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desorption/ionization mass
spectrometry imaging
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Flavonoids are one of the most important bioactive components in litchi (Litchi

chinensis Sonn.) seeds and have broad-spectrum antiviral and antitumor

activities. Litchi seeds have been shown to inhibit the proliferation of cancer

cells and induce apoptosis, particularly effective against breast and liver cancers.

Elucidating the distribution of flavonoids is important for understanding their

physiological and biochemical functions and facilitating their efficient extraction

and utilization. However, the spatial distribution patterns and expression states of

flavonoids in litchi seeds remain unclear. Herein, matrix-assisted laser

desorption/ionization mass spectrometry imaging (MALDI-MSI) was used for in

situ detection and imaging of the distribution of flavonoids in litchi seed tissue

sections for the first time. Fifteen flavonoid ion signals, including liquiritigenin,

apigenin, naringenin, luteolin, dihydrokaempferol, daidzein, quercetin, taxifolin,

kaempferol, isorhamnetin, myricetin, catechin, quercetin 3-b-D-glucoside,
baicalin, and rutin, were successfully detected and imaged in situ through

MALDI-MSI in the positive ion mode using 2-mercaptobenzothiazole as a

matrix. The results clearly showed the heterogeneous distribution of

flavonoids, indicating the potential of litchi seeds for flavonoid compound

extraction. MALDI-MS-based multi-imaging enhanced the visualization of

spatial distribution and expression states of flavonoids. Thus, apart from

improving our understanding of the spatial distribution of flavonoids in litchi

seeds, our findings also facilitate the development of MALDI-MSI-based

metabolomics as a novel effective molecular imaging tool for evaluating the

spatial distribution of endogenous compounds.

KEYWORDS

litchi seed, flavonoid, matrix-assisted laser desorption/ionization, mass spectrometry
imaging, spatial distribution
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Introduction

Litchi (Litchi chinensis Sonn.; order Sapindales, family

Sapindaceae), also known as Lizhi, Danli, and Liguo, is a

subtropical fruit tree with a cultivation history in China of more

than 2,300 years (Hu et al., 2021). It is the only species of Litchi (Yao

et al., 2021). Litchi is an important fruit crop in southern China and

is planted on more than 550,000 ha with an annual output of more

than 2.2 million tons (Hu et al., 2021). The cultivation area and

output of litchi in China account for more than 60% of global

production (Li et al., 2020). Litchi seeds are a major product, but

only a small portion is processed for biological utilization, and

many litchi seeds are discarded as waste. The abandonment of fruit

seed residues is not only a considerable problem for the

environment but also a waste of global resources. Litchi seeds are

rich in various bioactive compounds, such as flavonoids, saponins,

volatile oils, polyols, alkaloids, steroids, coumarins, fatty acids,

amino acids, and sugars (Dong et al., 2019; Punia and Kumar,

2021), resulting in a variety of biological functions, including

antiviral and anti-oxidation activities, reducing the degree of liver

damage and lowering blood glucose levels (Choi et al., 2017; Dong

et al., 2019; Punia and Kumar, 2021). Accumulating evidence has

confirmed the antitumor/anticancer effects of litchi seed extracts

(Emanuele et al., 2017; Tang et al., 2018; Zhao et al., 2020).

Flavonoids are polyphenolic compounds and endogenous

bioactive components, which act as secondary metabolites with

extensive pharmacological activities. Flavonoids exert important

pharmacological properties, including cardioprotective, anticancer,

anti-inflammatory, and anti-allergic activities (Maleki et al., 2019;

Ciumărnean et al., 2020; Liskova et al., 2021; Rakha et al., 2022).

Regarding anticancer activity, many preclinical studies indicated the

antiproliferative effects of flavonoids on lung (Berk et al., 2022),

prostate (Vue et al., 2016), colorectal (Park et al., 2012; Li et al.,

2018b), and breast (Pan et al., 2012) cancers. Furthermore,

flavonoids have anticancer effects on breast tumors through

multiple mechanisms (Martinez-Perez et al., 2014; Magne Nde

et al., 2015; Zhang et al., 2018; Sudhakaran et al., 2019).

