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Cotton is widely used in textile, decoration, and industry, but it is also threatened

by soil salinization. Drip irrigation plays an important role in improving water and

fertilization utilization efficiency and ensuring crop production in arid areas.

Accurate prediction of soil salinity and crop evapotranspiration under drip

irrigation is essential to guide water management practices in arid and saline

areas. However, traditional hydrological models such as Hydrus require more

variety of input parameters and user expertise, which limits its application in

practice, and machine learning (ML) provides a potential alternative. Based on a

global dataset collected from 134 pieces of literature, we proposed a method to

comprehensively simulate soil salinity, evapotranspiration (ET) and cotton yield.

Results showed that it was recommended to predict soil salinity, crop

evapotranspiration and cotton yield based on soil data (bulk density),

meteorological factors, irrigation data and other data. Among them,

meteorological factors include annual average temperature, total precipitation,

year. Irrigation data include salinity in irrigation water, soil matric potential and

irrigation water volume, while other data include soil depth, distance from

dripper, days after sowing (for EC and soil salinity), fertilization rate (for yield

and ET). The accuracy of the model has reached a satisfactory level, R2 in 0.78-

0.99. The performance of stacking ensemble ML was better than that of a single

model, i.e., gradient boosting decision tree (GBDT); random forest (RF); extreme

gradient boosting regression (XGBR), with R2 increased by 0.02%-19.31%. In all

input combinations, other data have a greater impact on the model accuracy,
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while the RMSE of the S1 scenario (input without meteorological factors) without

meteorological data has little difference, which is -34.22%~19.20% higher than

that of full input. Given the wide application of drip irrigation in cotton, we

recommend the application of ensemble ML to predict soil salinity and crop

evapotranspiration, thus serving as the basis for adjusting the irrigation schedule.
KEYWORDS

salinity, evapotranspiration, drip irrigation, cotton, ensemble machine learning
1 Introduction

Cotton (Gossypium barbadense L.) is a crucial economic crop

in the world (Rodriguez-Sanchez et al., 2022). It is not only one of

the main sources of natural fibers for textiles as well as edible oil

(Ibrahim et al., 2022), but also plays an important role in national

defense, medicine, the automobile industry, and other fields (Xu

et al., 2021). Meanwhile, more than 1 billion hectares of soil in the

world are threatened by soil salinization, thus land degradation,

food reduction (even up to 50%), and environmental threats are

increasing day by day (Wang et al., 2021). In arid or semi-arid areas

where cotton is widely planted, more than half of the irrigation

systems are related to salinization (Wang et al., 2018). Under the

background of human growth and global warming, water resources

are becoming increasingly scarce, and the traditional irrigation-

drainage balance to wash salt method is difficult to maintain,

especially in cotton-producing areas such as the arid areas in

northwest China (Zong et al., 2022). Smart irrigation based on

Internet to Things technology has also paved the way for developing

precision irrigation technologies (Boursianis et al., 2021). Thus, drip

irrigation, a more water-saving and efficient irrigation technology,

has been widely promoted in cotton planting. The way salt moves

and accumulates in the soil may be affected by poor drainage,

irrigation practices, vegetation removal, and landscape remodelling

through earthworks (Sun et al., 2012). Therefore, the dynamics of

soil salt in cotton fields under drip irrigation is a problem worthy of

study, because the accurate prediction of soil salinity is the most

prominent and economic method to prevent soil salinization (Xiao

et al., 2023).

Soil salinity is generally expressed by the percentage of salt

content (Vermeulen and Van Niekerk, 2017), or electrical

conductivity (EC) detected by electromagnetic induction or

dielectric sensor. Conventional soil salinity measurement methods

include direct assay in the laboratory through chemical methods

(Peng et al., 2016), as well as indirect methods such as remote

sensing inversion and soil reflectance conversion (Zhao et al., 2022).

However, field measurement requires destructive sampling of soil,

which is also time-consuming, laborious, and expensive.

Electromagnetic induction (EMI), such as EM38 or EM31, can be

used as mature methods and auxiliary data to quickly map soil
02
properties related to salinity and measure apparent EC as well

(Castrignanò et al., 2012; Narjary et al., 2019). Although the method

of satellite remote sensing can be used to identify soil salinity in a

large area, its accuracy still needs to be improved, and it is mainly

concentrated in the surface soil. Previous studies (Yang et al., 2020)

have shown that the increase of soil salinity doesn’t affect crop

production until it exceeds a certain threshold level. However, once

the salinity threshold is exceeded, the cotton yield almost linearly

decreases with the increase of soil salinity (Oster, 1994). At the same

time, accurate prediction of cotton yield is of great significance for

coping with climate change, cotton breeding (Ashapure et al., 2020),

farmers and stakeholders to make wise decisions, such as water and

fertilizer input, storage demand, cash flow calculation, crop

insurance, etc (Xu et al., 2021). Similarly, the traditional yield

measurement methods are either large-scale harvesting in the

harvest season, destructive sampling, or remote sensing

estimation. However, the former is too time-consuming, while the

latter is difficult to improve the resolution and is vulnerable to

weather problems such as clouds. In addition, evapotranspiration

(ET) of cotton, the loss of water vapor flux transmitted from land

and vegetation to air, represents the productivity of crops and is an

important indicator for studying the relationship between crop

yield and water content (Bhattacharya et al., 2011). ET also plays a

key role in the water, carbon and energy cycle of terrestrial

ecosystems (Zhang et al., 2022). ET not only affects cotton growth

and development, but also influences atmospheric circulation and

climate (Huang et al., 2019). The commonly used reference ET

(ET0) method requires a large amount of meteorological data input,

which is difficult to achieve in remote areas (Mattar, 2018).

