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This study proposes an adaptive image augmentation scheme using deep

reinforcement learning (DRL) to improve the performance of a deep learning-

based automated optical inspection system. The study addresses the challenge

of inconsistency in the performance of single image augmentation methods. It

introduces a DRL algorithm, DQN, to select the most suitable augmentation

method for each image. The proposed approach extracts geometric and pixel

indicators to form states, and uses DeepLab-v3+ model to verify the augmented

images and generate rewards. Image augmentation methods are treated as

actions, and the DQN algorithm selects the best methods based on the images

and segmentation model. The study demonstrates that the proposed framework

outperforms any single image augmentation method and achieves better

segmentation performance than other semantic segmentation models. The

framework has practical implications for developing more accurate and robust

automated optical inspection systems, critical for ensuring product quality in

various industries. Future research can explore the generalizability and scalability

of the proposed framework to other domains and applications. The code

for this application is uploaded at https://github.com/lynnkobe/Adaptive-

Image-Augmentation.git.
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1 Introduction

Automated optical inspection (AOI) provides a flexible and

efficient method of object monitoring. In agriculture, AOI can be

used for early screening of leaf diseases to support timely

intervention to prevent leaf rust. Leaf rust is a type of plant

disease also known as red spot disease or sheep beard. There are

4,000 known species of leaf rust that attack a wide range of crops

such as beans, tomatoes, and roses (Liu et al., 2022; Bhatti et al.,

2023). Disease spots first appear as white and slightly raised spots

on the lower cuticles of the lower (older) leaves of mature plants.

Over time, the disease spots become covered in reddish-orange

spore masses. Later, pustules form and turn yellow-green and

eventually black. Severe infestations can cause foliage to chlorosis,

deform, and eventually fall off (Jain et al., 2019; Bhatti et al., 2021;

Lu et al., 2023; Wang et al., 2023; Yang et al., 2022; Zhang et al.,

2022). The spread of this disease will seriously affect agricultural

production and cause huge losses. Thus, detecting plant disease and

rust is very important and effective for protecting plant growth and

development, improving crop yield and quality, reducing pesticide

use, and saving time and cost (Bhatti et al., 2022; Shoaib

et al., 2023).

Artificial intelligence-enhanced AOI methods based on

computer vision and deep learning are promising solutions for

the adaptive identification of plant diseases (Liu and Wang, 2021).

Algorithms that incorporate the two major computer vision tasks—

classification and detection—have been widely used in plant disease

detection. In terms of classification algorithms, Sethy et al. (2020)

used convolutional neural networks (CNNs), ResNet50, to extract

features, which were then fed to a support vector machine (SVM)

for the disease classification, achieving an F1 score of 0.9838. Zhong

and Zhao (2020) proposed three methods based on the DenseNet-

121 deep convolutional network: regression, multi-label

classification, and focal loss function to identify apple leaf

diseases and improve the detection accuracy in unbalanced plant

disease datasets. In terms of detection algorithms, Zhou et al. (2019)

proposed a fast rice disease detection method based on the fusion of

FCM-KM and Faster R-CNN to improve detection accuracy and

reduce detection time. Sun et al. (2020) proposed a CNN-based

multi-scale feature fusion instance detection method based on the

improved SSD to detect corn leaf blight on complex backgrounds,

with the highest average precision reaching 91.83%.

The classification and detection of plant diseases are only

possible to judge whether the disease occurs in certain locations

(Di and Li, 2022; Khan et al., 2022; Yan et al., 2022; Deng et al.,

2023; Wang et al., 2023). Using computer vision segmentation

algorithms, the size and shape of plant rust spots can be obtained

(Wang et al., 2021; Ban et al., 2022; Shoaib et al., 2022; Zhang et al.,

2022; Dang et al., 2023; Wang et al., 2023), and the severity of rust

occurrence can be quantitatively evaluated. He et al. (2021)

proposed an asymmetric shuffle convolutional neural network

(ASNet) based on Mask R-CNN to segment three diseases,

including apple rust, with an average segmentation accuracy of

94.7%. Lin et al. (2019) proposed a U-net-based CNN to segment

powdery mildew from cucumber leaf images at the pixel level.

Unfortunately, compared with the classification and detection of
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diseases, there is still little research on applying deep learning

segmentation networks for rust identification.