Flavonoids can inhibit procarcinogen bioactivation and estrogen-

producing and estrogen-metabolizing enzymes (Surichan et al.,

2012; Miron et al., 2017), as well as breast cancer resistance

protein (BCRP) (Fan et al., 2019). Administering flavonoids could

inhibit inflammation, proliferation, tumor growth, and metastasis

(Peluso et al., 2013; Khan et al., 2021; Guo et al., 2022). Although

many studies have shown the pharmacological effects of flavonoids

widely distributed in litchi seeds, almost all such studies were based

on the extraction, enrichment, and separation of bioactive

components, and few have focused on the spatial distribution and

expression states of flavonoids. In fact, the precise reveal of the

distribution of these flavonoids in litchi seeds is important for

understanding the physiological and biochemical functions of these

compounds and facilitating their extraction and utilization.

Matrix-assisted laser desorption/ionization mass spectrometry

imaging (MALDI-MSI) has emerged as a molecular-imaging tool

for simultaneously detecting and characterizing the spatial

distribution and relative abundance of endogenous and
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exogenous compounds, such as lipids, proteins, metabolites,

peptides, and drugs (Van De Plas et al., 2015; Qin et al., 2018;

Piehowski et al., 2020). Although MALDI‐MSI has been used in

plant science with endogenous molecular profiling to determine the

spatial distribution of small molecules in plant tissues (Zaima et al.,

2010; Taira et al., 2015; Huang et al., 2016; Li et al., 2018a), to the

best of our knowledge, no previous study has utilized MALDI-MSI

to characterize the spatial distribution of flavonoids in litchi seeds.

This study is the first to use MALDI-MSI for the in situ

detection and imaging of flavonoids in litchi seed tissues. The

results clearly showed the heterogeneous distribution of

flavonoids in litchi seeds, indicating the potential of litchi seeds as

a source for flavonoid extraction. MALDI-MS-based multi-imaging

enhanced the visualization of spatial distribution and expression

states of flavonoids. Our findings provide insights into the spatial

distribution of flavonoids in litchi seeds and support the

development of MALDI-MSI-based metabolomics as an appealing

and credible molecular imaging technique for evaluating the spatial

distribution of endogenous compounds.
Materials and methods

Materials and reagents

Fresh litchi fruit was collected from the Yongfuda litchi orchard

(Haikou, Hainan, China) in June 2022. Haikou is located on Hainan

Island in China. It has a typical tropical marine climate and annual

sunshine duration of over 2,000 h. The climate is humid, the

temperature rises fast, and the average annual precipitation is

approximately 260 mm. The Yongfuda litchi orchard is located in

a volcanic rock soil planting area. Once harvested, the peel and flesh

of the litchi were immediately removed, and the litchi seeds were

flash-frozen with liquid nitrogen by slow immersion to prevent seed

shattering and endogenous compound changes. The commonly

used MALDI matrix, 2-mercaptobenzothiazole (2-MBT), was

obtained from Sigma-Aldrich (St. Louis, MO, USA). Amino acid

and oligopeptide standards, including His, Gly-Gly-Leu

(tripeptide), Ala-His-Lys (tripeptide), Leu-Leu-Tyr (tripeptide),

and Arg-Gly-Asp-dTyr-Lys (pentapeptide), were purchased from

Bankpeptide Biological Technology Co., Ltd. (Hefei, Anhui, China).

Trifluoroacetic acid (TFA) and liquid chromatography–mass

spectrometry (LC-MS)-grade methanol and ethanol were

obtained from Merck & Co., Inc. (Darmstadt, Germany).

Ultrapure water in the whole process of the experiments was

prepared using a Millipore Milli-Q system (Bedford, MA, USA).

All other reagents and chemicals were purchased from Merck,

unless otherwise noted.
Tissue sectioning

For tissue sectioning, a Leica CM1860 cryostat (Leica

Microsystems Inc., Wetzlar, Germany) was used. The frozen litchi

seeds were cryo-sectioned into 12-mm-thick slices at a temperature
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of −20°C, and then the cryo-sectioned samples were thaw-mounted

instantly on the conductive indium tin oxide films of microscope

glass slides purchased from Bruker Daltonics (Bremen, Germany)

