antagonistically interact with

each other, regulating plant growth and development as well as the defense

response. This review summarizes the regulatory effects of hormones including

auxin, ethylene, salicylic acid, jasmonic acid, brassinosteroids, gibberellin,

abscisic acid, strigolactone, and cytokinin on ShB and the crosstalk between

the various hormones. Furthermore, the effects of sugar and nitrogen on rice ShB

resistance, as well as information on genes related to ShB resistance in rice and

their effects on ShB are also discussed. In summary, this review is a

comprehensive description of the QTLs, hormones, nutrition, and other

defense-related genes related to ShB in rice. The prospects of targeting the

resistance mechanism as a strategy for controlling ShB in rice are also discussed.
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Introduction

Efficient control of crop diseases is a must for sustainable agricultural production

(Senapati et al., 2022). Rice is a staple food for half of the world’s population but is

severely threatened by diseases. Rice blast, bacterial blight, and rice sheath blight (ShB) are

collectively referred to as the three major diseases of rice due to the widespread prevalence

resulting in significant yield losses (Liu andWang, 2016). While rice blast and bacterial blight

have been well-controlled through disease resistance breeding based on a deep understanding

of the underlying molecular mechanisms of rice resistance to these diseases (Rao et al., 2014),

ShB has not. ShB affects the entire life cycle from seedling to heading stage, and causes

damage to leaves, sheaths and even panicles, resulting in the wilting of leaves and sheaths and

reduced seed setting rates (Savary et al., 1995). The prevention and control of rice ShB follows
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the conventional strategy of prioritizing prevention followed by

comprehensive management, and combines meteorological data

collection to monitor rice diseases. The control measures include

the breeding of disease-resistant varieties, as well as the application of

chemical, biological, or RNA pesticides. As China has no disease-

resistant rice varieties, chemical pesticides are mainly used to control

rice sheath blight (Rajesh et al., 2016). However, due to the lack of

disease-resistant resources of rice germplasm, Rhizoctonia solani has

high genetic variability and wide host affinity, and can survive from

one crop season to the next by forming dormant sclerotia, which

increases the difficulty of controlling rice ShB. The resistance of rice

to ShB is considered a quantitative trait inheritance controlled by

multiple genes. The resistance of different rice varieties to ShB

involves multiple quantitative trait loci (QTLs). Identification of

QTLs can accelerate the mapping and cloning of resistance genes,

which in turn helps to develop rice varieties resistant to ShB (Zuo

et al., 2014).

Rice ShB, caused by the fungus Rhizoctonia solani Kühn, is one of

the three major diseases of rice, causing serious yield losses (Zheng

et al., 2013). The sexual state is Thanatephorus cucumeris. The

pathogen is generally soil-borne and can cause severe disease in a

variety of crops (Anderson et al., 2017). Compatible R. solani strains

can form a fused mycelial network that is genetically highly variable.

There are 14 different fusion groups (Anastomosis Group, AG)

(Carling et al., 2002a; Carling et al., 2002b), in which 13 groups

were named AG1-AG13, and the 14th fusion group AGB1.

According to the homology and morphological characteristics of

sclerotia, the AG1 strain was further divided into three subgroups: IA,

IB and IC. It is generally believed that AG1-IA is the main fusion

group causing rice ShB (Singh et al., 2019). AG1-IA infects rice

causing ShB in rice-growing regions around the world that can result

in up to 50% yield loss (Zheng et al., 2013). The extensive use of

nitrogen fertilizer, the introduction of semi-dwarf high-yielding

varieties (HYV), and higher crop densities and the resulting moist

space are important factors in increasing the incidence of ShB (Savary

et al., 1995; Molla et al., 2020). The main rice-producing areas in

China are the Central, South China, Southwest, Northeast, North

China, and Northwest rice areas which vary in cultivation systems

and rice varieties and distributions, as well as the type of rice diseases

that occur. In Central and South China, the main disease is ShB, and

its incidence area and yield loss are significantly higher than those of

rice blast and rice false smut. The yield losses caused by ShB and rice

blast in Southwest and North China are similar but significantly

higher than that caused by rice false smut (Qi et al., 2021). Therefore,

the development of efficient and sustainable ShB control strategies is

extremely urgent. The pathogen R. solani has a wide host range and

high genetic variability. However, to date, few rice varieties that are

resistant or immune to ShB have been identified and the development

of disease-resistance breeding is therefore limited. Nevertheless, the

dissection of the underlying molecular basis of rice resistance to ShB

has been of great interest for many years. In recent years, exciting new

research on the molecular mechanism of ShB resistance has been

emerging. It was found that the WRKY36-SWEET11 signaling

pathway negatively regulates rice ShB and increases the resistance

of transformed rice without affecting yield through the interaction of

the mesophyll cell-specific mutant SWEET11 and the wild-type
Frontiers in Plant Science 02
(WT) (Gao et al., 2018). Brassinosteroid (BR)-mediated WRKY53

and MPK6 signaling may balance SWEET2a expression and thus

negatively regulate rice resistance to ShB (Gao et al., 2021). In

addition, AMT1;1-mediated NH+
4 transport can accelerate nitrogen

metabolism in rice and regulate the expression of subsequent NH+
4

-dependent ethylene-related genes, thereby promoting rice resistance

to ShB and suggesting that appropriate nitrogen uptake and

assimilation are necessary for rice defense activation (Wu et al.,

2022). In short, the research progress on rice resistance to ShB has

developed rapidly.