In the study of rust detection, the size of the available data set is

limited, and manual labeling requires a lot of time and effort. The

traditional solution to image augmentation is to perform simple

image processing, which has been verified to improve the

performance of plant image segmentation. Lin et al. (2019)

proposed improving the U-net segmentation network by using

image augmentation technology to expand the training set to

train the semantic segmentation model better. Zhang et al. (2022)

proposed the DMCNN model, which obtained twice the data after

image augmentation and achieved an average apple disease

detection rate of more than 99.5%. The research proves that

sample size and data quality are critical to improving detection

accuracy. Unfortunately, whether there is redundancy in the data

set obtained by image augmentation or whether the data quality is

good or bad (Elmore and Lee, 2021; Dang et al., 2023; Xiong et al.,

2023) is a question worth exploring. Blind pursuit of a sample size

for inappropriate image augmentation may adversely affect

the model.

Several image augmentation methods have been proposed, such

as rotation and cropping. However, no single approach can always

outperform others, and the image quality generated by these

augmentation methods is uncertain. In other words, the

bottleneck of current image augmentation methods is that it is

difficult to define the optimal augmentation operation to achieve the

most significant performance improvement for semantic

segmentation. Currently, multiple augmentation methods are

generally used together: all methods for the complete image set,

one for a separated subset, or one for a randomly sampled subset.

However, none of these assignment mechanisms can guarantee the

best match between an image and an available augmentation

method. To overcome this problem, deep reinforcement learning

(DRL)-based image augmentation methods have been proposed

(Yang et al., 2023). DRL is a machine learning technique that

enables a software agent to optimize its decision-making policy by

interacting with its environment (Zhou et al., 2021). Le et al. (2022)

stated that DRL can automatically learn how to augment datasets

effectively. Qin et al. (2020) developed a novel automatic learning-

based image augmentation method for medical image

segmentation, using DRL to model the augmentation task as a

trial-and-error process.

However, image augmentation and image segmentation were

previously trained in separate ways (Di and Li, 2022). The image

segmentation results cannot provide feedback to the DRL-based

image augmentation model. Therefore, we propose a DRL-enabled

adaptive image augmentation framework based on the Deep Q-

learning (DQN) algorithm and the semantic segmentation model,

DeepLab-v3+, for apple rust detection. DQN learns the Q-value

function with a deep neural network and uses the experience

playback and the target network to improve the stability and

learning effect (Xu et al., 2022). The main contributions of this

study are as follows:
(1) A DRL-enabled adaptive image augmentation framework is

proposed to adaptively select the best-matched image
frontiersin.org
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augmentation methods according to the image features.

This way, an effective augmented image set is constructed

from the original image set.

(2) The DeepLab-v3+ model is applied. It is pre-trained by the

original image set and retrained in conjunction with the

augmentation image set. The model is retrained in a

transfer-learning way, featuring fast fine-tuning. The

retrained model outputs average performance over the

test image set as an evaluation index for the augmented

image. Furthermore, the evaluation index provided

feedback to the DRL model as a reward.

(3) The superiority of the DRL-enabled adaptive image

augmentation framework is verified by comparing it with

other image augmentation methods and semantic

segmentation models over a set of performance indexes.

(4) The main finding is that the DRL-enabled adaptive image

augmentation framework can best match image

augmentation methods with the image features and the

underlying segmentation model.
This paper provides an end-to-end, robust, and effective

method for segmenting rust spots at the pixel level, providing a

valuable tool for farmers and botanists to assess the severity of rust.
2 Method

The DRL-enabled adaptive image augmentation framework is

depicted in Figure 1. The DQN model acts as the Agent, and the

image set is treated as the environment. The Agent and the

Environment repeatedly interact through the signals: state st ,

action at , and reward rt . The state st and the reward rt are output

by the environment to the Agent while the action at is determined

by the Agent and executed in the environment. The interaction

process consists of episodes, which in turn comprise multiple steps.

The experience data are collected during the interaction process and

used to train the Agent until the Agent can best match the

augmentation methods and the images. In this specific scenario,

the Agent can augment a given image appropriately so that the

augmented image set can enable the segmentation model to output

better performance.

The detailed interaction process is illustrated in Figure 2. A

group of objects, e.g., images, states, and actions, are represented as

a vector when the precedence relationship should be maintained;

otherwise, the group of things is encapsulated with a set. In any

round of interaction t, the geometric and pixel indicators are

applied to extract the image features of the father image vector

It−1, which are then used to construct the state vector st . After that,

the action vector at is determined based on the state vector st and

the Agent policy function pq(at jst). The actions in at represent

image augmentation methods selected individually for each image

in It−1. Therefore, at will produce a child image vector It after being

executed. After that, the child image vector is combined with the

pre-training image set I0 to construct a retraining image set. Then,

the retraining image set is used to retrain the pre-trained image
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segmentation model, DeepLab-v3+. Finally, the retrained model is

tested on the test image set Itest , and the testing results are used to

generate the reward rt . At this moment, the data (st , at , rt) can

be collected.

