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A novel pyramid temporal causal
network for weather prediction

Minglei Yuan*

Anhui University of Finance and Economics, Bengbu, China
In the field of deep learning, sequence prediction methods have been proposed

to address the weather prediction issue by using discrete weather data over a

period of time to predict future weather. However, extracting and utilizing

feature information of different time scales from historical meteorological data

for weather prediction remains a challenge. In this paper, we propose a novel

model called the Pyramid Temporal Causal Network (PTCN), which consists of a

stack of multiple causal dilated blocks that can utilize multi-scale temporal

features. By collecting features from all the causal dilated blocks, PTCN can

utilize feature information of different time scales. We evaluate PTCN on the

Weather Forecasting Dataset 2018 (WFD2018) and show that it benefits from

multi-scale features. Additionally, we propose a multivariate loss function

(MVLoss) for multivariate prediction. The MVLoss is able to accurately fit small

variance variables, unlike the mean square error (MSE) loss function. Experiments

on multiple prediction tasks demonstrate that the proposed MVLoss not only

significantly improves the prediction accuracy of small variance variables, but

also improves the average prediction accuracy of the model.

KEYWORDS

temporal convolutional networks (TCN), weather forecasting, deep learning, time serial
model, loss function
1 Introduction

Making accurate weather predictions has always been a challenging task in human

history. Currently, the main methods for weather forecasting involve using large

supercomputers to simulate atmospheric movement. The Weather Research and

Forecasting model (WRF) is the most popular method for both research and real-time

weather forecasting worldwide, and its forecasting accuracy has continuously improved

with technological development. However, existing methods rarely use historical data to

infer future weather, and not all periodic characteristics of meteorology can be

accurately defined.

In recent years, deep learning-based sequence prediction models, such as Recurrent

Neural Networks (RNNs), Long Short Term Memory (LSTM), and Gated Recurrent Units

(GRU), have been proposed. However, these models still suffer from gradient vanishing or

explosion while learning long sequences. To overcome this problem, various methods,

including WaveNet and Temporal Convolutional Network (TCN), have been proposed.
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However, these methods only use features of the last layer for

prediction and do not fully utilize features from different time

scales, which is important in weather forecasting.

To address these issues, we propose a novel model called

Pyramid Temporal Causal Network (PTCN) for accurate weather

predictions. The feature extracting network of PTCN is constructed

using dilated causal convolutional layers and shortcut connections,

similar to TCN. We also introduce a pyramid-like structure in

PTCN to collect and merge features extracted from different layers

of the feature extracting network, which have different receptive

fields along the time axis. This provides a multi-scale feature

representation that helps the model learn the weather’s internal

rules at different time scales.

We also propose a new loss function for multivariate prediction

that considers the fluctuation range of different variables. When

using mean square error (MSE) as the loss function for multivariate

regression, small variance variables’ predicted results are often

unsatisfactory. Therefore, we propose a multivariate loss function

that takes into account the variance of all the predicted attributes, in

order to help the model generate feasible predictions for

all attributes.

This work has two main contributions:
Fron
1. To the best of our knowledge, this is the first work to model

different time-scale features in sequence prediction

problems, especially for weather predictions. We evaluate

the proposed model on a large-scale Weather Forecasting

Dataset 2018 (WFD2018) and show that PTCN achieves

higher prediction accuracy compared to some commonly

used deep learning-based time series forecasting methods

and WRF models.

2. We propose a loss function for multivariate regression that

considers the fluctuation range of different variables, and

experimental results show that it significantly improves the

average accuracy of multivariate weather prediction tasks.
2 Related work

2.1 Time series prediction models

Temporal Convolutional Network (TCN) Bai et al. (2018) is an

effective temporal convolutional structure for sequence modeling

problems. TCN integrates causal convolution, dilated convolution,

and shortcut connections to gain a large receptive field with few

layers, making it powerful for sequence prediction tasks. Recent

works have shown TCN’s great potential in various time series

tasks, including 3D motion prediction and speech separation

Kanazawa et al. (2019); Luo and Mesgarani (2019). Due to its

properties and suitability for our task, TCN-like blocks are designed

in our network to perform weather forecasting

In addition to TCN, there are other related works in the field of

time series prediction that have been proposed recently. One such

work is the Transformer-based architecture, which has been

successful in natural language processing and has been applied to
tiers in Plant Science 02
time series prediction tasks Vaswani et al. (2017). Another related

work is the Graph Convolutional Network (GCN) Wu et al. (2021),

which is suitable for modeling complex relationships among

variables and has been used for multivariate time series prediction

Lipton et al. (2015); Wu et al. (2021). Another popular approach is

Recurrent Neural Networks (RNNs) Williams and Zipser (1989),

which have been widely used for time series prediction. One recent

work is the application of RNNs for solar energy prediction Elsaraiti

and Merabet (2022).

Other recent works have explored the use of ensemble models

for time series prediction. One such work is the use of

Convolutional Neural Networks (CNNs) and RNNs in an

ensemble model for electricity load forecasting Mansouri and

Akbari (2014). Another work proposed a deep learning ensemble

model combining various architectures, including TCN and RNNs,

for stock price prediction Srivinay et al. (2022).