However, the method of crop conversion coefficient (Kc) depends

too much on the accuracy of Kc, with great uncertainty. To sum up,

accurate and practical alternative prediction methods are urgently

needed for soil salinity, EC, cotton yield, and ET of drip-irrigated

cotton fields. Moreover, considering the advantages of traditional

process-based models and data-driven models that can overcome

the problem of time-consuming and costly fields trails (Jiang et al.,

2023a; Jiang et al., 2023b), this provides a new choice for the

prediction of those issues.

A common method is to use hydrological models, such as

Hydrus-2D and DRAINMOD, to simulate the water, salt and heat
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transport process of cotton field system under drip irrigation (Li

et al., 2018; Ning et al., 2021). They can be used as a powerful

complement to experiments to assess soil hydraulic properties,

boundary conditions, irrigation frequency and salinity, and crop

types to optimize soil and water management practices (Devkota

et al., 2022). However, they require more input data and higher user

skills (Table S1), which may be difficult to obtain in many regions

where data are scarce ad undeveloped. Although widely proven that

hydrological models are more interpretable (Liu et al., 2021), they

are not always easy to use models and are mainly concentrated on

smaller spatiotemporal scales. Most Hydrus studies focused on a

depth of 2 m and a range of one year. In addition, previous studies

(Karandish and Šimůnek, 2016; Elnesr and Alazba, 2017) have

compared hydrological models with ML and found that the former

is very sensitive to boundary and initial conditions. If excessive

relaxation occurs, the hydrological model may be unstable and can

have difficulties in term of speed and convergence probability.

Considering that accuracy is proportional to the hardware

resources required, it require a higher level of human skills than

data-driven models such as ML. Another potential alternative might

be machine learning (ML), which is different from the limited

regional empirical model and is not as complex and demanding as

the hydrological model (Kisi, 2016). Being good at solving nonlinear

and multivariable problems, ML has been widely used in hydrology,

agriculture, environment, and other fields in recent years (Wan and

Goudos, 2020; Jiang et al., 2022a). Among them, ML has been

proved to be a powerful tool in crop ET and yield prediction

(Dramsch, 2020; Filippi et al., 2022). However, although ML has

been used for soil salinity prediction in remote sensing and other

fields, it is more concentrated in reflectance and other aspects.

Dynamic prediction of soil salinity or EC in drip-irrigated cotton

fields based on ML has not been reported. In addition, cotton yield

includes not only seed yield, but also lint yield, one of the most

important criteria for selecting new lines in breeding (Rodriguez-

Sanchez et al., 2022). Hence, we assume that soil salinity, EC, seed

yield, lint yield and ET of cotton field under drip irrigation can be

predicted by ML and simple input parameters.

Moreover, to compare the effects of different ML models, a new

stacking ensemble ML algorithm was also introduced in this study.

Since it integrates the basic ML model, it is usually found to have

better prediction performance (Jiang et al., 2022b). Meanwhile, the

input parameters of the model have a great impact on the results, so

it is necessary to find the most suitable and convenient input

combination for ML algorithm. The objectives of this research

are: (1) to build a global data set of drip irrigated cotton fields, and

verify the feasibility of using ML models to predict soil salinity, EC,

cotton yield and ET based on basic soil data, meteorological data,

irrigation data, and other data; (2) to compare the performance of

three common ML models (gradient boosting decision tree, GBDT;

random forest, RF; extreme gradient boosting regression, XGBR)