In the next round, the It is used as the father image vector, and

the above process is repeated so that the data (st+1, at+1, rt+1) can be

collected. In addition, the data (st , at , rt , st+1) need storing in the

experience replay buffer for training the Agent policy function pq(
at jst). After the process is repeated T times, an episode is said to be

completed. To begin the next episode, reset t to 1, and restore the

pre-training image set I0 as the father image vector. The number of

episodes, L, is another hyperparameter like the number of steps T

within an episode, which means a total of L by T steps should

be executed.

The Agent policy function pq(at jst) evolves during the above

interaction process. A number of S samples are extracted from the

experience replay buffer and applied to update the parameter q of

pq(at jst). The hyperparameters, e.g., L, T , and S need adjusting and

pq(at jst) need updating till the performance is satisfied.
2.1 Image set and image vector

The original image set is divided into two subsets. Twenty

percent of the images are sampled randomly from the original

image set, forming the test image set Itest that is used to test the

DeepLab-v3+ model. The remaining 80% of images are collected by

a subset denoted as I0, which is called the pre-training image set. Let

I0 = f I0,1, I0,2,…,  I0,mg = f(x01, y01), (x02, y02),…,  (x0m, y
0
m)g, where x0i

and y0i are the ith image and its corresponding label image, andm is

the total number of samples in the image set. Through the image

augmentation procedure, an image in It−1(t = 1… T) is applied to

an image augmentation method to produce an augmented image,

and all the augmented images make up the augmented image set

It = f It,1, It,2,…,  It,mg = f (xt1, yt1), (xt2, yt2),…,  (xtm, y
t
m)g.

During the DQN augmentation process, the image sets are

represented as vectors. In an image vector, the images are queued in

a line, each occupying a fixed and unique position. At the first step

of an episode, i.e., t = 1, I0 is used as the father image vector denoted

as It−1. Then the images in It−1 are augmented to produce the child

image vector denoted as It . The image vectors are used instead of

image sets because the corresponding relationship between It−1 and

It should be maintained. In other words, the first image in It is

produced from the first image in It−1 and so forth. It is noted that

the images in It−1 are applied to image augmentation

methods independently.

The pre-training image set I0 alone is used to pre-train the

DeepLab-v3+ model. In contrast, I0 is combined with the

augmented image set It to retrain the pre-trained DeepLab-v3+

model to verify the effect of It . In other words, the I0 and Itest are

used to pre-train and test the semantic segmentation model

DeepLab-v3+. The pre-trained DeepLab-v3+ model is retrained

and tested by I0U
​It and Itest to see the influence of the augmented

image set It on the pre-trained model.

In the next step, the newly produced image vector It instead of

It−1 is used as the father image vector to produce its child image
frontiersin.org
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FIGURE 1

DRL-enabled adaptive image augmentation framework.
FIGURE 2

DRL-enabled adaptive image augmentation process.
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vector It+1. Then, It+1 is united with I0 to construct another

retraining image set to test the augmentation effect of It+1 based

on the pre-trained DeepLab-v3+ model. To sum up, the newly

produced child image vector is used as the father image vector in the

next step until the episode ends. However, to begin a new episode,

the pre-training image set I0 is used as the father image vector again,

and the image vectors produced in the last episode are discarded. It

is noted that the pre-trained DeepLab-v3+ model is restored in

every retraining process and is used as a base model to observe the

effect of the augmentation methods on the augmented image sets.
2.2 MDP model for DRL

The DRL-based optimization features a Markov decision

process (MDP) (Han et al., 2021). The Agent selects an action

from the candidate’s actions based on the current state of the

environment. The execution of the action will introduce a state

change to the environment which in turn generates a reward to the

Agent. The Agent decides (i.e., selects an action) based on the

current state only, not depending on the previous states. This design

contributes to simplifying the Agent policy function but requires

sophisticated state representation. The reward guides the evolution

of the policy function. Therefore, maximizing cumulative

compensation should correspond to the best selection policy of

augmentation methods for any given image set. Although the

single-step reward can be positive (a prize), negative (a penalty),

or zero, the Agent should tolerate the short-term penalty while

pursuing the maximum cumulative reward. The actions are

candidate image augmentation methods that have been proven to

be effective in certain circumstances. The best state-action match,

however, is still unknown, leaving optimization space for DRL.