While there are several works in the field of time series

prediction, including TCN, that use deep learning models, PTCN

is different from these approaches in several ways. One major

difference is the use of a pyramid structure to combine features

from different scales, which is inspired by FPN. While TCN also

uses dilated convolution to increase the receptive field, PTCN uses a

combination of dilated and causal convolutions. Additionally,

PTCN incorporates a novel feature extraction block that includes

a temporal attention mechanism and a residual block.
2.2 Feature extraction and attention
mechanisms in time series prediction

Feature Pyramid Network (FPN) Lin et al. (2017) is a method for

fully utilizing multiple levels of feature maps generated by deep neural

networks. This approach was proposed by Lin et al. in 2017 and

achieved state-of-the-art performance in the COCO 2016 challenge

Lin et al. (2014) for multi-scale object detection. Many other image

detection or segmentation approaches also take advantage of

information from different layers of the ConvNet. For example,

Fully Convolutional Networks (FCN) sum up partial scores

calculated on multiple scales to derive the final score of each

category for semantic segmentation problems. The prediction of

Single Shot Detector (SSD) Liu et al. (2016) is based on using

default boxes in 6 different layers of its backbone network. MSDNet

Huang et al. (2017) maintains coarse and fine level features throughout

the network, using fine level features from previous layers and coarse

level features to generate the next layer’s features. The idea of

combining features from different TCN layers in our proposed

Pyramid Temporal Causal Network (PTCN) is inspired by FPN,

which utilizes information from different scales to make predictions.

In addition to FPN, there are several recent works in the field of

feature extraction that have been proposed. One such work is the

Squeeze-and-Excitation (SE) Network Hu et al. (2018), which

adaptively recalibrates channel-wise feature responses by explicitly

modeling interdependencies between channels. Another 91 related

work is the Attention Mechanism Bahdanau et al. (2015), which has

been widely used in natural language processing and computer

vision to selectively attend to different parts of the input. Attention
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Mechanism can also be used in the context of time series prediction

to focus on important time steps or variables.

Recently, there have been several works that combine deep

learning with traditional time series analysis methods. One such

work is the use of deep learning and Fourier analysis for wind speed

prediction Liu et al. (2018). Another work proposed a deep learning

approach that combines Long Short-Term Memory (LSTM) and

Wavelet Transform for temperature prediction Zolfaghari and

Golabi (2021). Additionally, a hybrid model based on the

Ensemble Empirical Mode Decomposition (EEMD) and LSTM

was proposed for wind speed and direction prediction Qu

et al. (2016).

Finally, there have been several works that explore the use of

deep learning for weather forecasting. One recent work proposed a

deep learning model that incorporates a physical model for short-

term rainfall forecasting Qiu et al. (2017). Another work applied

deep learning models to predict maximum daily temperature and

precipitation Feng et al. (2019)

Regarding feature extraction, while FPN and other approaches

focus on image processing, PTCN’s feature extraction is designed

specifically for time series data. While attention mechanisms have

been used in natural language processing and image processing,

PTCN’s temporal attention mechanism is designed to attend to

important time steps in a time series.
3 Weather prediction preliminaries

We approach weather prediction as a sequence prediction

problem, formally expressed as follows: given a sequence of

historical values h1,⋯,hi,⋯,ht at different time steps, where hi
indicates the historical weather information at time step i and

contains meteorological factors, we aim to predict the values Ŷt+1,

⋯,Ŷt+p. The problem is to learn the mapping function F(·) as

defined in Equation 1.

F(h1,⋯, hi,⋯, ht) = Ŷ t + 1,⋯, Ŷ t + p (1)

Our objective is to find a model that minimizes the expected loss

between the predicted outputs and the actual outputs Yt+1,⋯,Yt+p,

as defined in Equation 2.

Loss = L(Yt+1,⋯,Yt+p, F(h1,⋯, ht)) (2)

There are some of the difficulties associated with predicting

weather using deep learning-based methods. These difficulties are

as follows:

Non-linear Relationships: The relationship between weather

variables is complex and nonlinear, making it challenging to

model accurately using traditional statistical methods.

Temporal Dependencies: Weather patterns exhibit temporal

dependencies, which means that current weather conditions are

dependent on past weather conditions. This makes it essential to

incorporate temporal dependencies into the model to accurately

predict future weather patterns.

Extreme Weather Events: Extreme weather events, such as

hurricanes, tornadoes, and heatwaves, are challenging to predict
Frontiers in Plant Science 03
accurately, even with deep learning-based methods. This is because

these events are rare and have complex dynamics, which are difficult

to model accurately.

Addressing these challenges is essential for developing accurate

deep learning-based weather prediction models. The PTCN model

proposed in this paper addresses some of these challenges by

incorporating multi-scale historical data and using causal

convolutions to capture temporal dependencies.
4 The pyramid temporal causal
network

In order to improve the performance of TCN, we propose the

Pyramid Temporal Causal Network (PTCN), which utilizes

information on different time scales to achieve a more accurate

time sequence prediction. With the help of the information in

different layers, PTCN can make use of the information flow of

various time scales and reuse previous features. While similar to

TCN, PTCN is distinct and designed to obtain different time scale

features. Figures 1, 2 provide an overview of how TCN and PTCN

work for time series prediction. The PTCN model utilizes multiple

scales of historical data to capture both short-term and long-term

patterns of weather changes. The hourly historical weather data is

used to capture the short-term temporal dependencies of weather

conditions, while the daily historical data are used to capture the

daily patterns and long-term trends of weather changes. The PTCN

model employs a pyramid structure to integrate these multiple

scales of information. Specifically, the hourly data is fed into the

bottom of the pyramid, while the daily data are fed into the middle

and top of the pyramid, respectively. The model then uses causal

convolutions to learn the temporal dependencies among these

different scales of data, and generates the final weather

prediction output.