(Figures 1A, B).
Matrix coating

After being air-dried, the serial litchi seed tissue sections were

used for MALDI matrix coating (Figure 1C). A 2-MBT matrix

solution was prepared at an optimal concentration of 15 mg/ml and

dissolved in methanol/water/TFA (80:20:0.2, v/v/v). Air-dried tissue

sections were coated with the 2-MBT matrix solution by a GET-

Sprayer (III) (HIT Co., Ltd, Beijing, China). Briefly, the 2-MBT

matrix solution 15 cycles (5 s spray, 10 s incubation, and 20 s drying

time) was sprayed on the surface of the tissue sections to pre-seed a

thin layer of the 2-MBT matrix. After the tissue sections were

completely air-dried in a vented fume hood, the matrix solution was

evenly sprayed for 50 more of the same cycles.
Histological staining

In order to obtain the histological images of litchi seed tissue

sections, a slightly modified hematoxylin and eosin staining method

was carried out based on an established procedure (Casadonte and

Caprioli, 2011). Briefly, the tissue sections were washed in a series of

ethanol solutions (100%, 95%, 80%, and 70% aqueous ethanol; 15 s/
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wash). After 10-s ultrapure water washing, tissue sections were

stained with hematoxylin solution for 2 min and then washed with

ultrapure water and 70% and 95% aqueous ethanol for 30 s each.

The eosin solution was applied for another 1 min. Then, all tissue

sections were washed with 95% and 100% ethanol and xylene for

30-s dehydration.
Optimal image acquisition

Optical images of the tissue sections were acquired using an

Epson Perfection V550 photo scanner (Seiko Epson Corp, Suwa,

Japan) according to previous studies (Wu et al., 2021; Shi

et al., 2022).
MALDI-MS

An Autoflex Speed MALDI time-of-fight (TOF)/TOF mass

spectrometer (Bruker Daltonics) with a MALDI source equipped

with a 2,000-Hz solid-state Smartbeam Nd : YAG UV laser (355

nm, Azura Laser AG, Berlin, Germany) was used for profiling and

imaging (Figure 1D).

To acquire in situ (+) MS profiling data of flavonoids from the

tissue sections, all mass spectra were obtained over them/z range of

100 to 700, each mass spectrum included an accumulation of 50

laser scans, and each scan was amassed from 500 laser shots. Three

biological replicates of the sample and three technical replicates of
A B

DE

C

FIGURE 1

Schematic diagram of MALDI-MSI procedure for imaging flavonoids in litchi seeds. (A) Whole litchi seeds were used for transection into 12-mm-thick
slices in a cryostat microtome. (B) Serial tissue sections were immediately thaw-mounted on the conductive sides of indium tin oxide (ITO)-coated
microscope glass slides. Optical images of the litchi seed section were obtained using a scanner. (C) To assist ionization, the sections were coated
with the organic matrix. (D) MALDI-TOF-MS was used to detect analytes in situ on the surface of litchi seed tissue sections. The mass spectra of
ionized analytes were acquired at each detected pixel point. (E) MS images of analytes were reconstructed from the MS spectra obtained at each
laser spot using specific imaging reconstruction software. MALDI-MSI, matrix-assisted laser desorption/ionization mass spectrometry imaging; TOF,
time of fight; MS, mass spectrometry.
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each biological replicate were performed for MALDI-MS data

acquisition (n = 3 × 3). To acquire the images of flavonoids, a

250-mm laser raster step-size was utilized for flavonoid in situ

detection in tissues, and each pixel (scan spot) included 300 laser

shots. With the use of FlexImaging 4.1 (Bruker Daltonics), the three

“teaching points” for the correct positioning of the solid-state UV

laser (Smartbeam Nd : YAG) for spectral acquisition were marked

around a tissue section using a white ink correction pen. The m/z

values of the compound ions that can be used for external mass

calibration were listed as follows: His ([M+H]+,m/z 156.0768), Gly-

Gly-Leu (tripeptide, [M+H]+, m/z 246.1448), Ala-His-Lys

(tripeptide, [M+H]+, m/z 355.2088), Leu-Leu-Tyr (tripeptide, [M

+H]+, m/z 408.2493), and Arg-Gly-Asp-dTyr-Lys (pentapeptide,

[M+H]+, m/z 620.3151). Gly-Gly-Leu (tripeptide, [M+H]+, m/z

246.1448) and Arg-Gly-Asp-dTyr-Lys (pentapeptide, [M+H]+, m/

z 620.3151) ions were selected in combination with the matrix ion

of 2-MBT([M+H]+, m/z 167.9942) for internal mass calibration in

the cubic enhanced mode. For the MALDI-TOF-MS analysis, MS/

MS spectra were acquired in collision-induced dissociation (CID)