This review summarizes recent research on the mechanisms of

ShB resistance in rice. Since several outstanding reviews about R.

solani-rice interaction have been recently published (Liu andWang,

2016; Datta et al., 2017; Molla et al., 2020; Li et al., 2021; Senapati

et al., 2022), this review will mainly focus on QTLs, plant hormones,

nutrition, and other defense-related genes.
Quantitative trait loci

In recent years, the identification of broad-spectrum disease

resistance genes in rice has become of great interest, including

disease resistance gene R, disease resistance regulatory genes, and

QTLs (Liu et al., 2021). ShB resistance is a typical quantitative trait

controlled by multiple genes (Pinson et al., 2005; Zuo et al., 2014).

This is complicated by pleiotropy of major genes and co-dominance

of major and minor genes. QTL is a statistically significant

association between allele variation at specific loci and the

phenotypic traits showing continuous variation (St. Clair, 2010).

The identification, mapping, verification, and subsequent

characterization of QTLs can accelerate the localization and

cloning of important resistance genes. This can aid in the

development of ShB-resistant rice varieties. With the increasing

use of next-generation DNA sequencing and high-density

molecular marker platforms, various QTLs for ShB have been

identified and used to determine the source of these traits. QTL

mapping has been performed using molecular markers. By

analyzing the linkage relationships between the genotype values

of molecular markers and the phenotypic values of quantitative

traits, QTLs have been mapped to specific sites on chromosomes to

estimate their genetic effects (Lynch and Walsh, 1998).

The ShB QTLs have been localized to two major loci: qShB9-2

and qSBR11-1 (Liu et al., 2009; Channamallikarjuna et al., 2010).

For the first time, Li et al. (1995) used 113 uniformly distributed

RFLP markers to study the F4 mixed population formed by the

crosses of the susceptible variety Lemont with resistant variety

Teqing, and six QTLs related to ShB resistance were identified (Li

et al., 1995). The major qShB9-2 QTL was discovered by Li et al.

(1995) and later confirmed in other studies (Han et al., 2002; Pinson

et al., 2005; Liu et al., 2013). F2 populations (Pan et al., 1999;

Sharma et al., 2009), backcrossed inbred lines (Sato et al., 2004;

Eizenga et al., 2015), near-isogenic lines (NILs) (Loan et al., 2004),

recombinant inbred lines (RILs) (Pinson et al., 2005), and

chromosome segment substitution lines (CSSLs) (Zuo et al., 2013;

Zuo et al., 2014) have commonly been used for QTL preliminary

mapping. More than 200 QTLs for ShB resistance have been
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detected in other mapping populations. (Zeng et al., 2015).

However, despite the detection of many QTLs for ShB resistance,

only qSBR9-2, qSBR11-1, qSB-9TQ, and qSB-11LE were found to be

specific genes. Relatively few QTLs contribute to phenotype, and are

often affected by agronomic traits such as plant height and heading

date. Only the main genes qSB-9TQ, qSB-11LE and qSB-11HJX have

been used in resistance breeding (Li et al., 2021). There are 26

putative disease-related candidate genes in the qSBR11-1 region,

including 11 tandem repeats of chitinase, and 12 candidate genes

have also been detected in the qSB-9Tq region (Molla et al., 2020).

The major QTL-qSB-9Tq conferring partial resistance to ShB has

been verified on chromosome 9 of the Teqing indica rice cultivar,

and it also has a great potential for enhancing the resistance of

japonica rice to ShB (Zuo et al., 2008). Pyramiding disease

resistance QTLs has been considered as an important strategy to

develop ShB resistant cultivars. qSB-11HJX, located on chromosome

11 of Huajingxian 74, is one of the most effective resistance QTLs,

which can reduce the ShB disease level by about 1.4 at the NIL level

(Zhu et al., 2014). By constructing secondary segregation

populations and composite interval mapping, qSB-11HJX was

mapped between the molecular markers ZY27.49 and ZY27.92-11

with a physical distance of 430 kb (Zhu et al., 2014). Zuo et al.

(2013) used CSSL populations in both greenhouse and field

environments to fine-locate a QTL (qSB-11LE) of the resistance
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allele from parent Lemont to the interval of markers Z22-27C and

Z23-33C, which was 78.87 kb long. The lines carrying qSB-11LE and

qSB-11HJX have a significantly lower level of disease than the

recurrent parent and lines with a single QTL under the same

genetic background, indicating that QTL pyramiding can further

increase the resistance to ShB (Li et al., 2019). The progress of QTL

mapping for ShB resistance has been summarized in Table 1.