We discuss the details on causal dilated convolution, causal

dilated block, prediction module with pyramid temporal features,

and multivariate loss function in the following subsections.
4.1 Causal dilated convolution

The Pyramid Temporal Causal Network (PTCN) model

consists of several components that work together to capture
FIGURE 1

An overview of the proposed TCN architecture.
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multi-scale information and improve the accuracy of weather

forecasting. One of the key components of the PTCN model is

the causal dilated block, which is used to learn the temporal

dependencies between different time scales.

The causal dilated block is composed of causal dilated

convolutions, as described in Section 4.1. The output of each

causal dilated block is fed into a residual connection, which

allows the model to learn residual features and avoid the

vanishing gradient problem. The output of the residual

connection is passed through a ReLU activation function and a

batch normalization layer before being fed into the next causal

dilated block.

The use of causal dilated convolution allows the model to learn

long historical sequences using a small number of layers. The

receptive field of the causal dilated convolution can be calculated

using Equation 3. The number of layers for the causal dilated

convolution is determined according to Equation 4.

r = (k − 1)� (d)‘ (3)

L = ⌈ logtk ⌉ (4)

Here, k, d, ℓ, and t represent the kernel size, dilation rate, layer

index, and input sequence length, respectively. The receptive field of

the last channel in the output layer can cover the entire input

sequence under these conditions.

Causal dilated convolution is formalized in Equation 5.

xout = CausalDilated(xin, d, k) (5)

Here, xin and xout indicate the input and output of the causal dilated

convolution, respectively. d refers to the dilated rate, and k refers to

the kernel size of the causal convolutional layer.
4.2 Causal dilated block

The causal dilated block is comprised of a branch of

transformations F and an identity mapping function I. Each

causal dilated block forms one layer of PTCN. We formalize the

causal dilated block as follows:

Hi+1 = s (F(Hi) + I(Hi)) (6)

where F and I denote the residual mapping and identity mapping

functions, respectively, and s(·) represents an activation function.
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Hi is the input and Hi+1 is the output of the i-th causal dilated block

(layer) in PTCN.

The residual mapping function and identity mapping function

are depicted in Figure 3. The residual mapping function consists of

causal dilated convolution, weight normalization, non-linear

activation functions, and dropout. We employ weight

normalization proposed by? on causal dilated convolution, use

ReLU Glorot et al. (2011) as a non-linear activation function, and

adopt a dropout function proposed by Hinton et al. (2012) to

mitigate overfitting. Furthermore, to expand the receptive field, we

set the dilation rate of each causal dilated convolution according to

the layer in which the causal dilated block is located. In this paper,

we set the dilation rate as per Equation 7.

d = 2‘ (7)

where ℓ denotes the layer of the causal dilated block.

The identity mapping function is implemented using a shortcut

connection similar to standard ResNet He et al. (2016). If the output

Hi+1 of the residual mapping function has the same dimensions as

the input Hi, Hi is directly added to Hi+1 by element-wise addition.

Otherwise, Hi is transformed into the same dimension as Hi+1 using

a 1×1 convolution before being added to Hi+1.
FIGURE 3

Causal dilated block. The residual mapping function is represented
by the two red boxes, and the identity mapping function is on the
left. The symbol ⊕ denotes element-wise addition.
FIGURE 2

An overview of the proposed Pyramid TCN architecture.
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4.3 Prediction module with pyramid
temporal features

The prediction module is comprised of two parts: a multi-scale

feature collector and a multivariate predictor.

The multi-scale feature collector selects features from all the

causal dilated blocks in different layers. Specifically, only the

features of the last time step of each causal dilated block (or

layer) are saved, as shown in Figure 2. The features selected from

different causal dilated blocks imply information of different time

scales. We only select features from the last time step of each causal

dilated block as the most recent information has a more significant

impact on the future. Moreover, this is a trade-off between

computational efficiency and prediction accuracy.

Multi-scale information plays a crucial role in improving the

accuracy of weather forecasting. Weather patterns exhibit different

temporal scales, ranging from hourly changes to seasonal variations.

Each of these temporal scales has its unique characteristics and

requires different methods of analysis to capture the patterns and

trends accurately. By utilizing multi-scale historical data, the PTCN

model can capture the different temporal patterns and trends in

weather data, and integrate them effectively to produce more

accurate weather predictions. The hourly data captures the short-

term dynamics and dependencies of weather changes, such as

temperature fluctuations, wind speed, and precipitation. Daily

data captures the daily patterns, such as the daily temperature

cycle, the probability of rainfall, and the intensity of wind. The

monthly data captures the long-term trends and seasonal variations,

such as seasonal temperature changes, monsoon patterns, and

extreme weather events.

Integrating these multiple scales of information helps to reduce

the impact of uncertainties, noise, and errors that are inherent in

individual data scales. The PTCN model’s pyramid structure, which

uses causal convolutions to learn the temporal dependencies

between the different scales of data, further enhances the model’s

ability to capture the complex temporal patterns and trends in

weather data. In summary, by utilizing multi-scale information, the

PTCNmodel can capture the different temporal patterns and trends

in weather data and integrate them effectively to produce more

accurate weather predictions. This approach helps to improve the

reliability and robustness of weather forecasting, which is crucial for

many applications, including agriculture, transportation, and

disaster management.

The output of the multi-scale feature collector is fed into a

multivariate predictor, which predicts the future values of all

variables simultaneously. The multivariate predictor consists of

several fully connected layers and a Softmax activation function.

The output of the Softmax activation function represents the

predicted values of all variables at the next time step.