and stacking ensemble ML algorithm; (3) to analyze the influence of

different input combinations on the accuracy and stability

of models.
Frontiers in Plant Science 03
2 Materials and methods

2.1 Machine learning models

In this study, three basic ML models, gradient boosting decision

tree (GBDT), random forest (RF), extreme gradient boosting

regression (XGBR), and a stacking ensemble ML algorithm were

selected. This is because they represent three classical commonly

used models, and previous studies (Liu et al., 2020; Jiang et al.,

2022c) have found that they have good performances in solving

regression problems. Initially we intended to include other basic ML

models such as support vector machine (SVM) and multiple

perceptions (MLP, a type of neural network-based ML, similar to

ANN and DNN), but the preliminary results showed that their

performance was significantly worse than those tree-based models,

and therefore, decided not to include them in this study. More

details can be found in the Supplementary Materials. All the codes

were implemented in python 3.8 by applying the sklearn (https://

scikit-learn.org/) and XGB (https://xgboost.readthedocs.io/en/

latest/index.html) packages. The models were run on a laptop

equipped with Intel core i5-8300H CPU and NAVID GTX

1050 GPU.
2.1.1 GBDT, RF, XGBR
The GBDT model proposed by (Friedman, 2002) is a widely

used method using decision stumps or regression trees as basic

learners to solve classification or regression problems. It constructs

additive regression models by using the least squares method to

sequentially plus a simple parameterized function to the current

pseudo residuals, the gradient of the loss functional being

minimized, in each iteration. The RF model, based on the theory

of random partition selection and random subspace, is a simple

bagging ensemble of tree predictors, and the results of each tree

were weighted and averaged to achieve the final output (Breiman,

2001). The generalization error converges to the limit with the

number of trees increasing and the exchange or change of

covariables. Both GBDT and RF combine weak learners, but the

difference is that the tree of the former is fitted on the residual of the

previous tree, so the biases can be reduced, while the latter reduce

the variance (Fan et al., 2018). The RF is obtained by training N

decision trees on the training-testing set of N samples by putting

back samples. The current approximation of GBDT and the margin

function of RF are as Eqs. (1-2) respectively. As supposed by (Chen

and Guestrin, 2016), the XGBR based on the lifting method, has

integrated all the predictions of weak learners (classification and

regression trees) through boosting and additive training strategies.

It has been found that XGBR improves the objective optimization

function by optimizing the loss function and complexity penalty,

thereby preventing overfitting. Moreover, the functions in the

XGBR model will automatically perform parallel computing in

the training period to reduce calculation costs (Eq. (3)). The

regularized objectives were minimized according to Eqs. (4-5).
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Fm(x) = Fm−1(x) + n  glml(x ∈ Rlm) (1)

mg(X, Y) = avkI(hk(X) = Y) −max
j≠Y

avkI(hk(X) = j) (2)

yi = f(xi) = o
K

k=1

fk(xi), fk ∈ F (3)

L(f) =o
i
l(y0i , yi) +o

k

W(fk) (4)

where W(f ) = g T +
l
2

wk k2 (5)

where Fm(x) is the function maps x to y, which are jointly fit to

the training data in a forward “stage wise” manner to boost

approximates. n is the shrinkage parameter that controls the

learning rate, and the smaller values represent better

generalization error. glm is a constant value predicted by the

decision tree in the region Rlm. l is the node of the tree. mg (X, Y)

is the margin function of X and Y, representing the extent to which

the average number of votes of one tree exceeds the average number

of votes of any other class. I () is the indicator function. A larger

marginal value indicates the degree of confidence in classification or

regression. F = ff (x) = wq(x)g(q :Rm ! T ,w ∈ RT ) is the space of

regression trees. q, w, and T are the independent tree structure

(decision rules), leaf weight corresponding to each fk, and the

number of tree leaves. l, yi´, yi and W represent differentiable

convex loss function, prediction, target, and the regression model

function, respectively.
2.1.2 Stacking ensemble model
The stacking or stacked generalization was proposed by

(Wolpert, 1992). It constructs multi-level classifiers or regressors

hierarchically, and uses the mutual complementarities between

basic models to enhance the generalization ability. Based on the

leave-one-out cross validation method, the stacking model uses the
Frontiers in Plant Science 04
meta learner to optimally combine the prediction results of the basic

models to obtain the final output, while the output of the basic

learners will not be trained to avoid overfitting. More information

can be found in previous studies (Chou et al., 2014; Gu et al., 2022).

The weights of base learners were calculated as Eq. (6). In addition,

the objective function was computed as follows [Eq. (7)] to estimate

stacking weights by minimizing the mean square linear regression.

yp,i = o
M

m=1
wmfm,i (6)

W = argmino
N

i=1
(yo,i − o

M

m=1
wmfm,i)

2,  ðo
M

m=1
wm = 1,wm ≥ 0) (7)

where wm is the weight assigned to each base model, fm,i

represents the prediction of the ith observation by model m. W =

{w1, w2, …, wm} denotes the weight set assigned to the base model.
2.2 Model simulation and evaluation

2.2.1 Data collection
To obtain the global dataset of soil salinity, cotton yield and ET

from cotton fields under drip irrigation, we conducted a

comprehensive literature search on the Web of Science and the

China Knowledge Resource Integrated (CNKI) database before

October 2022. The following keywords were used: soil salt, soil

salinity, drip irrigation, evapotranspiration, cotton, and yield. The

complete search format was available in the Supplementary

Materials. All the literature were downloaded and checked

manually to ensure they are point measurements, follow a

standard data collection protocol, and weather data are from the

local or nearest meteorological station. Since it’s hard to make sure

all of the drip irrigation setups from global experiments are the

same, we used the distance from drip to partly represent line

spacing. More details of the uncertainty could be found in the

discussion. The total number of papers is 1317, but only 230 papers
FIGURE 1

Location of experiment station used in this study. n represents the number of literatures, n > 1 represents multiple trials conducted at the same site.
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(50 about ET, 112 about salt, and 68 about yield) were selected after

excluding greenhouse, pot, laboratory, and modelling research.

Then the abstracts were reviewed carefully to check whether they

meet the inclusion criteria, only field trials with multiple replicate

samples and details about the experiments. Finally, we collected 134

pieces of literature that are suitable for this study (Supplementary

Materials). As shown in Figure 1, the experiment sites of cotton

under drip irrigation cover several continents including Asia,

Europe, America, Oceania, and Africa. Data source is from peer-

reviewed literatures from database. Data type are xlsx or csv data

which could be found in the revised Supplementary Materials now.