Therefore, the state, action, and reward design will significantly

influence DRL’s optimization quality (Ladosz et al., 2022).
2.2.1 State
An amount of information is extracted from the image vector to

describe the state of the environment. In this study, each image’s

geometrical information and pixel information comprise a state for a

given image vector. At first, one segmentation model, called

LeafIdentifier, is trained to separate a leaf from its background.

Furthermore, the other segmentation model, called RustIdentifier,

is trained to separate the rust from a leaf. The LeafIdentifier and the

RustIdentifier models are developed based on the DeepLab-v3+

model but prepared with different datasets. The image set I0 with

the leaf label is used to train the LeafIdentifier model, while the image

set I0 with the rust label is used to train the RustIdentifier model.

After that, the centroid and area of the leaf and the rust can be

calculated. In addition, the pixel values can be averaged according to

the RGB color channels for the leaf and the rust, respectively.

Therefore, a state element that describes the ith image is:

st,i = xl,i, yl,i,Al,i,Rl,i,Gl,i,Bl,i, xr,i, yr,i,Ar,i,Rr,i,Gr,i,Br,i

� �
where, xl,i and yl,i are the centroid coordinates of a leaf, Al,i is the

area of a leaf, and Rl,i, Gl,i, and Bl,i are the average pixel values of a
Frontiers in Plant Science 05
leaf, corresponding to the RGB color channels, respectively; xr,i, yr,i,

Ar,i, Rr,i, Gr,i, and Br,i are the corresponding elements for the rusts

on the leaf.

Therefore, the state vector has the same number of elements as

the father image vector, and their elements have a one-to-one

corresponding relationship.

2.2.2 Action
Eight kinds of image augmentation methods are selected as

actions, as shown in Table 1. The original image operation does not

change the image. The vertical flip operation makes an image flip

vertically, while the horizontal flip operation makes an image flip

horizontally. However, the vertical and horizontal flip operations

apply the two operations together to a single image. The clockwise

rotation operation causes an image to rotate 30° clockwise around

the center point. The affine transformation is a type of geometric

transformation that preserves collinearity and the ratios of distances

between points on a line. The crop operation is to crop the original

image and then resize it to the original size. When applying the

noise-adding operation, random white Gaussian noise will be added

to a given image. Each image augmentation method is assigned a

unique number, i.e., 0, 1, 2,…7. In this study, ai(i = 0… 7) is used to

represent the eight candidates’ actions, and at(t = 1… T) is used to

indicate the action vector consisting of actions selected

independently for each image in the decision step t. Therefore,

the different elements of at possible correspond to the same ai.
2.2.3 Reward
The reward is a numerical evaluation of an action selected by

the Agent:

rt = 100(dt − dt−1) (1)

where, dt refers to the Dice ratio, defined as follows:

dt =
2
Itestj j o

(xj ,yj)∈Itest

PIoU (2)

where, jItest j is the number of elements in the test image set Itest ,

and PIoU ∈ ½0, 1� represents the segmentation effect of the retrained

DeepLab-v3+ model on an image of Itest :

PIoU =
ŷ j ∩ yj
�� ��
ŷ j ∪ yj
�� �� ,   yj ∈ (xj, yj) ∈ Itest (3)

where, ŷ j is the predicted label image output by the retrained

DeepLab-v3+ model, and yj is the expected label image, both for the

image xj in the test image set Itest ; jŷ j ∩
​ yjj and jŷ j ∪​ yjj are the

intersection and union area of the predicted and expected label

images, respectively:

ŷ j = f (xj; qI0∪It ),   xj ∈ (xj, yj) ∈ Itest (4)

where f denotes the retrained DeepLab-v3+ model, and qI0U​It

denotes the parameters updated by the retraining image set I0U
​It .

To sum up, dti indicates the overall influence of the selected

augmentation methods, at , for a given image vector It . As every It is

used to retrain the same pre-trained Deeplab-v3+ model, and the
frontiersin.org
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TABLE 1 Action definition.

ai Actions Examples Description

0 Original image
The resultant image is the
same as the original one.

1 Vertical flip

The resultant image
mirrors the original one
along the horizontal
center line.