The multivariate predictor is a linear transformation function

designed to transform the data collected from the multi-scale

feature collector into predicted values. In practice, the model

needs to predict p*q variables, where p refers to the length of time

and q refers to the type of variable to be predicted.
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Table 1 shows the comparison between the proposed PTCN

model and other models in terms of the number of parameters,

FLOPs (Floating Point Operations), and prediction accuracy. The

results demonstrate that the PTCN32+ model achieves better

performance in terms of the AA index, while only slightly

increasing the number of parameters and FLOPs compared to

TCN32 model.

For example, compared to the TCN32 model, the proposed

PTCN32+ model achieves a 2.41% improvement in the AA index

while only increasing the number of parameters by 5.8K. Similarly,

compared to the LEDA model, the proposed PTCN32+ model

achieves a 9.47% improvement in the AA index while increasing the

numbe r o f p a r ame t e r s and FLOPs by 2 . 5 6K and

1245M, respectively.

These results suggest that the proposed PTCN32+ model can

significantly improve the prediction accuracy while only slightly

increasing the computational complexity. Therefore, it can be

considered as an efficient and effective solution for multivariate

time series prediction tasks.
4.4 Multivariate loss function

When predicting multivariate variables using the proposed

sequence-to-sequence model, the prediction model has different

preferences for variables with different variances. In practice,

variables with high variance affect the model more, resulting in

lower prediction accuracy for small variance variables. To address

this, we propose a multivariate loss function (MVLoss). We

calculate the mean and global variance of each attribute to be

predicted, as shown in Eq. (8) and Eq. (9), and define the

multivariate loss function as shown in Eq. (10):

�yj =o
n

i=1
yji (8)
TABLE 1 Floating point operations (FLOPs), number of parameters, and
average accuracy (AA) of the proposed and comparison models.

Index FLOPs parameters AA

LED 414.97M 52.04K 69.57%

GRU 312.67M 39.11K 71.98%

LEDA 2.04G 60.42K 71.33%

TCN16 429.44M 13.19K 75.96%

PTCN16 430.18M 16.07K 77.65%

TCN16+ 429.44M 13.19K 77.96%

PTCN16+ 430.18M 16.07K 78.42%

TCN32 1.66G 48.84K 76.63%

PTCN32 1.66G 54.60K 78.44%

TCN32+ 1.66G 48.84K 78.13%

PTCN32+ 1.66G 54.60K 79.04%
All experimental results are based on 64 hours of historical data to predict the next 12 hours.
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var(yj) =
o
n

i=1
(yji − �yj)2

n
(9)

L(Ŷ , Y) =o
q

j=1

o
p

i=1
(ŷ j

i − yji)
2

p� q� var(yj)
(10)

Here, n represents the number of data points in the training

dataset, L(·) is the proposed MVLoss, p represents the length of the

predicted sequence, q represents the number of attributes that need

to be predicted, ŷ represents the predicted value, y represents the

observed value, and yji represents the true value of the j-th attribute

at the i-th time step.

In practice, we use a combination of mean squared error (MSE)

loss and MVLoss to optimize the model, as shown in Eq. (12). The

MSE is detailed in Eq. (11). Moreover, MVLoss mentioned in this

paper all refer to Eq. (12):

MSE(Ŷ ,Y) = o
q
j=1op

i=1(ŷ
j
i − yji)

2

p� q
(11)

LOSS(Ŷ ,Y) = l1MSE(Ŷ ,Y) + l2L
0 (Ŷ ,Y) (12)

Here, l1 and l2 are hyperparameters that control the relative

contribution of the two loss functions to the overall loss.
5 Experiments and discussions

We present the experimental results for three tasks in this

section, which involve predicting weather conditions for the next 6,

12, and 24 hours based on 32, 64, and 128 hours of historical

weather information. The predicted variables include: (1) 2-meters

temperature (t2m); (2) 2-meters relative humidity (rh2m); and (3)

10-meters wind speed (w10m).
5.1 Dataset

We conduct our experiments using the Weather Forecasting

Dataset 2018 (WFD2018), a benchmark dataset provided by the AI

Challenger Global AI Contest aic (AI Challenger, 2018). This

dataset contains meteorological data collected through multi-

station, multi-element, long-sequence, and high-time-density

observations. It includes data from 10 stations and contains

atmospheric pressure, temperature at the height of 2 meters,

humidity at the height of 2 meters, wind speed at the height of 10

meters, and other meteorological information. The data are

automatically collected by sensors every hour.

The training set covers 1188 days from March 1st, 2015 to May

31st, 2018, the validation set consists of 89 days from June 1st, 2018

to August 18st, 2018, and the test set includes 27 days from August
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29th, 2018 to September 24th, 2018. In the training dataset, missing

values are filled with valid data from either the front or the back.
5.2 Comparison methods

To demonstrate the effectiveness of the proposed method, we

compared it with five state-of-the-art models on the WFD2018

dataset. These comparison methods are described below:
• WRF: Weather Research and Forecasting model (WRF) is a

widely used method for weather forecasting, which

leverages actual atmospheric conditions or idealized

conditions data collected by weather satellites wrf (UNC-

Chapel Hill, 2016). The prediction values of WRF are

released by Beijing Meteorological Bureau, China aic (AI

Challenger, 2018; Beijing Weather Bureau, 2019).

• GBR: Gradient Boosting Regressor (GBR) is an ensemble

learningmethod that is suitable for regression prediction tasks

and has a strong generalization ability Ye et al. (2009). In our

experiment, we use 100 base estimators with a depth of 5.