mode, and argon was used as the collision gas. The flavonoid

fragment ions were acquired under the following condition: ion

source 1, 19.0 kV; ion source 2, 17.4 kV; lens, 8.8 kV; reflector 1,

21.0 kV; reflector 2, 9.8 kV; and accelerating voltage, 20.0 kV. The

UV laser power ranged from 65% to 90%. MS/MS spectra were

recorded based on no less than 5,000 laser shots over the m/z range

of 0 to 100 with a sampling rate of 2.00 G/s, a detector gain of 9.5×,

and an electronic gain of 100 mV.
Data analysis

For the MS profiling and MS/MS data analysis, Bruker

FlexAnalysis 3.4 (Bruker Daltonics) was used for the preliminary

viewing and processing of the mass spectra. Once the monoisotopic

peak list was generated and exported, two metabolome databases

(METLIN and HMDB) (Tautenhahn et al., 2012; Wishart et al.,

2022) were used for the search of the detected m/z values of

precursor ions and CID fragment ions against potential

metabolite identities within an acceptable mass error of ±5 ppm.

Three ion adduct forms (i.e., [M + H]+, [M + Na]+, and [M + K]+)

were considered for the database search. For MALDI tissue

imaging, Bruker FlexImaging 4.1 software was used for the

reconstitution of the ion maps of the detected flavonoids

(Figure 1E). For the generation of the ion images using

FlexImaging, the mass filter width was set at 5 ppm.
Flavonoid extraction and identification by
LC-MS/MS

Flavonoids were extracted from the seeds of litchi for LC-MS/

MS analysis. The details of the extraction of the flavonoids from

litchi seeds and the procedure of LC-MS/MS analysis for the

identification and structural confirmation of the flavonoids can be

found in the Supplementary Material.
Frontiers in Plant Science 04
Results and discussion

Morphological characteristics of
litchi seeds

As shown in Figures 2A, B, under a light microscope, the litchi

seed showed the following structures: testa, micropyle, embryo,

cotyledon, and cotyledon gap. Among these structures, the testa was

dark coffee-colored, the embryo was brown, and the cotyledon was

oyster white. In addition, a gap was observed in the middle of the

cotyledon. After hematoxylin and eosin staining, litchi seeds were

observed again under a light microscope (Figure 2C). The

anatomical structure of the litchi seeds is illustrated in Figure 2D.
Flavonoids detected in situ by
MALDI-TOF-MS

As shown in Figure 3, many flavonoid-related signals were

detected in the m/z range of 100–700. These compounds were

confirmed by comparing the m/z values and MS/MS spectra with

those obtained by LC-MS/MS (Table 1). According to collision-

induced dissociation, 15 flavonoids compounds were identified

through MALDI-TOF-MS: liquiritigenin (m/z 257.081, [M+H]+),

apigenin (m/z 271.060, [M+H]+), naringenin (m/z 273.076,

[M+H]+), daidzein (m/z 293.020, [M+Na]+), luteolin (m/z

287.056, [M+H]+), dihydrokaempferol (m/z 289.071, [M+H]+),

catechin (m/z 329.043, [M+H]+), quercetin (m/z 303.051, [M

+H]+), kaempferol (m/z 309.036, [M+Na]+), isorhamnetin (m/z

317.066, [M+H]+), myricetin (m/z 319.046, [M+H]+), quercetin 3-

b-D-glucoside (m/z 465.102, [M+H]+), baicalin (m/z 469.073, [M

+Na]+), rutin (m/z 649.118, [M+K]+), and taxifolin (m/z 305.065,

[M+H]+).
MALDI-MS imaging of flavonoids

MALDI-MSI can provide a snapshot of the distribution of

molecules at a specific location on a tissue surface. We present

the mass spectrometry images of all 15 flavonoids and performed

our classification analysis in Figure 4.