With the rapid development of molecular techniques,

researchers have used association mapping and genome-wide

association studies (GWAS) to identify resistance genes. GWAS

are widely used to dissect the broader genetic variability of complex

traits in plants (Huang et al., 2010; Zhao et al., 2011; Morris et al.,

2013; Liu et al., 2017). Rice germplasm resources are very rich and

can provide an excellent natural population for association analyses.

To date, GWAS have been used to mine many QTLs related to

agronomic traits, biotic and abiotic stresses, and yield in rice

(Huang et al., 2010; Famoso et al., 2011; Zhao et al., 2011; Kang

et al., 2016). GWAS together with next-generation sequencing are

powerful complementary strategies for mapping complex traits in

rice. Association mapping can improve the efficiency of aggregation

of putative resistance alleles, thereby reducing the cycle of ShB

resistance breeding. This strategy also provides a new method for

marker-assisted breeding and basic resistance research into ShB

(Taguchi-Shiobara et al., 2013; Liu et al., 2021).
TABLE 1 QTL mapping for ShB resistance in rice.

QTL Chromosome Marker interval LOD Variance explained (%) Reference

qSB-1 1 RG532x 3.8 8 (Pinson et al., 2005)

qSB-2 2 C624x 4.3 7 (Pinson et al., 2005)

qSB-3 3 R250–C746 6.86 26.5 (Zou et al., 2000)

qSB-5 5 Y1049 2.6 6 (Pinson et al., 2005)

qSB-9 9 RZ404 3.8 6 (Pinson et al., 2005)

qShB9-1 9 RM409-RM257 4.7 5.4 (Liu et al., 2009)

qShB9-2 9 RM215-RM245 17.3 24.3 (Liu et al., 2009)

qSBR-2 2 RG171-G243A 2.58 11.2 (Yasufumi et al., 2000)

qSBR-3 3 G249-G164 2.43 10.5 (Yasufumi et al., 2000)

qSBR-7 7 RG511-TCT122 4.34 15.5 (Yasufumi et al., 2000)

qSBR-11 11 CT224-CT44 2.75 9.5 (Yasufumi et al., 2000)

qSBR11-1 11 sbq11-RM224 4.38 21.59 (Channamallikarjuna et al., 2010)

qshb1.1 1 RM151-RM12253 10.7 10.99 (Yadav et al., 2015)

qshb6.1 6 RM400-RM253 4.43 13.25 (Yadav et al., 2015)

qshb7.1 7 RM81-RM6152 8.8 10.52 (Yadav et al., 2015)

qshb7.2 7 RM10-RM21693 6.7 9.72 (Yadav et al., 2015)

qshb7.3 7 RM336-RM427 4.12 21.76 (Yadav et al., 2015)

qshb8.1 8 RM21792-RM310 4.2 10.52 (Yadav et al., 2015)

qshb9.1 9 RM257-RM242 7.9 8.40 (Yadav et al., 2015)

qshb9.2 9 RM205-RM105 7.0 19.81 (Yadav et al., 2015)

qshb9.3 9 RM24260-RM 3744 3.5 12.58 (Yadav et al., 2015)
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Hormonal signaling

Auxin

Auxin plays a pivotal role in rice growth and development by

regulating virtually all aspects of the plant life cycle (Zhao, 2010). Auxin

is the only hormone that can be transported over long distances in

plants. PIN-FORMED 1a (OsPIN1a) is an auxin efflux carrier

responsible for auxin polar transport in rice (Xu et al., 2005; Kramer

and Bennett, 2006). Sun et al. (2019) inoculated OsPIN1a

overexpression and RNA-silenced lines with R. solani, demonstrating

that this gene positively regulates rice resistance to ShB. These results

indicated that auxin is correlated with ShB resistance (Sun et al., 2019).

Qiao et al. (2020) identified an ShB-responsive small RNA (siR109944),

which was inhibited by R. solani. Inoculation experiments showed that

siR10944 negatively regulates rice resistance to R. solani, while its target

gene OsFBL55 (a putative auxin receptor) positively regulates rice

resistance to R. solani (Qiao et al., 2020).
Ethylene

As the only gaseous hormone, ethylene is best known for its

function in promoting fruit ripening (Bleecker and Kende, 2000). In

follow-up studies, ethylene was found to affect plant responses to

abiotic and biotic stresses (Broekaert et al., 2006; Kazan, 2015). The

results of several studies showed that enhanced ethylene biosynthesis

or signal transduction could confer rice broad-spectrum resistance to

multiple pathogens (Helliwell et al., 2013; Yang et al., 2017). OsACS2

encodes a key enzyme for ethylene biosynthesis, the overexpression of

which leads to the over-accumulation of ethylene. OsPBZ1 is a typical

PR (pathogen-related) gene, and its expression is dramatically

induced in response to a pathogen attack. Helliwell et al. (2013)