2 Horizontal flip

The resultant image
mirrors the original one
along the vertical center
line.

3
Vertical and
horizontal flip

The original image is
flipped vertically and
horizontally to produce
the resultant image.

(Continued)
F
rontie
rs in Plant Scien
ce 06
 frontiersin.org

https://doi.org/10.3389/fpls.2023.1142957
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1142957
TABLE 1 Continued

ai Actions Examples Description

4
Clockwise
rotation

The original image is
rotated 30° clockwise
around the center point
to produce the resultant
image.

5
Affine
transformation

The original image is
transformed with the
matrix [[1, 0.2, 0], [0, 1,
0]] to produce the
resultant image.

6 Crop

The first 25 rows and 25
columns of pixels of the
original image are
trimmed and then the
image is resized to 512 ×
512 pixels to produce the
resultant image.

7 Noise-adding

Some random white
Gaussian noise is added
to the original image to
produce the resultant
image.
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retrained DeepLab-v3+ model is tested on the same test image set

Itest , d
t
i can be used for augmentation effect comparison and

reward calculation.
2.3 Semantic segmentation model

A semantic segmentation model is integrated into the

framework to evaluate the image augmentation effect. Based on

the evaluation results, rewards can be produced, and feedback can

be provided to the DQN model, which adjusts the Agent policy

function accordingly.

2.3.1 Model selection
At present, plant disease segmentation methods based on deep

learning mainly include semantic segmentation and instance

segmentation. Instance segmentation is more potent as it can

distinguish different objects, while semantic segmentation can

only determine things from the background. However, the

semantic segmentation method is a better choice for this study, as

it can meet the verification requirements, is simple and requires less

computing resource consumption.

Deep learning-based semantic segmentation methods can

improve accuracy and efficiency significantly compared with

traditional methods. Currently, commonly used deep learning

semantic segmentation models include FCN (Long et al., 2015),

U-Net (Ronneberger et al., 2015), SegNet (Badrinarayanan et al.,

2017), and DeepLab (Chen et al., 2014). The specific analysis is

shown in Table 2 (Chen et al., 2017). It can be seen that the

DeepLab-v3+ model (Chen et al., 2018) has the highest accuracy

and the best application effect. Therefore, the DeepLab-v3+ model

is used in this study.

The DeepLab-v3+ model can convert an image into a prediction

highlighting diseased areas from the background (Tian et al., 2019).

In the rust detection application, each pixel in the apple rust leaf

image is assigned to one of the mutually exclusive classes: disease

spots VS background, to complete the segmentation of disease spots

from the background (Kuang and Wu, 2019).
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2.3.2 Deeplab-v3+ model
As shown in Figure 3, the DeepLab-v3+ model adds a simple

and effective decoder layer to the DeepLab-v3 model to refine

the segmentation results. Furthermore, in the Encoder part, the

Atrous Spatial Pyramid Pooling (ASPP) module is constructed

using Atrous convolution and the Spatial Pyramid Pooling

module (SPP). Atrous convolution is the process of adding

spaces between convolution kernel elements to expand the

convolution kernel. The SPP performs pooling operations at

different resolution levels to capture rich contextual

information. Consequently, five different outputs are obtained

through the five distinct processes of ASPP to produce a high-level

feature, and the Atrous convolution outputs a low-level

component. In the Decoder part, the high-level feature is first

up-sampled by 4 and then connected with the low-level quality.

The concatenation passes through 3  �   3 convolutions and is

then up-sampled by 4 to give the predicted label image.
2.3.3 Model evaluation
To evaluate the segmentation effect of the DeepLab-v3+ model

from multiple perspectives, the confusion matrix is calculated

(Chen and Zhu, 2019), as shown in Table 3.
• KTP is the true positive, indicating the number of disease spot

pixels that are correctly classified into the disease spot

region.

• KFP is the false positive, indicating the number of background

pixels that are wrongly classified into the disease spot

region.

• KTN is the true negative, indicating the number of

background pixels that are correctly classified into the

background region.

• KFN is the false negative, indicating the number of disease

spot pixels wrongly classified into the background region.
After that, five performance indexes are defined based on KTP,

KFP, KTN, and KTN (Wang et al., 2020).
TABLE 2 Performance comparison of deep learning-based semantic segmentation models.

Proposed
time

Network
model

Segmentation
accuracy

Training
time Algorithm Features

2014 FCN C B Based on the CNN network, it introduces a deconvolution layer.

2014 DeepLab-v1 B C
It combines dilated convolutions with DCNN networks and optimizes with fully connected
conditional random fields.