Ion images of the 15 flavonoids indicated that they can be

broadly classified into four types. Four compounds were distributed

mainly in the embryo: liquiritigenin (m/z 257.081, [M+H]+),

luteolin (m/z 287.056, [M+H]+), dihydrokaempferol (m/z 289.071,

[M+H]+), and kaempferol (m/z 309.036, [M+Na]+). Luteolin was

highly concentrated in the embryo and less concentrated in other

parts, while kaempferol was distributed at low abundance in the

cotyledons and more in the embryo. Myricetin (m/z 319.046,

[M+H]+), baicalin (m/z 469.073, [M+Na]+), and rutin (m/z

649.118, [M+K]+) were primarily distributed in the cotyledons.

Baicalin and rutin were distributed at the periphery of the

cotyledons, and myricetin was distributed to one side of the

cotyledon gap. Most of the compounds were distributed in both

cotyledons and embryos, including naringenin (m/z 273.076, [M
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+H]+), apigenin (m/z 271.060, [M+H]+), daidzein (m/z 293.020,

[M+Na]+), quercetin (m/z 303.051, [M+H]+), isorhamnetin (m/z

317.066, [M+H]+), catechin (m/z 329.043, [M+H]+), and quercetin

3-b-D-glucoside (m/z 465.102, [M+H]+). Naringenin and catechin

were concentrated throughout the litchi seed, their distribution

being more homogeneous and without obvious tissue specificity.

Quercetin, quercetin 3-b-D-glucoside, and apigenin were

distributed at the periphery of the cotyledons and in the embryo.

The compound daidzein was uniformly distributed, whereas

isorhamnetin was more distributed at the apical part of the

cotyledons. Finally, the taxifolin (m/z 305.065, [M+H]+) content

was low and mainly distributed in the inner seed testa.
Frontiers in Plant Science 05
Four compounds were mainly distributed in the embryo:

liquiritigenin, luteolin, dihydrokaempferol, and kaempferol. As

the embryo is the most important part of the seed in plant

development, these flavonoids may provide essential substances

for growth and development and improve seed resistance. Luteolin

was highly concentrated in the embryo and less concentrated in

other parts. Luteolin, through inducing root nodulation, plays an

important role in nitrogen metabolism in nitrogen-fixing plants and

enhanced plant stress tolerance by promoting its nitrogen

enrichment (Peters et al., 1986). Liquiritigenin was also mainly

concentrated in the embryo and lesser in the cotyledons close to the

embryo. Liquiritigenin increases ultraviolet irradiation, indicating
A
B

DC

FIGURE 2

Optimal images of litchi seed tissue sections. (A, B) Photos of litchi seed tissue sections. (C) An H&E-stained litchi seed tissue section. (D) A cartoon
of anatomical structure of litchi seed tissue section. H&E, hematoxylin and eosin.
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its anti-radiation function (Sun et al., 2012). Dihydrokaempferol

and kaempferol were interconvertible; therefore, both had similar

distribution characteristics and are distributed in the cotyledons as

well as the embryo. Many studies have demonstrated that

kaempferol, as a precursor of ubiquitin-ketone (coenzyme Q)

biosynthesis, is an atypical node between primary and specialized

metabolism (Soubeyrand et al., 2018; Berger et al., 2022).

Kaempferol is involved in plant defense and signaling in response

to stressful conditions (Soubeyrand et al., 2018; Jan et al., 2022).

Dihydrokaempferol is involved in plant growth and development.

As a precursor of orange pelargonidin-type anthocyanins,

dihydrokaempferol plays a role in flower coloring (Johnson et al.,

2001). Liquiritigenin rapidly inactivates the PI3K/AKT/mTOR

pathway. In vivo studies demonstrated that liquiritigenin can

significantly inhibit tumor growth, increase cell autophagy, and

accelerate cell apoptosis. In addition, it attenuates the malignant-

like biological behaviors in triple-negative breast cancer cells

through its induction of autophagy-related apoptosis via the

PI3K/AKT/mTOR pathway (Ji et al., 2021), decreased DNMT

activity, and elevated BRCA1 expression and transcriptional

activity (Liang et al., 2021). Dihydrokaempferol has strong anti-

inflammatory and antioxidant activities, which can improve the

inflammatory performance and oxidative stress state of acute

pancreatitis (Liang et al., 2020; Zhang et al., 2021). In contrast,

kaempferol shows more pharmacological activities, such as anti-

bacterial (Yeon et al., 2019), anti-inflammatory (Yeon et al., 2019),

anti-oxidant (Chen and Chen, 2013), antitumor (Calderón-

Montaño et al., 2011), and anti-diabetic activities (Yang et al.,
Frontiers in Plant Science 06
2021b), and are cardio-protective (Chen et al., 2022b) and neuro-