used an OsPBZ1 promoter to drive OsACS2 expression in rice. In the

absence of pathogens, the expression of OsACS2 in overexpression

lines is similar to that in wild-type plants. However, after pathogen

inoculation, both OsACS2 expression and the ethylene content in

OsACS2-overexpressing lines were significantly up-regulated, leading

to enhanced resistance to ShB, compared with wild-type plants

(Helliwell et al., 2013). In addition, our previous work showed that

OsEIL1, the core component of the rice ethylene signaling pathway

which regulates the expression of ethylene-responsive genes,

positively regulates rice resistance to ShB (Yuan et al., 2018). These

results demonstrate that ethylene contributes to ShB resistance,

possibly by activating ROS and phytoalexin production or crosstalk

with other defense-related hormones such as jasmonic acid (JA) and

salicylic acid (SA) (Yang et al., 2017).
Salicylic acid and jasmonic acid

While both SA and JA are known defense-related hormones, they

differ in function. SA primarily affects plant resistance to biotrophic

and hemi-biotrophic pathogens and is critical for system-acquired

resistance. JA regulates plant resistance to necrotrophic pathogens and

insect herbivory (Howe and Jander, 2008; Browse, 2009; Vlot et al.,
Frontiers in Plant Science 04
2009). Unlike Arabidopsis, the SA signaling pathway in rice has two

branches. One is the same NPR1-mediated pathway while the other is

regulated by OsWRKY45 (Shimono et al., 2007; Yuan et al., 2007). SA

was previously thought to be responsible for resistance to biotrophic

and semi-biotrophic pathogens. Since R. solani was also thought to be

a necrotrophic fungus (Vidhyasekaran et al., 1997; Brooks, 2007), the

role of SA in rice resistance to ShB remained unclear. Recently, the

functional roles of SA in the rice-R. solani interaction have been

comprehensively investigated. Kouzai et al. (2018) demonstrated that

exogenous SA treatment enhanced ShB resistance, while NahG-

overexpressing rice plants deficient in SA showed increased

susceptibility to ShB compared to wild-type plants. These results

demonstrated that SA positively regulates rice resistance to ShB

(Kouzai et al., 2018). Interestingly, OsWRKY45 overexpression in

rice plants had no positive effects on ShB resistance (Shimono et al.,

2012). These results suggest that an OsWRKY45-independent SA

signaling pathway confers ShB resistance on rice and is most likely

OsNPR1-related. As a key regulator in plant SA signal transduction,

NPR1 is located downstream of SA and upstream of PR protein gene

expression. In the npr1 mutant, the gene encoding the PR protein

could not be expressed, and the SAR could not be activated to produce

disease resistance, indicating that the lack of NPR1 would lead to the

loss of SAR in plants (Cao et al., 1994; Cao et al., 1997). In many

plants, such as Arabidopsis, carrot, rice, tobacco, tomato, wheat, and

apple, overexpression of NPR1 gene can enhance resistance to disease

in plants (Fitzgerald et al., 2004; Lin et al., 2004; Chern et al., 2005;

Makandar et al., 2006; Malnoy et al., 2007), indicating that NPR1

regulation of the immune response is common in higher plants.

Previous studies found that the gene responsible for JA

biosynthesis is essential for rice resistance to ShB, and exogenous

application of JA enhanced resistance (Taheri and Tarighi, 2010).

Moreover, constitutive expression of the OsWRKY30 transcription

factor promotes JA accumulation and PR gene expression to

increase ShB resistance in rice, confirming that JA positively

regulates rice resistance to ShB (Peng et al., 2012). Both SA and

JA are plant defense-related hormones with sophisticated crosstalk

since both synergistic and antagonistic effects have been reported.

Surprisingly, based on the above studies, exogenous application of

both SA and JA was found to enhance ShB resistance in rice, while

suppression of SA and JA significantly reduced resistance (De

Vleesschauwer et al., 2013). These results show that the

traditional concept of the relationship between SA and JA is not

applicable in the rice-R. solani system. Therefore, the mechanism of

ShB resistance mediated by SA and JA requires further study.
Brassinosteroids

Brassinosteroids (BRs) are growth-promoting hormones with

diverse roles in plant development (Ye et al., 2011). In rice, since

BRs regulate plant height, branching, heading date, stress tolerance,

and nutrient acquisition, they have become potential targets for

breeding improvement (Tong and Chu, 2018; Wang et al., 2020;

Yang et al., 2021). Emerging evidence has revealed that BRs also affect

the rice response to biotic stresses (Nakashita et al., 2003; He et al.,

2017). Taking advantage of rice BR mutants, Yuan et al. (2018)
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demonstrated that disruption of BR biosynthesis or signal

transduction confers ShB resistance in rice, suggesting that BRs are

negative regulators of rice resistance to ShB (Yuan et al., 2018).

OsWRKY53, a newly identified rice BR signal transducer, has been

shown to positively regulate BR signaling (Tian et al., 2017). Gao et al.

(2021) showed that OsWRKY53 directly activates the expression of

OsSWEET2a, a negative regulator of rice resistance to ShB, to confer

susceptibility to ShB (Gao et al., 2021). These results provide insight

into BR-mediated susceptibility to ShB in rice.
Other hormones

Current knowledge also implicates hormones related to plant

growth and development, such as gibberellin (GA), abscisic acid

(Sato et al.), strigolactone (SL), and cytokinin (CTK), either directly

or indirectly in plant disease resistance or susceptibility.