2015 U-Net B – It is completely symmetrical and the decoder is added with convolution and deepening.

2016 DeepLab-v2 B C
It uses dilated convolutional layers instead of up-sampling and uses multi-scale spatial
pyramid pooling.

2017 SegNet C C
It utilizes the encoder-decoder network structure and recovers the image size by up-
sampling.

2018 DeepLab-v3+ A C
It uses an encoder-decoder network structure to improve the segmentation of object edges
and introduces dilated convolutions.
A. Very Good, B. Good, C. Fair.
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PA =
KTP + KTN

KTP + KTN + KFP + KFN
(5)

where, PA ∈ ½0, 1� tells how many pixels are correctly classified

relative to the total number of pixels.

PMPA =
1
2

KTP

KTP + KFP
+

KTN

KTN + KFN

� �
(6)

where, PMPA ∈ ½0, 1� averages correctly classified disease spot

pixels and background pixels relative to the predicted total disease

spot pixels and the total background pixels, respectively.

PCPA =
KTP

KTP + KFP
(7)

where, PCPA ∈ ½0, 1� tells how many disease spot pixels are

correctly classified relative to the predicted total disease spot pixels.

PIoU =
KTP

KTP + KFN + KFP
(8)

where, PIoU ∈ ½0, 1� tells how many disease spot pixels are

correctly classified relative to the union of the predicted and

expected disease spot pixels.

PMIoU =
1
2

KTP

KTP + KFN + KFP
+

KTN

KTN + KFP + KFN

� �
(9)
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where, PMIoU ∈ ½0, 1� averages correctly classified disease spot

pixels and background pixels relative to the union of the predicted

and expected disease spot pixels and the union of the predicted and

expected background pixels, respectively.
2.4 Model training

According to the MDP mentioned above and semantic

segmentationmodels, themain training steps are summarized as follows:
• Preprocessing: Producing leaf labels and rust labels for the

original image set and dividing it into the pre-training

image set I0 and the test image set Itest ; pre-training the

DeepLab-v3+ model with I0, Itest , and the leaf labels to

generate the LeafIdentifier; pre-training the DeepLab-v3+

model with I0, Itest , and the rust labels to generate the

RustIdentifier; selecting DQN as the specific DRL model,

and initializing the decision-making Q-function Q1 and the

target Q-function Q2 for DQN.

• Image augmentation: Taking the child image vector in step

t − 1, i.e., It−1, as the father image vector in step t; using the

LeafIdentifier, RustIdentifier, and the geometric and pixel

indicators to process the images in It−1, one by one, to
FIGURE 3

The network structure of the DeepLab-v3+ model.
TABLE 3 Confusion matrix of disease spot detection.

Pixel point classification area
Expected class

Disease spot Background

Predicted class
Disease spot KTP KFP

Background KFN KTN
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Fron
generate the state vector st , i.e., the processing result of one

image contributes one element in st ; using Q1 to determine

one action for each state element, generating the action

vector at , and one state element corresponds to one action

element; executing the action elements in at to the

corresponding image elements in It−1 to produce the child

image vector It ; getting st+1 from It .

• Verification: Constructing the retraining image set, the

element of which is I0U
​It that means I0 plus It gives a

training image set; restoring the pre-trained DeepLab-v3+

model; fine retraining the model with I0U
​It ; testing the

retrained model against Itest , storing the results, and

calculating the reward rt ; storing (st ,  at ,  rt , st+1) into the

experience replay buffer.

• DQN network updating: Sampling a batch of data,

(si,  ai,  ri, si+1), from the experience replay buffer;

calculating the loss function, L(q), with Q1, Q2, and the

sampled data; updating Q1 with L(q) = ½ri + max
a

Q2(si+1,  a

) − Q1(si,  ai)�2 and the backpropagation algorithm; copying

the parameters of Q1 toQ2 every C steps to update Q2. Q2 is

updated C times slower than Q1 for improving stability.