protective (Wang et al., 2020). Currently, kaempferol is also

commonly used in cancer chemotherapy (Ren et al., 2019). The

mechanisms of kaempferol’s anticancer include apoptosis, cell cycle

arrest at the G2/M phase, downregulation of epithelial–

mesenchymal transition-related markers, and repression of

overactivation of the phosphatidylinositol 3-kinase/protein kinase

B signaling pathway (Imran et al., 2019; Wang et al., 2019). Luteolin

sensitizes cancer cells to treatment-induced cytotoxicity via

suppressing cell survival pathways and enhancing apoptosis

pathways, including the apoptosis pathway of the tumor

suppressor protein p53 (Lin et al., 2008). These compounds can

be extracted from the embryo of litchi seeds, which is convenient for

obtaining a higher content of target substances for pharmaceutical

and mass production in the future.

Myricetin, baicalin, and rutin were mainly found in the

cotyledons of litchi seeds. Myricetin was mainly concentrated on

one side of the cotyledon gap, while rutin and baicalin were mainly

distributed at the periphery (Figure 4). From a physiological point

of view, flavonoids such as myricetin and baicalin assist in the

reinforcement of plant tissues, maintenance of seed dormancy, and

longevity of seeds during storage (Shirley, 1998). Rutin may

participate in strengthening the plant’s defense system against

environmental stresses, including UV exposure, low-temperature

stress, drought stress, and bacterial pathogen infection (Suzuki et al.,

2015; Yang et al., 2016). Myricetin has therapeutic effects on a

variety of diseases, such as inflammation, cerebral ischemia,

Alzheimer ’s disease (AD), cancer, diabetes, pathogenic
FIGURE 3

Mass spectrum of flavonoids detected in situ in a litchi seed tissue section using MALDI-TOF-MS and 2-MBT as the matrix in the positive ion mode.
Two peptide standard ions, Gly-Gly-Leu (tripeptide, [M+H]+, m/z 246.145) and Arg-Gly-Asp-dTyr-Lys (pentapeptide, [M+H]+, m/z 620.322), and one
matrix ion, 2-MBT ([M+H]+, m/z 167.994), were used as the reference peaks and are labeled with black triangle “▲”. Three biological repetitions and
three technical repetitions were performed (n = 3 × 3). MALDI, matrix-assisted laser desorption/ionization; TOF, time-of-fight; MS, mass
spectrometry; 2-MBT, 2-mercaptobenzothiazole.
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microorganism infection, thrombosis, and atherosclerosis (Song

et al., 2021). Furthermore, myricetin has been reported to regulate

the expression of STAT3, PI3K/AKT/mTOR, AChE, IkB/NF-kB,
BrdU/NeuN, Hippo, eNOS/NO, ACE, MAPK, Nrf2/HO-1, TLR,

and GSK-3b (Song et al., 2021). Rutin shows clear antioxidant and

anticancer effects, including a strong ability to inhibit tumors in

breast cancer, especially triple-negative breast cancer (Iriti et al.,

2017; Liang et al., 2021). Baicalin, similar to rutin and myricetin, has

inhibitory effects on lung, breast, and bladder cancers, through

different signaling pathways and mechanisms (Ge et al., 2021; Kong

et al., 2021; Zhao et al., 2021). Owing to their important

pharmacological effects, our study of their spatial distribution

provided a basis for the precise extraction of flavonoids for

developing drugs.

Seven flavonoids, i.e., naringenin, apigenin, daidzein, quercetin,

isorhamnetin, catechin, and quercetin-3-b-D-glucoside, were
Frontiers in Plant Science 07
mainly found in both the cotyledon and embryo of litchi seeds.

Among these compounds, catechin, naringenin, daidzein, apigenin,

and quercetin-3-b-D-glucoside have homogeneous distributions

with relatively high abundance. Isorhamnetin was mainly

distributed in the radicle and tip of the cotyledon, while quercetin

was distributed at the periphery of the cotyledon. Flavonoids are

secondary metabolites in plants that play a critical role in impairing

ultraviolet irradiation, regulating the oxidative stress response, and

influencing the transport of plant hormones, flower coloring, and

pathogen resistance (Buer et al., 2010; Chen et al., 2022a).