GA is a class of plant hormones belonging to the tetracyclic

diterpenes, which primarily regulate plant growth and development

(Kurosawa, 1926). In rice, local application of GA lowered

resistance to semi-living and living nutrients in Magnaporthe

oryzae and Xanthomonas oryzae pv. oryzae (Xoo) (Yang et al.,

2008; Qin et al., 2013). Although the means by which GA influences

innate immunity in rice is not fully understood, several studies have

demonstrated that GA is also associated with the inhibition of

defense-related gene expression, plant antitoxin biosynthesis, and

the regulation of SA and JA levels (Tanaka et al., 2006; Yang et al.,

2008; Qin et al., 2013). GA is generally considered a negative

regulator of rice innate immunity. SLENDER RICE 1 (SLR1) is

the only DELLA protein in rice that inhibits GA signaling (Ikeda

et al., 2001) and its mutation significantly increases susceptibility to

Xoo (Yang, 2009). In addition, GA antagonizes JA signaling via

DELLA proteins during rice development and immunity, thus

acting as a major regulator of both hormonal pathways (Ikeda

et al., 2001; Navarro et al., 2008).

ABA regulates many physiological processes involved in growth

and development. Specifically, ABA has been extensively studied for

its role in resisting abiotic stresses such as high salinity, drought,

and low temperatures (Cutler et al., 2010). In recent years, ABA has

also been shown to be significantly involved in the regulation and

integration of defense responses. Both positive and negative ABA

effects on disease resistance have been previously reported.

However, ABA is primarily a negative regulator of immunity,

regulating rice resistance to Xoo and M. oryzae (Jiang et al., 2010;

Xu et al., 2013; Cao et al., 2016).

SLs are hormones found in many plants that inhibit branching

and are involved in various developmental processes. The number

of tillers, a key goal in rice breeding (Wang et al., 2018), can be

significantly altered by genetically or chemically modifying the SL

pathway (Waters et al., 2017). SLs stimulate seed germination of

parasitic plants, induce the branching of mycorrhizal hyphae, and

inhibit the branching in plants (Kumar et al., 2015; Kameoka and

Kyozuka, 2018; Wang et al., 2020; Bhoi et al., 2021; Mashiguchi

et al., 2021). However, since few studies to date have explored the

role of SLs in resistance to ShB, this area of research requires

further investigation.
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CTK is the developmental hormone related to plant immunity.