• Starting the next step or a new episode: The above steps

except preprocessing are repeated for every step of an

episode until the episode ends. To start a new episode,

the pre-training image set I0 is restored as the father image

vector for the first step of the episode, and the above steps

except preprocessing are repeated until the episode ends.
In summary, the specific DRL algorithm, DQN, is used in this

study to organize an adaptive image augmentation scheme. The

DQN is assisted with the geometric and pixel indicators for state

extraction, the DeepLab-v3+ model for verifying the augmented

images and generating the reward, and the image augmentation

methods as actions. The image and its accompanying label image

are processed in the same way by the selected image augmentation

method. The DeepLab-v3+ model is pre-trained once and restored

for every retraining operation. DQN parameters keep updating

through all the steps and episodes, i.e., they are not reset or restored

from a previous step or episode.
3 Experimental results and discussion

3.1 Data sources and image preprocessing

The experimental data comes from the open-source apple leaf

disease image dataset on the Baidu AI Studio Development

platform, with a resolution of 512 × 512 pixels. Among them,

there are 438 images of apple leaf rust, including images collected in

various environments, all of which are used in this study. Some

representative images are shown in Figure 4A. The EIseg software

(Xian et al., 2016) uses the latest deep learning algorithms and

models to greatly reduce annotation effort. Therefore, it is used to
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mark the image, distinguishing the disease spot areas and the whole

leaf from the background, to produce labels, as shown in Figures 4B,

C. The label images have the same resolution as the original images.

The image set was divided according to the ratio of 8:2, and the

image and its label image would not separate during division. As a

result, there were 350 images in the pre-training image set I0, and 88

images in the test image set Itest , respectively.
3.2 DeepLab-v3+ model pre-training

The training hardware platform consisted of a Platinum 8358P

CPU, a GTX 3090 GPU, and 24 GB of running memory. The

software was built with the deep learning framework Pytorch. The

testing results indicated that the DeepLab-v3+ model could process

about 379 sets of images per second. During training, it took about 4

s to complete each epoch. As DeepLab-v3+ was set to 1,000 epochs

in our experiment, it took about 4,000 s in total to complete the pre-

training of the DeepLab-v3+ model.

The loss curve and the five performance indexes are shown in

Figure 5. The DeepLab-v3+ model converges after about 239

epochs, where the loss is about 3.42e−3. The average PA, PMPA,  

PMIoU , PCPA,  and PIoU are 0.9956, 0.9444, 0.9131, 0.8905, and

0.8307, respectively. In the verification stage, the pre-trained

DeepLab-v3+ model is retrained with I0U
​It in a fast-fine-tuning

way. If the retrained DeepLab-v3+ model can output better

performance, the augmented images It are said to improve

segmentation performance, which means the DRL model can

select proper augmentation methods.
3.3 DQN model training

The hardware platform for DQN training consisted of a 24

vCPU AMD EPYC 7642 48-Core processor and a single NVIDIA

GTX 3090 GPU with 24 GB of running memory. The DQN

algorithm was developed with PyTorch and Python 3.8.10. For

each training step of the proposed method, the image

augmentation set could be generated in 25 s, and it took about

165 s to complete the parameter fine-tuning of the DeepLab-v3+

model and about 0.003 s to update the parameters of DQN.

Therefore, it took about 3.16 min to complete each step and

9.48 min to complete one episode for the proposed method. As

DQN was set to 300 episodes in our experiment, it took about 2,844

min in total.

As shown in Figure 6, the reward is very small at the beginning,

i.e., −2.975. As the training process progresses, the reward increases

significantly and then fluctuates around zero. To sum up, the results

show that the reward increases from −2.975 to 0.9826 during DQN

training, achieving an improvement of nearly 3.958. That is to say,

the effect of the DQN model on disease spot segmentation is greatly

improved, which proves that the model can automatically learn how

to adopt reasonable and most effective image augmentation

methods according to the image features.
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3.4 Performance comparison of the image
augmentation methods

The DQN model was compared with every single method listed

in Table 1, i.e., No. 0: original image; No. 1: vertical flip; No. 2:

horizontal flip; No. 3: vertical and horizontal flip; No. 4: clockwise

rotation; No. 5: affine transformation; No. 6: crop; and No. 7: noise

adding. For the ith (i = 0… 7) image augmentation method, the

images in I0 were augmented by the same augmentation method to

produce an augmented image set. Then I0 was combined with the

augmented image set to construct a retraining image set. The

retraining image set was used to retrain the pre-trained DeepLab-
Frontiers in Plant Science 11
v3+ model, and the retrained model was tested on the Itest . This way,

a separate set of performance indexes, e.g., PIoU and PCPA  ,   were

produced for each image augmentation method for comparison.

Figure 7 shows the augmentation effect of different methods.