Naringenin plays various roles in plant–microbe interactions (An

et al., 2021). Lignin biosynthesis and coenzyme ligase (4CL) are

involved in plant growth, and naringenin is one of the metabolites

in this pathway that inhibit enzymes such as 4-CL (Deng et al.,

2004). Apigenin (4′,5,7-trihydroxyflavone) is a bioactive compound

that belongs to the flavone class, and it is the aglycone of many
TABLE 1 The lists of 15 detectable flavonoids in litchi seed tissue sections by MALDI-TOF-MS using 2-MBT as the matrix in the positive ion mode.

Measured
m/z

Calculated
m/z

Error
(ppm)

Assignment Structurally specific CID ions (m/z)

Ion
form Compound Molecular

formula MALDI-MS/MS LC-MS/MS

257.081 257.0808 3.1
[M+H]

+
Liquiritigenin C15H12O4 –

137.024, 147.042, 211.073, 239.068,
257.081

271.060 271.0601 0.4
[M+H]

+
Apigenin C15H10O5

119.041, 243.056, 271.060 91.051, 119.044, 153.010, 243.059,
271.060

273.076 273.0758 0.7
[M+H]

+
Naringenin C15H12O5

119.044, 147.043, 273.076 119.041, 123.038, 147.040, 153.013,
273.076

287.056 287.0550 3.5
[M+H]

+
Luteolin C15H10O6 – 135.043, 153.009, 269.044, 287.056

289.071 289.0707 1
[M+H]

+
Dihydrokaempferol C15H12O6 – 153.013, 243.062, 271.063, 289.071

293.020 293.0211 3.8
[M+K]

+
Daidzein C15H10O4 227.064, 255.062, 293.021 199.072, 227.061, 255.060, 293.020

303.051 303.0499 3.6
[M+H]

+
Quercetin C15H10O7

153.017, 201.046, 257.043,
303.050

153.014, 201.048, 229.043, 257.040,
303.051

305.065 305.0656 2
[M+H]

+
Taxifolin C15H12O7 –

123.041, 149.016, 153.012, 167.033,
231.058, 305.065

309.036 309.0370 3.2
[M

+Na]+
Kaempferol C15H10O6 –

121.022, 153.014, 165.018, 213.054,
287.051, 309.036

317.066 317.0656 1.3
[M+H]

+
Isorhamnetin C16H12O7

153.013, 229.042, 27.041,
302.027

153.012, 229.043, 274.040, 302.029,
317.066

319.046 319.0448 3.8
[M+H]

+
Myricetin C15H10O8

217.042, 245.041, 273.025,
319.045

153.011, 217.043, 245.044, 273.027,
319.046

329.043 329.0422 2.4
[M+K]

+
Catechin C15H14O6

123.043, 139.027, 165.054,
291.078

123.042, 139.026, 165.053, 291.079,
329.042

465.102 465.1028 1.7
[M+H]

+
Quercetin 3-b-D-

glucoside
C21H20O12 229.043, 303.042, 465.103

153.013, 229.042, 257.033, 303.044,
465.103

469.073 469.0741 2.3
[M

+Na]+
Baicalin C21H18O11 – 123.013, 271.049, 447.088, 469.07

649.118 649.1165 2.3
[M+K]

+
Rutin C27H30O16

129.053, 303.046, 465.103,
611.146, 649.118

129.054, 145.053, 147.051, 303.048,
465.102, 611.147, 649.117
Structurally specific CID ions of extracted metabolites were detected by MALDI-MS/MS or LC-MS/MS using CID. “-”: the CID ions can not be detected by MALDI-MS/MS in this work.
MALDI, matrix-assisted laser desorption/ionization; TOF, time of fight; MS, mass spectrometry; 2-MBT, 2-mercaptobenzothiazole; CID, collision-induced dissociation; LC-MS/MS, liquid
chromatography–tandem mass spectrometry.
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naturally occurring glycosides. It ameliorates the damaging effects

of salinity on rice seedlings, presumably by regulating selective ion

uptake by roots and translocation to shoots, thus maintaining the

higher K+/Na+ ratio critical for normal plant growth under salinity

stress (Mekawy et al., 2018). Daidzein, as an isoflavonoid, plays

crucial roles in the expression of the nod genes of rhizobial bacteria.