CTK is the earliest plant hormone found in maize seeds that can

promote cell division. M. oryzae increases the CTK content of the

host to facilitate its infection and rice can utilize this increase as a

signal for pathogen infection to activate the defense response (Jiang

et al., 2013). In Arabidopsis, high concentrations of CTK increase

SA-mediated resistance to biotrophic pathogens, while lower

concentrations increase sensitivity to biotrophic pathogens (Choi

et al., 2010; Argueso et al., 2012). However, studies investigating the

effects of GA, ABA, SLs, and CTK on rice resistance have primarily

focused on rice blast and rice bacterial blight. The effects of these

hormones on the ShB process are not clear and require further

investigation. Plant hormones do not act independently on

pathogens, but instead resist infection via mutual antagonism or

synergy with other hormones (Figure 1). This interaction or

crosstalk between individual hormones is thought to enable plants

to adjust their induced defense arsenals based on the type of

infective agent and cost-effectively use their limited resources

(Verhage et al., 2010; De Vleesschauwer et al., 2013).
Nutrition

The primary purpose of pathogenic fungal infection of plants is to

obtain nutrients for survival. Fungi use plants as carbon and nitrogen

sources, which are crucial for the growth and development of plants

themselves. Therefore, the nutritional status of rice determines the

resistance of rice to ShB disease. Next, the effects of two plant

nutrients, sugar and nitrogen, on rice ShB resistance are summarized.
Sugar

The assimilation products of photosynthesis in plants are

transported in the form of sugars. Sugars from host plants are

known to be taken up by fungi (Aked and Hall, 1993; Sutton et al.,

1999). Currently, there are two hypotheses to explain the role of

sugars in plant-pathogen interactions. The first is the “pathogen

starvation hypothesis” and the second is the “sugar signaling

hypothesis” (Bezrutczyk et al., 2018). Based on this inference, Gao

et al. (2018) introduced a dominant-negative version of OsSWEET11

that is driven by the rubisco promoter which is expressed in green

tissues but not in seeds to create ShB-resistant rice without penalty

to yield (Gao et al., 2018). Sugar Will Eventually be Exported

Transporter (SWEET) proteins transport hexose and sucrose

across the cell membrane (Chen et al., 2015). OsSWEET11/Os8N3

play a vital role in seed filling and can also be exploited by pathogens

to transport sugar into the extracellular space to provide nutrients

for the pathogens. The Ossweet11 mutant shows resistance to

multiple pathogens, but its seed-filling defect has a negative impact

on the yield (Chen et al., 2010; Bezrutczyk et al., 2018). Therefore,

the implantation of mutated OsSWEET11 in green tissues to inhibit

the function of endogenous OsSWEET11 achieves enhanced disease

resistance without compromising the yield. Gao et al (2021) revealed

the important role of sugar in the rice-ShB interaction and

confirmed that manipulation of endogenous sugar levels can alter
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Crosstalk between hormones and ShB. IAA, ETH, SA, JA, BR, GA, ABA, CTK, and SL regulate ShB resistance. PIN1a is an
resistance to ShB. siR109944 expression is suppressed by R. solani inoculation. ACS2 leads to over-accumulation of eth
pathogen inoculation, the ACS2 levels and ethylene contents in ACS2-overexpression lines are significantly up-regulate
signaling pathway which regulates the expression of ethylene-responsive genes, positively regulating rice resistance to
while the other is regulated by WRKY45. WRKY45 overexpression rice plants results in resistance to blast disease and le
rice-ShB interaction remains unknown. Constitutive expression of transcription factor WRKY30 promotes JA accumulat
resistance to ShB. BR is a negative regulator of rice resistance to ShB. WRKY53 directly activates the expression of SWEE
only DELLA protein in rice that inhibits GA signaling and its mutation significantly increases the disease susceptibility to
to leaf blight disease and blast disease. The effects of SLs and CTK on the ShB process are not clear and require further
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rice susceptibility to ShB. Additional evidence is that OsSWEET2a

negatively regulates rice resistance to ShB (Gao et al., 2021).

Furthermore, the R. solani AG1-IA effector AOS2 that is secreted

and targeted in the nucleus, interacts with WRKY53 and grassy tiller

1 (GT1) to activate SWEET2a and SWEET3a resulting in sugar

efflux for nutrition (Yang et al., 2022). In addition, a recent study

identified new QTLs for ShB resistance which included OsSWEET13

and 14 (Li et al., 2022). These results were consistent with Kim et al.

(2021) study that identified OsSWEET14 overexpression plants that

exhibited ShB resistance, while Ossweet14 mutants were more

susceptible compared to wild-type plants, demonstrating that

OsSWEET14 contributes to ShB resistance in rice. In summary,

these studies indicate that sugar transporters are extensively involved

in the interaction between rice and ShB (Figure 2).
Nitrogen

Since the Green Revolution in the 1960s, nitrogen (N) fertilizer

has played a significant role in increased rice yields. This issue

originated when the semi-dwarf1 (sd1) allele was used extensively in

rice breeding to develop semi-dwarf Green Revolution varieties

(GRVs) that enhanced lodging resistance and increased yield.

However, these GRVs exhibited poor nitrogen use efficiency

(NUE) and therefore, large amounts of N fertilizer were necessary
FIGURE 2

Effects of sugar on rice ShB. SWEET transports hexose and sucrose
across the membrane. SWEET11/Os8N3 plays a vital role in seed
filling and can also be exploited by pathogens to transport sugar to
the extracellular space to provide nutrients for pathogens. While the
sweet11 mutant showed resistance to multiple pathogens, it is
defective in seed filling, thus reducing yield. Rhizoctonia solani AG1-
IA effector AOS2 is secreted and targeted in the nucleus to interact
with WRKY53 and GT1 to activate SWEET2a and SWEET3a to efflux
sugar for nutrition. SWEET2a and SWEET11 negatively regulate ShB
resistance in rice. Alternatively, SWEET14 contributes to ShB
resistance in rice. Sugar transporters are extensively involved in the
interaction between rice and ShB.
FIGURE 3

Effects of nitrogen on rice ShB. The rice ammonium transporter AMT1;1 positively regulates rice resistance to ShB. This phenomenon is caused not
by ammonium itself, but by N-derived metabolites. AMT1;1 enhances the resistance of rice to ShB by promoting the accumulation of N metabolites,
such as amino acids and chlorophyll, and activating the downstream ETH signaling pathway. Amino acid (AA) accumulation can inhibit R. solani and
promote chlorophyll synthesis, which is a positive regulator of rice ShB. A low concentration of NH+

4 activates the ETH signal through AMT and a
high concentration of NH+

4 inhibits the ETH signal. ETH signaling positively regulates ShB resistance and NH+
4 uptake, suggesting that ETH signaling

acts downstream of AMT and that NH+
4 uptake is also under feedback control.
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to produce the desired high yield in these varieties (Liu et al., 2022).

High N fertilizer input promotes rice growth and development and

also guarantees yield, but excessive N fertilizer will increase the

prevalence of ShB (Savary et al., 1995). There is thus a dilemma

where high applications of N fertilizer ensure good GRV yields but

concomitantly aggravate the prevalence of ShB. Hence, it is

particularly important to explore the N-mediated mechanism of

rice resistance to ShB. A recent study reported clarification of the

mechanism of ammonium-mediated resistance to ShB (Figure 3 ).

Beginning with a susceptible mutant, Wu et al. (2022) found that the

rice ammonium transporter OsAMT1;1 positively regulates rice

resistance to ShB. However, this phenomenon was caused not by

ammonium itself, but by N-derived metabolites (e.g., amino acids).