Data structure is matrixes of 10 dimensions, 1514 columns (10,

1514) and (10, 1748) for EC and soil salinity, and matrixes of (8,

232), (8, 121), and (8, 312) for ET, lint yield and grain yield,

respectively. The output is a single column vector, and the sample

size is the same as the number of the input rows. Sensor type is float

for most data except integer for year. Spatial and temporal

resolution are globally and yearly for yield and ET (but the

salinity includes some daily results). Data size has been

mentioned before. Public availability is open access now.
2.2.2 Model inputs, outputs and K-fold
cross-validation

On the basis of referring a previous study (Xiao et al., 2023),

four types of data were selected for model inputs, soil data (bulk

density), meteorological factors (average temperature, total

precipitation, year), irrigation data (salinity in irrigation water

(SIW), soil matric potential (SMP), irrigation) and other data (soil

depth, distance from dripper, days after sowing (DAS) for EC and

soil salinity, fertilization for yield and ET). The dataset was

divided into several sub datasets since the model inputs

available are not the same in different literature, and the outputs

are soil EC, salinity, seed yield, lint yield and ET respectively

(Table 1). Given the economic attributes of cotton, data of seed

yield and lint yield were collected. In addition, due to the different

emphasis of different studies on soil salinity, we have collected

data on soil EC and salt content. This was because there is a

positive correlation between them, but they cannot be accurately

transformed now (Phonphan et al., 2014). It is obviously soil data

and meteorological factors will influence the results; the irrigation

data was selected to estimate the effects of drip irrigation. Soil

salinity and EC were related to soil depth, dripper position and

cotton growth stage. Cotton yield was significantly related to

fertilization, which also affected crop growth and ET. Soil data,

meteorological factors and irrigation data were mandatory, while

the other data was different for salinity, yield and ET. The detailed

model inputs of different outputs are also available in Table 2. The

dataset was randomly split to the training and testing sets by a

commonly used ratio of 70%:30% according to a previous study

(Livera et al., 2019). Specifically, the sample sizes of training-

testing subsets of EC, soil salinity, seed yield, lint yield, and ET are

1060 and 454, 1224 and 524, 261 and 112, 85 and 37, 162 and 70

respectively. Moreover, 10-fold cross-validation was conducted to

avoid over-fitting and the hyperparameters were optimized by

grid search and trial and error (Table S2).
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2.2.3 Scenarios simulation
To test the effects of the four kind of input data (soil data,

meteorological data, irrigation data, and other data) on model

accuracy, three scenarios (S0, S1, S2) of input combinations were

set up for simulation. Among them, S0 is all data as input, S1

represents input without meteorological factors, S2 represents input

without other data. The detailed information can be found

in Table 2.

2.2.4 Evaluation criteria
In this study, we selected three commonly used criteria, i.e.,

mean absolute error (MAE), root mean square error (RMSE), and

coefficient of determination (R2) to evaluate the model performance

(accuracy and stability) as follows.

MAE =
1
no

n

i=1
YO,i − YP,i

�� �� (8)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(YO,i − YP,i)

2

n

vuuut
(9)

R2 = 1 −
o
n

i=1
(YO,i − YP,i)

2

o
n

i=1
(YO,i − YO)

2
(10)

where YO,i, YP,i, YO and n represent the observed, predicted, and

mean of observed values (soil EC, salinity, seed yield, lint yield and

ET). The closer R2 is to 1, the closer RMSE and MAE are to 0, and

the higher the accuracy of the model.
3 Results

3.1 Overview of the global datasets and the
relationship among inputs and outputs

The overview of the global dataset obtained in this study can be

found in Table 1. In general, the dataset includes five sub data sets,

soil EC, soil salinity, seed yield, lint yield, and ET, and their sample

sizes are 1514, 1748, 373, 121, and 232, respectively. To explore the

relationship between model inputs and prediction objectives, and

verify the feasibility of our selection of input parameters, we built

the Spearman correlation heatmap between inputs and outputs
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(Figure 2). SMP was positively correlated with EC and salt.

However, it is worth pointing out that the negative correlation

between SIW and EC is not reliable, because the SIW research

mainly focused on soil salinity, and most of the EC studies have no

SIW description (mostly -5 kPa). It can be easily found that SIW,

temperature, and distance from drippers were positively related to

soil salinity (Figure 2B), while precipitation, irrigation, depth, year,

and DAS were negatively correlated with salinity. This is

understandable because the greater the salinity of the irrigation

water, the farther away from the emitter, the less the soil was

washed, and the greater the possibility of salt residue. Irrigation

could wash away soil salt, and with the growth of cotton (DAS and

year increasing), the soil salinity will reduce, which was consistent

with previous studies (Phogat et al., 2012; Wang et al., 2018). When

it comes to the relationship heatmap of cotton yield (Figure 2C, D),

there was a positive correlation between fertilization, irrigation, soil

bulk density and yield, no matter seed yield or lint yield, while a

negative correlation was found between SMP, temperature and

yield. The positive correlation between cotton yield and

fertilization amount in a certain range has been confirmed by

many studies (Dong et al., 2010; Ibrahim et al., 2022). The

negative correlation between SMP and yield may be explained by

the inhibition of salt and high temperature. As for the positive

correlation between ET and irrigation, year, fertilization, and the

negative correlation with rainfall (Figure 2E), it may be explained by

the change of seed cotton yield (Figure 2C).
3.2 Performance of ML models modelling
EC and soil salinity