The original image augmentation method achieves an average PIoU
value of 0.8117, which is the lowest. The affine transformation

augmentation method achieves an average PCPA value of 0.9059,

which is also the lowest. In contrast, the DQN augmentation

method achieves the best performance, with PIoU value of 0.8426

and PCPA value of 0.9255. Therefore, this experimental result

confirms the effectiveness of the DQN model in adaptively

selecting the augmentation methods according to the image
A

B

C

FIGURE 4

Samples of (A) the apple rust images, (B) the rust labels, and (C) the leaf labels.
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features. The testing results showed that the DQN model could

generate 12 augmentation image sets (with labels) per second, and

the performance was maximum.
3.5 Performance comparison of the
semantic segmentation models

The DeepLab-v3+ model (denoted as DQN-DeepLab-v3+) was

compared with the FCN and SegNet models. Firstly, the DQN-

DeepLab-v3+, FCN, and SegNet models were pre-trained with I0
and Itest , respectively. Secondly, let the proposed DQN model

output an augmentation image set. Thirdly, a retraining image set

was constructed with I0 and the augmented image set, and then the

retraining image set was used to retrain the DQN-DeepLab-v3+,

FCN, and SegNet models, respectively. Finally, the retrained DQN-

DeepLab-v3+, FCN, and SegNet models were respectively tested on

Itest to get a separate set of average performance indexes

for comparison.
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DeepLab-v3+ with random augmentation (denoted as RanAug-

DeepLab-v3+) was also constructed for comparison. RanAug-

DeepLab-v3+ was pre-trained, retrained, and tested following the

same procedure as the DQN-DeepLab-v3+, FCN, and SegNet

models. The only difference was that a random augmented image

set was used instead of the expanded image set output by the DQN

model. Furthermore, the test results of the pre-trained DeepLab-v3+

model were used as the baseline, as any augmented images did not

retrain it.

As shown in Figure 8, the proposed DQN-DeepLab-v3+ model

achieves the best performance on all the indexes. PA,   PMPA,   PMIoU

, PCPA,  and PIoU reaches 0.9959, 0.9617, 0.9192, 0.9255, and 0.8426,

respectively, which are up to 0.2%, 3.7%, 3.9%, 7.3%, and 7.6%

higher than other methods. In contrast, the SegNet achieves the

worst performance, mainly by focusing on optimizing memory

usage. The version of the FCNmodel is also relatively low due to the

limited size of the perceptual area, easy loss of edge information,

and low computational efficiency. These results confirm that the

DQN-DeepLab-v3+ model is superior to the FCN and SegNet

models. On the other hand, some performance indicators of

RanAug-DeepLab-v3+ are lower than those of DeepLab-v3+,

indicating that the random augmentation tends to harm the

segmentation performance. In contrast, the DQN-DeepLab-v3+

model surpasses DeepLab-v3+, showing adaptive augmentation

can improve segmentation performance.
4 Conclusion

Deep learning-based automated optical inspection can benefit

from image augmentation, which enlarges the image quantity for

training and testing. However, one significant challenge is that any

single image augmentation method cannot achieve consistent

performance over all the images. To address this issue, a DRL-

enabled adaptive image augmentation framework is proposed in

this paper. The specific DRL algorithm, DQN, is used in this study

to organize an adaptive image augmentation scheme. Given an

image vector, segmentation models and key indicators are used to

extract image features and generate the state vector; the Agent

policy function determines the action vector based on the state

vector; and the actions produce an augmented image vector. To
FIGURE 5

Training histories of (A) the loss and (B) the performance output on the test image set.
FIGURE 6

Training histories of the reward.
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evaluate the image augmentation effect, a raised image is used to

fine-tune a pre-trained semantic segmentation model, DeepLab-v3

+, and the resultant model is tested against a fixed test image set.

Based on the evaluation results, the reward is constructed, and

feedback is sent to the DQN model, which updates the Agent policy

function accordingly. Through iterations, the Agent policy

function is optimized. The proposed DRL-enabled adaptive image

augmentation framework achieves better augmentation

performance than any single image augmentation method
Frontiers in Plant Science 13
and better segmentation performance than other semantic

segmentation models. The experimental results confirm that the

DRL-enabled adaptive image augmentation framework can

adaptively select augmentation methods that best match the

images and the semantic segmentation model.

Future work should consider more advanced image

augmentation methods, segmentation targets, and a more flexible

and efficient DRL framework to provide more effective detection

schemes for complex AOI application scenarios.
FIGURE 7

Augmentation effect of different methods.
FIGURE 8

Segmentation effect of different models.
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