• LED: Long Short-Term Memory (LSTM) Encoder-Decoder

(LED) model is suitable for sequence prediction tasks. The

LSTM Encoder-Decoder model consists of two parts: an

Encoder that encodes the input sequence into a fixed vector

representation, and a Decoder that parses vectors to a target

sequence Cho et al. (2014).

• LEDA: LSTM Encoder-Decoder model with an attention

mechanism (LEDA) can overcome the problem of

converting the input sequence into a fixed-length vector

Bahdanau et al. (2015).

• TCN: Temporal Convolutional Networks (TCN)

incorporate a simple convolutional neural network

architecture that can be used for sequence modeling. TCN

can capture timing dependencies as it combines causal

convolut ion, residual connect ion, and di lat ion

convolution. Additionally, Bai et al. (2018) reported that

TCN usually has better performance than LSTM and GBR

when these models have parameters of similar size.
The following approaches are the proposed models:
• PTCN: Pyramid Temporal Convolutional Networks

(PTCN) uses the same configuration as TCN, and the

only difference is that PTCN uses a multi-scale feature

representation from different causal dilated blocks to

predict weather results.

• TCN+: TCN+ is the same as TCN, except that the loss

function uses our proposed MVLoss.

• PTCN+: PTCN+ is the same as PTCN, except that the loss

function uses our proposed MVLoss. In our experiment, L2

uses the value of 1, and L2 uses the value of 50, which is

determined based on experimental results.
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Note that LED, LEDA, TCN, and PTCN are all trained with

MSE loss function. Also, we use a number used in the model names

refers to the number of channels used in the hidden layer of the

corresponding TCN or PTCN model. For example, PTCN32 refers

to a PTCN model with 32 channels in the hidden layer, while

PTCN16 refers to a PTCN model with 16 channels in the

hidden layer.
5.3 Parameter settings

We preprocessed the training, validation, and testing sets using

batch normalization. The batch size was set to 256, and we used the

Adam optimizer Sutskever et al. (2013) for training. The learning

rate was initially set to 0.01 and reduced by a factor of 10 every 30

epochs. We trained all deep learning models for 200 epochs.

For the TCN and PTCN models, we initialized the weights of

the one-dimensional convolutions and linear transformations using

the weight normalization method Salimans and Kingma (2016). We

used ReLU Glorot et al. (2011) as the default activation function and

applied a dropout rate of 0.05 after all causal dilated convolutions,

which randomly sets some of the input tensor elements to zero.

The LED and LEDA models have the same basic structure and

parameters, including LSTM models with 64 hidden dimensions,

one layer, and a bidirectional setting of False.
6 Experiments and discussions

6.1 Evaluation metrics

We use five indicators to evaluate the forecast results, including

Root Mean Square Error (RMSE) Plutowski et al. (1996), Mean

Absolute Percentage Error (MAPE) Armstrong and Collopy (1992),

coefficient of determination (R2) (Rodgers and Nicewander, 1988),

accuracy, and Average Accuracy (AA). RMSE evaluates the extent

to which data deviates from the ground truth. MAPE can measure

forecast accuracy in the trend forecasting method. A smaller value

of RMSE or MAPE indicates better performance. R2 is a common

metric for evaluating the merit of a regression model, which

measures the linear correlation between variables. The closer R2 is

to 1, the better the performance of the model. Accuracy is a widely

used performance metric for classification problems, and it

indicates how often the model’s predictions are correct. The

accuracy score is calculated by dividing the number of correct

predictions made by the model by the total number of predictions,

and it is expressed as a percentage. It is a simple and intuitive metric

that provides a quick understanding of the overall performance of

the model. We convert the results of meteorological predictions into

accuracy using Equation 16. The accuracy metric used in our paper

is derived from the mean absolute error (MAE) between the

predicted and actual values, and that it represents the percentage

of predictions that are within a certain tolerance range of the actual

values. The greater the accuracy, the better the performance of the
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model. AA is the average of the predictive accuracy of the three

variables rh2m, t2m, and w10m. AA indicates the overall

performance of the model when predicting multiple variables.

The mathematical forms of RMSE, MAPE, R2, and accuracy are

defined as Equations 13, 14, 15, and 16, respectively:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi, ŷ i)

2

s
(13)

MAPE =
102

n
·o

n

i=1
· ·

yi − ŷ i

yi

����
���� (14)

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �y)2

(15)

accuracy = 1 −o
n
i=1 yi, ŷ ij j
on

i=1 yij j (16)

Where ŷ ı́, yi, and �y represent the predicted value, observed

value, and average of observed data, respectively.

6.2 Quantitative results

The experiments on Tables 2–4 demonstrate the effectiveness of

the proposed PTCN model for weather forecasting at different time

scales. The results show that PTCN32+ achieves the best or sub-

optimal performance on most indicators, suggesting that the multi-

scale feature representation provided by the pyramid temporal

causal network is beneficial for the prediction accuracy.

Moreover, the comparison between traditional and deep-learning-

based methods indicates that the latter generally outperform the

former for time series prediction tasks, such as weather forecasting.

It is also observed that the prediction accuracy decreases as the

length of the predicted weather information increases. This could be

due to the increasing complexity of the task, as longer-term

predictions require the model to capture more complex and

subtle patterns in the weather data. However, PTCN still shows

promising performance even for longer-term predictions.