Figure 3 show the results of EC and soil salinity simulated by

different ML models (GBDT, RF, XGBR, and stacking). It could be

found that most of the points are very close to the 1:1 line, which

denotes that the ML algorithms could predict EC and soil salinity. As

illustrated by Table 3, three basic models (GBDT, RF, XGBR) could

capture the dynamics of both EC and soil salinity, with R2 ranging

from 0.89 to 0.98 and 0.78 to 0.91 during the training and testing

periods respectively. While MAE of EC and soil salinity were 0.05-

0.14 mS cm-1 and 0.63-1.49 g kg-1 (training), 0.27-0.34 mS cm-1 and

1.56-1.89 g kg-1 (testing). By contrast, the stacking ensemble ML

model performed the best, with R2, MAE, RMSE of EC and soil

salinity in 0.92-0.98 and 0.87-0.98, 0.05-0.27 mS cm-1 and 0.61-1.55 g

kg-1, 0.34-0.71 mS cm-1 and 1.02-2.48 g kg-1. During the training

stage, the R2 of stacking model increased by 1.10%-2.65% (EC) and
TABLE 2 Input combinations for scenario simulation.

Scenarios S0 S1 S2

Models GBDT0, RF0, XGBR0, Stacking0 GBDT1, RF1, XGBR1, Stacking1 GBDT2, RF2, XGBR2, Stacking2

EC/Soil
salinity

Bulk density, SIW, SMP, Temp, Prec, Irrigation, Soil depth,
Distance, year, DAS

Bulk density, SIW, SMP, Irrigation, Soil depth,
Distance, year, DAS

Bulk density, SIW, SMP, Temp,
Prec, Irrigation

Seed/lint
yield/ET

Bulk density, SIW, SMP, Temp, Prec, Irrigation, year,
Fertilization

Bulk density, SIW, SMP, Irrigation, year,
Fertilization

Bulk density, SIW, SMP, Temp,
Prec, Irrigation
SIW, SMP, Temp, Prec, distance, and DAS denote salinity of irrigation water (g L-1), soil matric potential (-kPa), average annual temperature (°), Total precipitation (mm), distance from dripper
(cm), and days after sowing (d) respectively.
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0.34%-10.07% (soil salinity), with MAE and RMSE decreased by

40.86%-62.19% and 3.62%-59.44% (EC), 18.68%-33.06% and 4.95-

57.79% (soil salinity), respectively, compared with basic models.

While in the testing period, the corresponding R2 increased by

1.68%-4.64% (EC) and 3.20%-10.52% (salinity), MAE and RMSE

decreased by 0.40%-19.22% and 0.09%-1.37% (EC), 0.47%-18.02%

and 1.20%-17.82% (salinity), respectively. In addition, the calculating

time of XGBR and stacking model was almost the smallest among

these three models, especially during the testing stage.
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3.3 Simulation accuracy of seed yield and
lint yield

Figure 4 offers the scatter plots of seed yield (a) and lint yield (b)

predicted by four ML models. It shows that although the

performance was worse than soil salinity, the points are still near

the 1:1 line, especially the blue points (stacking ensemble model).

Table 4 illustrated the modelling performance of cotton yield by

different ML models. Specifically, the R2, MAE and RMSE of seed
FIGURE 2

Spearman correlation heatmap of input parameters and conductivity (EC, A), soil salt (B), seed yield (C), lint yield (D), and ET (E). The SIW, SMP,
Temp, DAS are salinity of irrigation water (g L-¹), soil matric potential (kPa), temperature (°C), and days after sowing respectively. The units of bulk
density, precipitation, irrigation, and fertilization are g cm-³, mm, mm, kg N ha-1. The units of EC, soil salt, seed yield, lint yield, and ET are mS cm-1, g
kg-1, kg ha-1, kg ha-1, and mm, respectively.
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yield and lint yield predicted by three basic models (GBDT, RF, and

XGBR) were in 0.94-0.99, 15.63-216.47 kg ha-1, 81.30-318.01 kg ha-1

and 0.96-0.98, 0.32-92.08 kg ha-1, 32.34-122.99 kg ha-1 (training

stage), 0.72-0.85, 418.08-442.00 kg ha-1, 571.34-627.83 kg ha-1 and

0.74-0.86, 190.27-231.51 kg ha-1, 258.99-301.83 kg ha-1 (testing

stage), respectively. Similarly, the stacking ensemble ML model also

obtained the best performance, with R2, MAE, and RMSE in, 0.86-

0.99, 28.66-396.61 kg ha-1, 83.62-557.80 kg ha-1 (seed yield), and

0.88-0.99, 0.13-169.24 kg ha-1, 31.44-230.44 kg ha-1 (lint yield)

respectively. The R2 of seed yield and lint yield were 0.02%-19.31%

and 1.02%-18.11% higher than basic models, while those MAE and

RMSE were and 5.14%-92.78% and 2.37%-74.43%, 11.05%-99.86%

and 2.77%-74.43% lower, respectively.
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3.4 Comparison of different ML models
predicting ET