Combining the results of genetics with physiological and biochemical

experiments, Wu et al. (2022) proposed that OsAMT1;1 enhanced

rice resistance to ShB via the accumulation of N metabolites (such as

amino acids and chlorophyll) and activation of the downstream

ethylene signaling pathway (Wu et al., 2022). In summary,

overexpression of OsAMT1;1 could simultaneously improve yield

(Ranathunge et al., 2014) and resistance to ShB. This suggests that

OsAMT1;1 is a promising target for the genetic improvement of rice.

Sun et al. (2014) identified and cloned a rice NUE-related QTL

(qNGR9) and found that it is synonymous with DENSE AND ERECT

PANICLE 1 (OsDEP1). Rice varieties carrying dep1 alleles are

insensitive to N supply and display increased NUE (Sun et al.,

2014). Meanwhile, OsDEP1 was also reported to affect ShB

resistance. OsDEP1-silenced plants and Osdep1 mutants are

resistant to ShB, while OsDEP1 overexpression lines demonstrated

increased susceptibility to ShB. OsDEP1 interacts with the

transcription factor LPA1 (Loose Plant Architecture 1) to inhibit its

function of activating the expression of OsPIN1a, thereby inhibiting

rice resistance to ShB (Miao Liu et al., 2021).
Other defense-related genes

Due to the lack of ShB-resistant rice germplasm resources, it is

challenging to breed varieties resistant to ShB using traditional

breeding methods. The use of genetic engineering technology to

transform ShB resistance-related genes is one of the most effective

means to develop resistant varieties. In recent years, researchers have

isolated and identified many ShB resistance-related genes from rice.

IDD14 and IDD13 activate PIN1a to promote rice resistance to ShB

(Sun et al., 2019; Sun et al., 2020). The interaction between DEP1 and

IDD14 negatively regulates rice defense against ShB (Liu et al., 2021).

Chitin is one of the main components of the fungal cell wall and the

chitinase (chi11) gene can enhance ShB resistance in rice (Baisakh

et al., 2001; Datta et al., 2001). Lignin is an important component of

the structural integrity of plant cell walls and its deposition enables

plant cell walls to resist pathogen infection. Furthermore, some

phenols and free radicals produced during lignin synthesis can

reduce the infection ability of pathogens by affecting the activity of

physiologically-related enzymes of pathogens (Chezem et al., 2017).

A GWAS in maize has shown that the F-box protein ZmFBL41

interacts with and degrades ZmCAD (lignin biosynthesis enzyme) to

inhibit ShB resistance (Li et al., 2019). WRKY transcription factors
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have been extensively studied. Studies have demonstrated that they

play key roles as regulators in plant immune responses under a

variety of biotic stresses (Cui et al., 2019).WRKY genes are crucial in

inhibiting or activating both plant defense responses via direct or

indirect interaction with PAMPs/effector proteins or via MAPK

regulation (Phukan et al., 2016). Multiple WRKY transcription

factors regulate rice resistance to ShB through transcriptional

activation or repression. The transcription factors WRKY24 and

WRKY70 are highly expressed in disease-resistant rice varieties

(Zhang et al., 2017). Previous studies have shown that transcription

factors such as OsWRKY4,13,30, and 80 enhance ShB resistance in

rice (Wang et al., 2015; Peng et al., 2016; Lilly and Subramanian,

2019). However, OsWRKY53-overexpression lines are more

susceptible to ShB (Yuan et al., 2020). The rice sugar transporters

SWEET11 and 14 negatively and positively regulate rice resistance to

ShB, respectively (Gao et al., 2018; Kim et al., 2021). In addition,

DOF11 promotes rice resistance to ShB via direct activation of

SWEET14 (Kim et al., 2021).
Conclusion and perspectives

Rice is an important food crop throughout the world. However,

it is susceptible to diseases such as ShB. The pathogen R. solani has

a wide host range and can infect more than 200 plant species.

These host plants belong to the Poaceae, Fabaceae, Solanaceae,

Amaranthaceae, Brassicaceae, Rubiaceae, Malvaceae, Asteraceae,

Araceae, Moraceae, and Linaceae families (Chahal et al., 2003).

Up to 188 plant species belonging to 32 families were found to be

infected by this fungus in Japan (Kozaka, 1961). In India, 62

important economic plants and 20 weed families have been

reported (Roy, 1993). Several weed plants have been identified as

adjunct hosts of pathogens in the absence of rice plants (Acharya

and Sengupta, 1998) and as inoculums that contribute to the

further spread of disease. In recent years, the prevalence of ShB

has increased due to the increased intensity of climate change, the

promotion and planting of dwarf varieties and hybrid rice, and the

intensive rice production system characterized by the large-scale

application of nitrogen fertilizer, high planting density, and wide

use of high-yield varieties in the process of cultivation and

management, seriously affecting both rice yield and quality

(Slaton et al., 2003; Molla et al., 2020).