The expression of this compound in roots will increase the synthesis

and secretion of nodulation factors, promoting a series of

physiological changes in plant cells and initiating the formation

of nodules (Bosse et al., 2021). Quercetin promotes a series of

physiological and biochemical processes in plants, including seed

germination, pollen growth, photosynthesis, and antioxidant

machinery, thus facilitating proper plant growth and development

(Singh et al., 2021). In addition, quercetin is an antioxidant that
Frontiers in Plant Science 08
enhances plant resistance to some biotic and abiotic stresses.

Quercetin-3-b-D-glucoside is a quercetin-derived compound with

attached glucose instead of the 3-OH group of quercetin.

Isorhamnetin is a methylated flavonoid derived from quercetin.

Catechins, as a type of flavonoid, also belong to phenolic

compounds. Making up more than 70% of polyphenols, catechins

consist of ester and non-ester catechins. The multifunctional

catechins contribute to decreased reactive oxygen species and

better adaptability of plants to the environment (Jiang et al.,

2020). Some of these flavonoids have been previously extracted

from litchi seeds, for example, catechin and naringenin (Zhu et al.,

2019). Similar to other flavonoids, most of these compounds have

many pharmacological effects, including anti-inflammatory,

antioxidant, and antidiabetic activities. In particular, since
FIGURE 4

Ion images of 15 detectable flavonoids in litchi seed tissue sections from MALDI-TOF-MS using 2-MBT as the matrix in positive ion mode. MS
imaging was acquired at 250-mm spatial resolution. MALDI, matrix-assisted laser desorption/ionization; TOF, time of fight; MS, mass spectrometry;
2-MBT, 2-mercaptobenzothiazole.
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the start of the COVID-19 epidemic, antiviral activity has

been reported for catechin (Mishra et al., 2021) and quercetin

(Bernini and Velotti, 2021). The antitumor effects of flavonoids

have also been extensively studied, with the following mechanisms

reported: inducing oxidative stress (Souza et al., 2017), enhancing

chemotherapy drug effect (Yang et al., 2021a), and regulating

signaling pathways (Amado et al., 2014). Notably, daidzein is a

phytohormone similar to estrogens and thus may have a therapeutic

effect on estrogen-dependent diseases (Meng et al., 2017).

Therefore, flavonoid compounds are useful for developing drug-

based therapies, and exploring the distribution of flavonoids will

facilitate efficient extraction and utilization.

Although taxifolin was successfully detected in sections in situ

using MALDI-MSI, the abundance of this compound was low. As

shown in Figure 4, taxifolin was mainly found in the testa and

peripheral part of the cotyledons, indicating that the compound can

protect seed embryos from external biotic and abiotic factors, such

as soil microbes (e.g., fungi and bacteria) and saline-alkali abiotic

stress, thus improving seed vitality and germination rate (Ninfali

et al., 2020; Wan et al., 2020). By regulating the aromatic

hydrocarbon receptor/cytochrome P450 1A1 (CYP1A1) signaling

pathway, taxifolin can significantly inhibit the proliferation,

migration, invasion, and viability of gastric cancer cells (Xie et al.,

2021). Similarly, the same effect of taxifolin has been observed on

breast cancer by promoting mesenchymal-to-epithelial transition

(EMT) through b-catenin signaling (Von Minckwitz et al., 2019).
Conclusion

MALDI-MSI was used for in situ detection and imaging of

flavonoid distribution in litchi seeds for the first time. Overall, 15

flavonoids were successfully imaged. Among them, four

(dihydrokaempferol, liquiritigenin, luteolin, and kaempferol) were

distributed in the seed embryo, three (rutin, baicalin, and myricetin)

were mainly found in the cotyledons, seven (quercetin, naringenin,

isorhamnetin, daidzein, apigenin, catechin, and quercetin 3-b-D-
glucoside) were enriched in both the embryo and cotyledons, and

one (taxifolin) was mainly detected in the inner testa. Our MALDI-

MSI results showed clear tissue distribution heterogeneity for the

different flavonoid compounds in litchi seeds. Such information will

be important for further study to understand the physiological and

chemical functions of such flavonoid compounds. Furthermore, our

study provides a basis for further improving the efficiency of

extracting and utilizing bioactive compounds from litchi seeds.
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