The ET data used in this study were the seasonal cumulative ET,

which were calculated by the water balance method. Specifically, it

is the result of irrigation amount, precipitation, the change of soil

water storage minus surface runoff and the downward flux below

the crop root zone (Supplementary Materials). As displayed in

Figure 5, the stacking ensemble ML algorithm was the closest to the

observed ET points, followed by GBDT, XGBR, and RF. The points

were almost all distributed around the 1:1 line, which denotes the

acceptable accuracy of models. The comparison of model

performance was shown in Table 4. It could be found that
FIGURE 3

Scatter plots of predicted and observed EC (A) and Soil salinity (B). R1
2, R2

2, R3
2, R4

2, RMSE1, RMSE2, RMSE3, RMSE4 represent R² and RMSE (unit: mS cm-1,
a, g kg-1, b) of GBDT, RF, XGBR, Stacking respectively. The values outside and within brackets represent the results of the training and testing periods.
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predicting ET was much easier than other outputs based on the soil

data, meteorological data and fertilization, with R2, MAE, RMSE in

0.99 and 0.87-0.97, 1.72-16.17 mm and 30.21-46.07 mm, 6.61-23.02

mm and 41.47-69.94 mm during the training and testing periods,

respectively. Compared with those three basic models (GBDT, RF,

and XGBR), the stacking ensemble model obtained the best model

performance also, with R2 increased by 1.15%-11.41%, MAE and

RMSE decreased by 7.93%-89.39% and 0.27%-71.29% respectively.
3.5 Results of scenario simulation

To test the impacts of input parameters on model performance,

the results of EC, soil salinity, although the RMSE of S1 in the

training phase was close to or even less than the full inputs scenario,

in most cases, especially during the testing period, the RMSE of S0

was still the smallest. The RMSE of S1 and S2 in the testing phase

increased by 7.80%-19.20% and 23.22%-27.55% than S0,

respectively. As seen in Figure 6C, D, the model performance

with different input combinations varies greatly. In particular, the

model accuracy under S2 scenario was significantly reduced. During
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the testing period, the RMSE of yield are 42.32%-63.63% and

26.70%-51.02% (seed), 14.06%-55.05% and 15.99%-46.04% (lint)

higher than S0 and S1 respectively. Overall, the RMSE of stacking

model was the smallest, indicating its best accuracy regardless of

input combinations. It could be found that the prediction of ET

depends on the meteorological factors and fertilization data also,

especially during the testing periods. The RMSE of ET predicted by

ML models under S0 decreased by 0.29%-52.09% and 6.92%-

481.39% than S1 and S2, respectively.
4 Discussion

4.1 Comparison of different ML models

The soil salinity was affected by soil texture, soil moisture and

irrigation, thus those factors should be considered when predicting

soil salinity or EC (Wang et al., 2022). Proper evaluation of soil

salinity requires traditional laboratory analysis, which is often

cumbersome, expensive, time-consuming and laborious (Xiao

et al., 2023). The prediction by process-based model requires
TABLE 3 Performance of four ML models for predicting EC and soil salinity during training and testing stages.

Periods Training Testing

Models GBRT RF XGBR Stacking GBRT RF XGBR Stacking

EC

Time (s) 0.20 0.36 0.10 0.10 0.24 0.27 0.07 0.01

R2 0.95 0.96 0.97 0.98 0.91 0.88 0.90 0.92

MAE 0.09 0.14 0.10 0.05 0.34 0.27 0.30 0.27

RMSE 0.50 0.45 0.41 0.34 0.72 0.72 0.72 0.71

Soil salinity

Time (s) 0.36 0.29 0.54 0.18 0.24 0.26 0.07 0.01

R2 0.89 0.96 0.98 0.98 0.81 0.78 0.84 0.87

MAE 1.49 0.75 0.63 0.61 1.89 1.71 1.56 1.55

RMSE 2.41 1.38 1.07 1.02 3.02 2.87 2.48 2.51
fro
FIGURE 5

Comparison of predicted and observed ET. R1
2, R2

2, R3
2, R4

2, RMSE1, RMSE2, RMSE3, RMSE4 represent R² and RMSE (unit: mm) of GBDT, RF, XGBR,
Stacking respectively. The values outside and within brackets represent the results of the training and testing periods.
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complex input data and high knowledge, or the spectral reflectance

of soil salinization recorded by optical remote sensing satellite

(Gorji et al., 2020) or unmanned aerial vehicle (UAV)

multispectral data (Zhao et al., 2022). Recently, these methods

have also made significant progress, becoming more user-friendly

and accurate. More studies (Ivushkin et al., 2017; Ning et al., 2021)

have used process-based or remote sensing models to simulate the

dynamics of soil salinity in cotton fields, providing guidance for

irrigation schedules and water salt balance. What’s more, the

leverage of massive data brought by remote sensing has also

made ML more widely used. For example, a study (Qi et al.,

2022) has proposed a soil salinity monitoring method based on

satellite-ground spectral fusion and satellite-UAV collaboration in

cotton planting areas, thereby drawing a soil salinity distribution

map for cotton fields. In this study, we establish a method to predict

soil salinity, EC, seed yield, lint yield and ET based on four ML

methods (GBDT, RF, XGBR, stacking ensemble model) and soil

data, meteorological data, irrigation data and other data. Overall,

the model obtained an acceptable performance especially for the

stacking ensemble model. It could be found that both XGBR and

GBDT showed a better prediction performance than RF, which was

basically consistent with a previous study (El Bilali et al., 2021). In

other words, the ability of more complex integration algorithms

such as boosting (XGB) and stacking ensemble model to deal with

complex problems is significantly higher than that of bagging (RF),

which has been proved by previous study (Pham and Won, 2022).