Therefore, it is essential to study ShB to contribute to the

understanding and prevention of this severe disease. The planting

of ShB-resistant varieties is the most economical and effective way

to control ShB. Excavating ShB resistance germplasm resources and

mapping ShB resistance genes are the premise and basis of the

breeding of resistant varieties. The rice yield loss caused by ShB is

estimated to be 10-40% per year and is becoming a major threat to

rice cultivation (Savary et al., 2000). However, breeders have not yet

identified highly resistant or immune varieties, significantly

restricting the development of ShB resistance breeding and the

discovery of excellent resistance genes. In the process of green and

high-quality agricultural development in China, we should also

increase the integrated promotion of green prevention and control

technology of rice diseases and insect pests, and strive to make
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breakthroughs in the breeding and promotion of disease-resistant

varieties, the screening and development of new pesticides such as

biological and RNA pesticides, and the efficient application of

pesticide technology. To date, there are many reported QTLs

associated with ShB resistance. However, only a few genes have

been shown to regulate ShB resistance. Therefore, the mining and

screening of resistant germplasm resources and the mapping of ShB

resistance genes/QTLs remain significant topics for future research

on ShB.

When plants encounter biotic stresses, plant hormones activate

defense genes to coordinate effective defense responses. The

pathways regulated by SA and JA constitute the key part of the

regulation of the immune system hormones (Wasternack and Song,

2017; Zhang and Li, 2019). Plant hormone signal transduction

pathways can regulate the defense response of rice against R. solani.

Transcription factors (such as WRKY, MYB, and RAV) are a class

of proteins that regulate gene expression and are usually involved in

different plant hormonal signaling pathways (Yamasaki et al., 2005;

Yamasaki et al., 2008; Singh and Subramanian, 2017; Yuan et al.,

2018). They bind to the promoter region upstream of the target

gene to activate or inhibit the expression of the target gene and

stimulate the defense mechanism of rice against R. solani.

SWEET is a gene family widely distributed in prokaryotes,

animals, and many members are found in plants (especially in

higher vascular plants). Plant SWEET genes have diverse functions,

affecting the reproductive development of plants, participating in

phloem sugar loading, pollen development, fruit or seed

development, nectar secretion, leaf senescence, ion transport, and

other physiological processes, including plant-pathogen interaction

and abiotic stress (Yang et al., 2006; Seo et al., 2011; Chen et al., 2012;

Lin et al., 2014; Sosso et al., 2015). Plant-pathogen interaction is a

complex relationship determined by a variety of factors. Pathogens

secrete transcription activator-like effectors (TALEs) into host cells

and act as transcriptional activators of plant target genes in host cells

to facilitate pathogen reproduction or interfere with innate plant

immunity (Tadege et al., 1998; Asai et al., 2016), while sugars

provide a carbon source for pathogens and their host plants and the

sugar signal can therefore induce the expression of defense genes.

SWEET sugar transporters play a key role in regulating the

redistribution of sucrose in plant tissues, suggesting that they are

vital for balancing resistance and yield. To simultaneously improve

yield and resistance, Li et al. (2012) used a miRNA to specifically

inhibit the expression of OsSWEET11 in rice leaf tissues, thereby

increasing resistance to bacterial blight while maintaining the seed

setting rate. Photosynthetic tissues in plants are the main source of

sugars, which are then transported across the membrane into the

phloem under the mediation of sugar transporters. This process

provides a pathway for sugars to enter various sugar-dependent

tissues and cells (Bezrutczyk et al., 2018). Therefore, SWEET genes

can positively or negatively regulate rice resistance to ShB. As a new

member of the sugar transporter family, SWEET provides a channel

for pathogens to hijack sugar from hosts. The separation of disease-

resistant varieties and disease-resistant genes is of great significance for

future breeding. Therefore, these SWEET-associated molecular

mechanisms contributing to rice resistance to ShB should be

further explored.
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Nitrogen is an important mineral nutrient for plant growth

and development. It is also an important component of nucleic

acids, chloroplasts, proteins, and many secondary metabolites.

Increased nitrogen fertilizer application is the major means of

increasing crop yield. Improving NUE is the common goal

of many researchers. Previous studies have shown that high

doses of N fertilizers can lead to a significant increase in ShB

incidence (Molla et al., 2020). However, a limited nitrogen supply

will limit plant growth and yield. Under the condition of limited

nitrogen fertilizer, AMT1;1-mediated NH+
4 transport can accelerate

nitrogen metabolism in rice and regulate the expression of

subsequent NH+
4 -dependent ethylene-related genes, thereby

promoting ShB resistance. It has been suggested that adequate

nitrogen uptake and assimilation are essential for the activation of

rice defense mechanisms (Wu et al., 2022). With the advances in

genomic technology and functional genomics research, the

underlying genetic mechanisms responsible for plant nitrogen

uptake, utilization, and signal regulation can be extensively

analyzed, providing a theoretical and technical foundation for

improving crop NUE via molecular genetic means.

Rice is a major food crop throughout the world and its safe

production is of great significance in solving the global food crisis.

ShB is the main factor responsible for reducing rice yield. In addition

to the use of good farming systems, the use of chemicals is one of the

main ways to control disease, but it increases costs and pollutes the

environment. This review summarizes the research progress in ShB

based on studies on QTLs, hormones, nutrition, and defense-

associated genes, analyzes the mechanism of rice resistance to

ShB, and provides a comprehensive and systematic theoretical

basis for the future breeding of ShB-resistant varieties of rice.
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