Overall, the PTCN model’s ability to learn weather periodicity

information from different scales and combine them effectively is a

key factor in achieving its superior performance. Additionally, the

almost similar number of parameters between PTCN32 and TCN32

shows that using multi-scale features does not significantly increase

the model’s complexity, but can lead to better results.

In addition, it is worth noting that the proposed method

outperforms the other deep learning models, such as LED and

LEDA, which are based on attention mechanisms. This suggests

that the multi-scale feature representation in PTCN is more

effective than the attention mechanism for weather forecasting. It

is also worth mentioning that the results of the PTCN model are

competitive with those of WRF, a widely used numerical weather

prediction model, especially for shorter forecasting horizons. This

suggests that deep learning-based methods such as PTCN have

great potential in weather forecasting applications.
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Furthermore, the experiments show that the longer the

forecasting horizon, the less accurate the prediction, which is

consistent with the general characteristics of weather prediction.

The PTCN model can provide accurate predictions for up to 12

hours in advance, but its performance decreases significantly when

predicting 24 hours in advance. This highlights the challenges of

long-term weather prediction and the need for further research in

this area.
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6.2.1 Validation of pyramid temporal causal
network

The validation of the Pyramid Temporal Causal Network

(PTCN) demonstrates the effectiveness of utilizing multi-scale

feature representation for sequence prediction tasks. The

comparison between TCN32 and PTCN32, and between TCN32+

and PTCN32+, shows that PTCN models consistently achieve

better results on most indicators. This suggests that the inclusion
TABLE 2 Comparison of proposed methods with some popular sequence prediction methods on WFD2018 aic (2018a).

Index rh2m t2m w10m

Matric RMSE MAPE R2 accuracy RMSE MAPE R2 accuracy RMSE MAPE R2 accuracy AA

WRF 17.91% 21.92% 0.40 78.40% 2.87°C 13.75% 0.60 88.38% 1.62m/s 96.03% -1.11 33.08% 66.62%

GBR 28.48% 51.63% -0.50 61.11% 6.64°C 33.27% -0.89 70.37% 1.58m/s 82.53% -0.55 40.54% 57.34%

LED 14.30% 22.27% 0.61 82.29% 4.36°C 21.08% 0.15 81.56% 1.17m/s 61.41% 0.17 56.47% 73.44%

LEDA 12.71% 19.60% 0.69 84.24% 4.31°C 20.93% 0.16 81.79% 1.19m/s 63.76% 0.14 55.62% 73.72%

GRU 12.49% 19.35% 0.71 84.90% 3.69°C 16.75% 0.37 84.83% 1.16m/s 59.55% 0.18 57.29% 75.67%

TCN8 10.79% 16.39% 0.78 87.42% 2.43°C 10.04% 0.74 90.64% 1.31m/s 72.53% -0.04 50.11% 76.06%

TCN16 9.82% 14.30% 0.82 88.61% 2.10°C 8.81% 0.80 91.78% 1.15m/s 65.02% 0.16 55.12% 78.50%

TCN32 9.57% 13.91% 0.83 89.03% 2.05°C 8.32% 0.81 92.16% 1.09m/s 59.12% 0.25 58.28% 79.82%

PTCN8 10.16% 14.88% 0.81 88.26% 2.18°C 9.19% 0.78 91.44% 1.29m/s 71.03% -0.02 50.44% 76.71%

PTCN8+ 10.29% 15.28% 0.80 88.02% 2.19°C 9.15% 0.79 91.43% 1.07m/s 56.50% 0.27 59.43% 79.63%

PTCN32 9.70% 14.04% 0.82 88.91% 2.02°C 8.21% 0.82 92.33% 1.04m/s 54.50% 0.32 60.65% 80.63%

PTCN32+ 9.69% 14.06% 0.83 88.94% 1.99°C 8.01% 0.82 92.48% 1.02m/s 52.59% 0.35 62.11% 81.18%
frontie
All experimental results are based on 32 hours of historical data to predict the next 6 hours. The larger the value of R2, accuracy and AA, the better, while the smaller the value of RMSE and
MAPE, the better. The best results are labeled in red and the second best results in blue.
TABLE 3 Comparison of proposed methods with some popular sequence prediction methods on WFD2018 aic (2018a).

Index rh2m t2m w10m

Matric RMSE MAPE R2 accuracy RMSE MAPE R2 accuracy RMSE MAPE R2 accuracy AA

WRF 18.08% 21.89% 0.38 78.04% 2.76°C 13.83% 0.62 88.43% 1.64m/s 97.69% -1.14 32.31% 66.26%

GBR 33.39% 63.16% -1.07 54.17% 7.03°C 39.36% -1.11 68.66% 1.62m/s 84.55% -0.57 39.29% 54.04%

LED 15.26% 24.82% 0.57 80.08% 5.49°C 28.70% -0.32 76.42% 1.26m/s 70.46% 0.04 52.22% 69.57%

LEDA 15.13% 24.56% 0.57 80.39% 4.71°C 24.56% -0.02 79.79% 1.22m/s 67.00% 0.10 53.82% 71.33%

GRU 15.24% 22.60% 0.56 80.34% 4.11°C 21.17% 0.23 82.45% 1.23m/s 69.64% 0.09 53.15% 71.98%

TCN8 12.52% 19.23% 0.71 84.57% 2.63°C 11.58% 0.69 89.42% 1.38m/s 72.45% -0.14 47.97% 73.99%

TCN32 11.60% 17.89% 0.75 85.90% 2.50°C 10.37% 0.72 90.34% 1.24m/s 66.95% 0.06 53.04% 76.43%