The possible reason is that the GBDT is based on the boosting

method which establishes a decision tree in each iteration, and the

subsequent tree corrects the errors of the previous tree and thereby,

continuously approaching the true value (Obsie et al., 2020). This is
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different from the RF model based on the bagging method which

selects training data by putting back the sample and can

simultaneously establish multiple independent decision trees (Du

et al., 2022). This study mainly focused on tree-based models rather

than, among others, SVM, MLP and artificial neural networks. This

is because when we test the model performance, tree-based models

obtained a much better result than SVM and MLP (Figure S1).

However, future studies will be critical to investigate this further.

When it comes to the prediction of cotton yield (seed yield and

lint yield), the model still performed well, especially the XGB and

stacking. Previous studies (Xu et al., 2021; Kaur Dhaliwal et al.,

2022) on the importance score of variables for predicting cotton

yield by ML found that the yield had the highest response to

management variables (nitrogen fertilizer application amount,

covering crops, no tillage years), followed by soil and climate

variables. This is consistent with our study, which proved the

importance of fertilizer, meteorological data and soil bulk density

by a global dataset. In addition, the nonlinear relationship among

cotton yield and fertilization rate, year has been found (Nouri et al.,

2020; Xie et al., 2021). This also partly proves the feasibility of using

ML, which is good to solving nonlinear problems, to predict cotton

yield. Last but not least, the prediction effect of ET is pretty good,

even better than soil salinity and cotton yield. It is understandable

since numerous studies (Xu et al., 2018; Zhang et al., 2022) have

found that ML is a good tool to predict ET based on meteorological

data. Previous studies (Xu et al., 2017) have also found that tree

ensemble and boosted regression tree performed well in predicting

ET than other ML models, which is in line with this study. The

ensemble ML method shows an improvement in the predictability

of crop yields, compared to the linear relationship of traditional
TABLE 4 Performance of four ML models for predicting seed yield, lint yield and ET of cotton during training and testing stages.

Periods Training Testing

Models GBRT RF XGBR Stacking GBRT RF XGBR Stacking

Seed yield

Time 0.81 0.14 0.04 0.01 0.83 0.14 0.04 0.01

R2 0.99 0.94 0.99 0.99 0.85 0.72 0.82 0.86

MAE 15.63 216.47 30.20 28.86 419.74 442.00 418.08 396.61

RMSE 81.30 318.01 84.08 83.62 573.40 627.83 571.34 557.80

Lint yield

Time 0.46 0.02 0.03 0.01 0.51 0.02 0.04 0.01

R2 0.98 0.96 0.98 0.99 0.85 0.74 0.86 0.88

MAE 0.32 92.08 0.32 0.13 190.36 231.51 190.27 169.24

RMSE 32.34 122.99 32.52 31.44 259.10 301.83 258.99 230.44

ET

Time 0.63 0.94 0.06 0.01 0.64 0.72 0.04 0.01

R2 0.99 0.99 0.99 0.99 0.95 0.87 0.94 0.97

MAE 2.01 16.17 2.01 1.72 32.85 46.07 32.81 30.21

RMSE 6.63 23.02 6.63 6.61 51.75 69.94 51.68 41.47
fro
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models, which is consistent with previous studies (e.g., Kaur

Dhaliwal et al., 2022). The R2 of process-based models typically

ranged from 0.83 to 0.96 (Masasi et al., 2020). This might be because

cotton production is affected by many factors, including crop

management, soil, and climate parameters. The relationship

between yield response and environmental factors are not linear

and the process-based models could explain the variance of the

linear portion of the response variables better (Xie et al., 2021).

Accurate simulation of cotton yield using crop models often

requires substantial expertise, intensive data, and extensive

calibration compared with ML (Dumont et al., 2015). However, it

cannot be ignored that the performance of ML models is limited by

the lack of spatial and temporal data covering a wide range of

output and prediction variables (Shahhosseini et al., 2019). We
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suggest that future research combine ML with process-based

models to overcome data limitations.
4.2 Effects of input combinations on
model performance

The performance of ML models is greatly affected by regional

climate conditions and the combination of input meteorological

factors (He et al., 2020). This study also found this, and not only in

predicting ET, but also in soil salinity, EC, seed yield, and lint yield.

It is obvious that when all the data, namely soil data, meteorological

data, irrigation data and other data, are used as inputs, the accuracy

of all ML models is better than that of S1 and S2 scenarios with the
FIGURE 4

Scatter plots of predicted and observed seed yield (A) and lint yield (B) of cotton. R1
2, R2

2, R3
2, R4

2, RMSE1, RMSE2, RMSE3, RMSE4 represent R2 and
RMSE (unit: kg ha-¹) of GBDT, RF, XGBR, Stacking respectively. The values outside and within brackets represent the results of the training and
testing periods.
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combination of some input parameters (Figure 6). Actually, it is

easily understandable since the movement of soil salt will be affected

by management measures such as irrigation, salt washing and

meteorological factors (Ren et al., 2019), as well as the location of

emitters and soil layers. The cotton yield and ET are obviously be

affected by fertilization and meteorological factors (Huang et al.,

2019). In addition, many previous studies (Dong et al., 2020; Xiao

et al., 2023) have also proved this point. The results of Spearman

correlation matrix (Figure 2) also showed that there was no

significant correlation between most of the input parameters,

which also partly supported the necessity of using more

comprehensive input parameters to predict soil salinity, cotton

yield and ET. As for other data such as soil depth, it was also

found (Su et al., 2022) that the migration difficulty of different irons
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determines their accumulation depth under irrigation and

evaporation. When it comes to the difference between S1 and S2,

the RMSE of ML models of S1 are lower than S2 in most cases. This

partly proved that the importance of other data even rather than

meteorological data. It is reasonable when considering the large

spatial and temporal variability of soil salinity or EC (soil depth,

distance from dripper, and DAS), while cotton yield and ET are

obviously affected by crop growth and fertilizer application.