PTCN8 12.47% 18.88% 0.71 84.79% 2.59°C 11.18% 0.70 89.77% 1.33m/s 68.77% -0.06 50.82% 75.13%

PTCN8+ 12.32% 18.81% 0.71 84.93% 2.53°C 10.86% 0.71 90.23% 1.15m/s 58.69% 0.18 57.45% 77.54%

PTCN32 11.43% 16.95% 0.76 86.31% 2.26°C 9.34% 0.77 91.39% 1.13m/s 60.52% 0.21 57.62% 78.44%

PTCN32+ 11.43% 16.85% 0.76 86.33% 2.25°C 9.23% 0.78 91.55% 1.09m/s 58.61% 0.27 59.24% 79.04%
All experimental results are based on 64 hours of historical data to predict the next 12 hours. Larger values of R2, accuracy, and AA indicate better performance, while smaller values of RMSE and
MAPE indicate better performance. The best results are labeled in red and the second best results in blue.
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of multi-scale features through the pyramid structure of the PTCN

model allows for more powerful predictive capabilities than the

traditional TCN model.

Furthermore, the small increase in FLOPs and parameters

required for using multi-scale features in the PTCN model

highlights its efficiency. This efficiency is especially notable when

compared to the significant improvements in the prediction

accuracy of the AA indicator and most other indicators. For

example, the increase in the AA index by 1.69% achieved by

PTCN16 compared to TCN16, while only increasing the FLOPs

and parameters by 0.74M and 2.88K, respectively, is a strong

indicator of the benefits of multi-scale feature representation.

Overall, the validation of the PTCN model emphasizes the

importance of considering multi-scale features for sequence

prediction tasks. By utilizing different time scale feature

information through a pyramid temporal causal network, the

PTCN model can approximate the ground truth by linearly fitting

multiple scale features. This approach allows for better prediction

accuracy and efficiency with almost the same amount of parameters.
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6.2.2 Validation of MVLoss
The MVLoss function is a new loss function proposed in this

work to handle multivariate time series prediction problems with

variables of different variances. To use the MVLoss loss function,

the global variance of each variable that needs to be predicted is first

calculated. Then, the MVLoss function takes into account the

variance of each variable in the loss calculation.

To use the MVLoss loss function, we first need to calculate the

global variance of each variable that needs to be predicted. The

global variances of the following three variables are:
• 2 meters temperature (t2m): 149.11

• 2 meters relative humidity (rh2m): 657.15

• 10 meters wind speed (w10m): 2.67
Table 5 compares the performance of the models optimized

with MVLoss and MSE loss functions, respectively. The models

with MVLoss have better results in the AA indicator than those

with the MSE loss function, and they can significantly improve
TABLE 4 Comparison of proposed methods with popular sequence prediction methods on WFD2018 aic (2018a).

Index rh2m t2m w10m

Matric RMSE MAPE R2 accuracy RMSE MAPE R2 accuracy RMSE MAPE R2 accuracy AA

WRF 18.39% 22.08% 0.33 76.96% 2.63°C 14.29% 0.66 88.25% 1.63m/s 98.58% -1.13 31.80% 65.67%

GBR 33.03% 64.58% -1.18 53.05% 7.06°C 39.56% -1.09 67.08% 1.62m/s 84.39% -0.58 39.00% 53.04%

LED 17.52% 32.72% 0.34 76.53% 6.16°C 36.84% -0.80 71.61% 1.27m/s 72.26% 0.03 51.38% 66.51%

LEDA 16.37% 32.57% 0.46 78.65% 5.78°C 34.58% -0.45 74.63% 1.20m/s 63.99% 0.13 55.29% 69.52%

GRU 15.01% 27.12% 0.54 80.65% 5.21°C 30.22% -0.31 76.50% 1.20m/s 65.68% 0.13 54.87% 70.67%

TCN8 13.98% 24.65% 0.61 81.41% 2.59°C 12.62% 0.69 88.78% 1.42m/s 80.43% -0.21 45.11% 71.77%

TCN32 13.23% 23.86% 0.65 82.46% 2.28°C 11.10% 0.76 90.17% 1.23m/s 65.58% 0.09 53.58% 75.40%

PTCN8 13.85% 24.65% 0.61 81.68% 2.47°C 11.73% 0.72 89.24% 1.30m/s 69.11% -0.01 50.67% 73.86%

PTCN8+ 13.74% 24.36% 0.62 81.95% 2.35°C 11.56% 0.74 89.61% 1.18m/s 65.03% 0.15 54.87% 75.48%

PTCN32 13.31% 23.63% 0.64 82.60% 2.31°C 10.78% 0.76 90.18% 1.20m/s 63.80% 0.11 54.62% 75.80%

PTCN32+ 13.25% 23.69% 0.65 82.68% 2.20°C 10.38% 0.79 90.61% 1.15m/s 61.29% 0.19 56.70% 76.66%
frontie
All experimental results are based on 128 hours of historical data to predict the next 24 hours. Larger values of R2, accuracy and AA indicate better performance, while smaller values of RMSE and
MAPE indicate better performance. The best results are labeled in red and the second best results in blue.
TABLE 5 Ablation experiments.

Index rh2m t2m w10m

Matric RMSE MAPE R2 accuracy RMSE MAPE R2 accuracy RMSE MAPE R2 accuracy AA

TCN32(6) 9.57% 13.91% 0.83 89.03% 2.05°C 8.32% 0.81 92.16% 1.09m/s 59.12% 0.25 58.28% 79.82%

PTCN32(6) 9.70% 14.04% 0.82 88.91% 2.02°C 8.21% 0.82 92.33% 1.04m/s 54.50% 0.32 60.65% 80.63%

TCN32+(6) 9.65% 13.99% 0.83 88.89% 2.08°C 8.29% 0.81 92.15% 1.00m/s 52.22% 0.37 62.60% 81.21%

PTCN32+(6) 9.69% 14.06% 0.83 88.94% 1.99°C 8.01% 0.82 92.48% 1.02m/s 52.59% 0.35 62.11% 81.18%

TCN32(12) 11.60% 17.89% 0.75 85.90% 2.50°C 10.37% 0.72 90.34% 1.24m/s 66.95% 0.06 53.04% 76.43%

PTCN32(12) 11.43% 16.95% 0.76 86.31% 2.26°C 9.34% 0.77 91.39% 1.13m/s 60.52% 0.21 57.62% 78.44%

(Continued)
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the prediction accuracy of small variance variables. For example,

the prediction accuracy of TCN32+(6) on w10m is much higher

than that of TCN32(6) by 4.32%. This demonstrates that the

proposed MVLoss can improve the accuracy of small variance

variables. However, the prediction results of variables with large

variance tend to be reduced, but the degree of change is small.

It is worth noting that the MVLoss function is more suitable for

multivariate prediction models than the MSE loss function from the

analysis of the overall prediction accuracy AA index. This is because

the MVLoss function can effectively deal with variables with

different variances, which can lead to a more accurate prediction

of the overall AA index.

Overall, the MVLoss function provides a better solution for

handling multivariate time series prediction problems with

variables of different variances, which is a common issue in many

real-world applications.
6.3 Qualitative discussions

In this section, we will qualitatively analyze the changes in loss

during training and testing, and compare the prediction results of

the PTCN32+ with those of WRF.

6.3.1 Change in loss
Figure 4 shows the changes in loss during model training and

testing. As can be seen from the figure, the PTCN8 model achieves

the smallest loss during both training and testing. Furthermore,

TCN8 and PTCN8 converge faster than other methods. It can be

qualitatively seen that the proposed model has better predictive

accuracy than all compared methods.

6.3.2 Forecast result analysis
In Figure 5, we can see that the PTCN32+ model predicts all

three meteorological factors (rh2m, t2m, and w10m) closer to
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the ground truth (GT) than the WRF model. This suggests that

the PTCN32+ model can improve the prediction accuracy

compared to the commonly used WRF model. Specifically,

the PTCN32+ model predicts rh2m and t2m more accurately

than WRF, with smaller deviations from the GT. For the w10m

variable, although both models have similar accuracy, PTCN32

+ still shows a slight advantage in terms of predicting higher

wind speeds.

The improved prediction accuracy of the PTCN32+ model

can be attributed to its ability to capture complex temporal

relationships and features in the input data, which is not

possible in traditional physical modeling methods like WRF.

Moreover, the proposed temporal attention mechanism enables

the model to selectively focus on important time steps, further

improving the accuracy of the predictions. These results

demonstrate the potential of deep learning models, specifically

the PTCN32+ model, to improve weather forecasting accuracy

and provide more reliable predictions for applications in

various industries.
7 Conclusion

In this paper, we proposed the PTCN model for weather

forecasting, which can use different time-scale features and

improve the weather forecasting results. We argued that this is

because features at different scales may imply different patterns of

variation that are important for weather prediction. Additionally,

we proposed a loss function that normalizes the variables in a

multivariate prediction task, which can help improve the

effectiveness of temporal prediction models for predicting

multiple variables simultaneously. Through experiments and

analysis, we demonstrated that the PTCN model outperforms

several state-of-the-art methods in meteorological forecasting, and
TABLE 5 Continued

Index rh2m t2m w10m

Matric RMSE MAPE R2 accuracy RMSE MAPE R2 accuracy RMSE MAPE R2 accuracy AA

TCN32+(12) 11.56% 17.89% 0.75 86.01% 2.55°C 10.59% 0.71 90.13% 1.12m/s 59.96% 0.23 58.26% 78.13%

PTCN32+(12) 11.43% 16.85% 0.76 86.33% 2.25°C 9.23% 0.78 91.55% 1.09m/s 58.61% 0.27 59.24% 79.04%

TCN32(24) 13.23% 23.86% 0.65 82.46% 2.28°C 11.10% 0.76 90.17% 1.23m/s 65.58% 0.09 53.58% 75.40%

PTCN32(24) 13.31% 23.63% 0.64 82.60% 2.31°C 10.78% 0.76 90.18% 1.20m/s 63.80% 0.11 54.62% 75.80%

TCN32+(24) 13.29% 24.06% 0.64 82.49% 2.20°C 10.49% 0.78 90.62% 1.16m/s 63.67% 0.18 56.09% 76.40%

PTCN32+(24) 13.25% 23.69% 0.65 82.68% 2.20°C 10.38% 0.79 90.61% 1.15m/s 61.29% 0.19 56.70% 76.66%
frontie
The larger the value of R2, accuracy and AA, the better, and the smaller the value of RMSE and MAPE, the better. The superscripts (6)(12)(24) indicate that the model uses 32, 64 or 128 hours of
historical weather information to predict the future 6, 12 or 24 hours of weather information, respectively.
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FIGURE 4

The training and testing losses when predict the next 6 hours in station 2.
FIGURE 5

Weather predicted result when predict the next 6 hours in station 2.
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we believe that it has great potential for application in the field of

weather forecasting.
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