Moreover, the prediction accuracy of ET by ML models is higher

than soil salinity, which might be because the correlation of ET and

input parameters are larger (Figure 2). However, it should also be

pointed out that the future studies should be critical to find the

relationship between input combinations with model performance,

since there might be some potential overfitting.
FIGURE 6

Comparison of RMSE of EC (A), soil salinity (B), seed yield (C), lint yield (D), and ET (E) under three scenarios (S1, S2, S3).
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4.3 Implications, prospects and limitations

This study proved the ML models, especially the XGBR and

stacking ensemble ML algorithm, are useful tools to predict soil

salinity, EC, cotton yield and ET. It is encouraging because all the

input parameters are not difficult to obtain, the use of the model is

relatively simple, and the accuracy and stability are satisfactory.

Based on this study, we are confident that we can realize the real-

time prediction of soil salinity, ET and cotton yield under drip

irrigation in the future. This can be used to guide practice and

agricultural production, and optimize the management measures.

The model obtained a satisfactory performance overall, even better

than Hydrus, for example, previous studies (Hu et al., 2017; Liu

et al., 2021) have found R2 in simulating soil salinity ranged from

0.53-0.98, which was smaller than this study. However, there are

some factors limit and degrade the current research, which can be

further studied. Firstly, the currently predicted soil salinity and EC

dynamics are still on a relatively coarse temporal and spatial scale,

that is, based on DAS, soil depth, distance from emitters, etc., and

whether the model has a more refined (hourly scale) and wider

range prediction capability has not been confirmed. Although the

distance from drippers reflects some spatial variability, different

drip irrigation settings also bring some uncertainty. Secondly, as the

types of data input are still limited, whether the model accuracy can

be further improved remains to be discussed. This is mainly because

the basic parameters measured in different studies are difficult to be

completely consistent. The present selection of input parameters

takes more into account the availability of data and their relevance

to the results. This makes it easier for the model to obtain the input

data in actual use, but it may also bring some uncertainties. For

example, the temperature and precipitation used in this study are

the annual average temperature and cumulative precipitation

respectively. In the arid areas where the cotton is planted, the

rainfall is very small. However, to make more accurate predictions,

it may be better to select the precipitation and temperature during

the growth period. But these data are usually lacking in many pieces

of literature. In addition, it would be more encouraging to get the

dynamic prediction of soil salinity, EC and ET with time series.

Although the current research can also fill the gap for the

observation data, it is more about the prediction of a certain state.

How to achieve more accurate prediction combined with

increasingly powerful and robust deep learning (DL) model may

be another direction. Initially, we tested the results of the neural

network during model selection but found the simulation results

not satisfactory (data not shown). We suggest further future

research such as integrating basic DL models to investigate this.

Last but not least, ML algorithms are often criticized by black boxes

because they can obtain good prediction results, but it is difficult to

reveal how they are implemented. We have made some analysis of

the spearman correlation between the input and output of the

model, but it may be possible to further study it through the

interpretive ML algorithm in the future (Jones et al., 2022).

Moreover, in recent years, graph convolutional network (GCN),

knowledge distillation (KD), edge artificial intelligence algorithms
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and other technologies have shown good potential in unsupervised

learning (Gou et al., 2022; Wu et al., 2023; Zhang et al., 2023), but

how to apply these methods to the agricultural field remains to be

further studied.
5 Conclusions

This study displayed the application of different ML models

(GBDT, RF, XGBR, and stacking ensemble) to accurately predict

soil salinity, EC, seed yield, lint yield, and ET in drip irrigated cotton

fields. Based on the global data set collected from 134 literatures, we

verified the feasibility of predicting those outputs based on soil data,

meteorological data, irrigation data and other data. SIW,

temperature, and distance from drippers were positively related to

soil salinity, while precipitation, irrigation, depth, year, and DAS

were negatively correlated with salinity. The ML models have

achieved satisfactory performance in both training and testing

stages, and the accuracy of the models are higher in predicting

cotton yield and ET than that of soil salinity. The stacking ensemble

ML could improve model performance. Taking the prediction of

soil salinity and EC for example, the R2 increased by 1.68%-10.52%,

MAE and RMSE decreased by 0.40%-19.22% and 0.09%-17.82%,

respectively. When the input parameters of the model are reduced

(especially the other data and meteorological data), the accuracy of

the model is significantly reduced. Therefore, under the condition of

complete input parameters, it is recommended to apply ML

algorithm, especially the stacking ensemble ML, to predict soil

salt dynamic, ET and cotton yield in drip irrigated cotton fields in

arid regions of the world.
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