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Introduction: Triptolide (TPL) is a promising plant-derived compound for clinical

therapy of multiple human diseases; however, its application was limited

considering its toxicity.

Methods: To explore the underlyingmolecularmechanism of TPL nephrotoxicity,

a network pharmacology based approachwas utilized to predict candidate targets

related with TPL toxicity, followed by deep RNA-seq analysis to characterize the

features of three transcriptional elements include protein coding genes (PCGs),

long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) as well as their

associations with nephrotoxicity in rats with TPL treatment.

Results & Discussion: Although the deeper mechanisms of TPL nephrotoxcity

remain further exploration, our results suggested that c-Jun is a potential target

of TPL and Per1 related circadian rhythm signaling is involved in TPL induced

renal toxicity.

KEYWORDS

triptolide, nephrotoxicity, network pharmacology, RNA-seq, noncoding RNA
Abbreviations: TPL, triptolide; PCG, protein codeing gene; LncRNA, long noncodingRNA; CircRNA,

circular RNA; WGCNA, Weighted gene co-expression network analysis; SDElncs, significantly differentially

expressed lncRNAs; CTGs-TPL, candidate targeted genes related to TPL renal toxicity; BUN, blood urea

nitrogen; Scr, serum creatinine; Cs, contribution scores.
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Introduction

Over 3000 years of constant practice and optimization for the

system of Traditional Chinese Medicine (TCM) have endowed its

specific tradition that treasures in both scientific and medical fields

(Li et al., 2007). A better understanding of therapeuticmechanisms of

herb and herbal formulas from TCMs is of great significance for

pharmacological study as they have played vital roles in clinical

practice (Zuo et al., 2018). As one of the most renowned traditional

Chinese medical herbs, Tripterygium wilfordii Hook f. (TWHF) has

been applied in the treatment of multiple renal diseases such as

membranous nephropathy (MN), nephrotic syndrome (NS) and

refractory proteinuria since ancient China. Triptolide (TPL) is a

major active component of TWHF as well as a promising compound

for cancer therapy (Noel et al., 2019). Increasing evidence suggests

that TPL can attenuate the progression of several types of tumor via

varieties of approaches including target epigenetic networks (Noel

et al., 2020), induce cancer cell apoptosis, enhance the effect of

radiotherapy, inhibit metastasis and etc (Meng et al., 2014). TPL also

shows potential immunosuppressive effect in autoimmune diseases

treatment such as rheumatoid arthritis (Fan et al., 2018). However,

the clinical application of TPL is restricted due to its hepatic, nephric,

heart and gastrointestinal toxicity (Cheng et al., 2021). The cytotoxic

activities of TPL include introducing DNA damage and apoptosis,

arresting cell cycle (Park and Kim, 2013), autophagy (You et al.,

2018), and it involves in the production of reactive oxygen species

(ROS), generation and depolarization of mitochondrial membrane

potential (MMP) in different cell lines (Zhang et al., 2019).

The advancement of bioinformatics as well as the booming

development of compound/drug/diseases databases such as TCMSP

(Ru et al., 2014), NIMS (Li et al., 2011) and comCIPHER (Zhao and Li,

2012) have facilitated network pharmacology as a feasible approach to

explicate the material composition and molecular mechanism of drugs

effectively since it seeks targets by constructing distinct networks and

evaluating the molecular connections involved in the process of drug

treatment (Li et al., 2019). Network pharmacology has greatly enhanced

the investigation of the molecular basis of herbal formula in the past

decade (Li and Zhang, 2013). Through network pharmacology, Li et al.

revealed the targets and pathways of niacin in the treatment of COVID-

19 and colorectal cancer (Li et al., 2021). Niu et al. found that IL6 is

potentially regulated by phytochemicals in traditional Chinese

medicine for COVID-19 treatment (Niu et al., 2021). On the other

hand, RNA-seq has been widely used to affiliate the expression patterns

of protein coding gene (PCG), long noncoding RNA (lncRNA) and

circular RNA (circRNA). Increasing evidence has shown that lncRNAs

and circRNAs are closely related with degenerative diseases (Bhatti

et al., 2021), cancers (Anastasiadou et al., 2018) development (Fatica

and Bozzoni, 2014;DiAgostino et al., 2020), aging (Jiang et al., 2021; Ge

et al., 2022), and theyhave great potential to be utilized as drug targets in

the near future (Matsui and Corey, 2017; He et al., 2021).

Although previous renal metabolic analysis revealed that Toll-like

receptor signaling pathway and NF-kB signaling pathway played an

important role in TPL-induced nephrotoxicity (Huang et al., 2019), the

signatures of transcriptional elements are largely unexplored. In this

study, we employed deep RNA-seq in female rat kidneys as well as
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network pharmacology-based analysis, to elucidate the principles of

transcriptomic changes (include protein coding genes, lncRNAs and

circRNAs) that associatedwithTPL and identify candidate targets for a

better understanding of TPL renal toxicology.
Materials and methods

Animals, pathological measurements and
ethic statements

Female Sprague-Dawley (SD) rats, weighing 170-190g, were

purchased from Guangdong medical laboratory animal center

(Guangzhou, China) and housed in the animal facility of our

institute under a pathogen-free condition. Rats were fed in an ad

arbitrium diet and with free access to water. TPL was purchased from

MedChemExpress (New Jersey, USA). Rats were randomly divided

into control (Ctrl, n = 3), low dosage of TPL (L-TPL, n = 6) and high

dosage (H-TPL, n = 6) groups. The L-TPL and H-TPL rats were

separately administrated by oral gavage at a dose of 0.2 mg/kg and

0.4mg/kg for 28 days. Blood samples were collected for testing blood

urea nitrogen (BUN) and serum creatinine (Scr) using one-way anova

method among three groups. Coronal renal tissue was sectioned for H

& E staining following standard protocols. Renal parenchyma was

dissected for RNA-seq. The animal protocol of this studywas approved

by the institutional ethics review board of Shenzhen PKU-HKUST

Medical Center (No. 2020252) and the authors declare that all the

procedures have carefully followed the animal protocol. This study was

in accordance with ARRIVE guidelines (https://arriveguidelines.org).
RNA isolation and sequencing

Three rats per group were randomly selected from Ctrl and H-

TPL groups for RNA-seq. Total RNA was extracted from kidney

using Trizol reagent (Invitrogen Cat#15596026) following standard

protocols and subjected to the preparation of ribosome depletion

RNA sequencing library by illumina platform.
Data availability

The annotation files of novel lncRNAs and circRNAs and the raw

data were submitted to the Genome Sequence Archive in BIG Data

Center, (Beijing Institute of Genomics (BIG), Chinese Academy of

Sciences (http://bigd.big.ac.cn/gsa) (Chen et al., 2021), under the

bioproject PRJCA010363 with accession No. CRA008544.
Target prediction by network
pharmacology-based analysis

A step-wise workflow was utilized to predict candidate

targets related with TPL nephrotoxicity. Firstly, TPL related targets

(TPL-RT) were collected from TCMSP database (http://tcmspw.com/

tcmsp.php) and published studies from PubMed (https://
frontiersin.org
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pubmed.ncbi.nlm.nih.gov/) database that related with TPL. Then, we

used “nephrotoxicity” as the keyword to acquire the known

nephrotoxicity related targets (nephrotoxicity-RT) from GeneCard,

OMIN and DRUGBANK databases, respectively. The overlapped

targets (OT) between TPL-RT and nephrotoxicity-RT were retained

and subjected to STRING database to construct their protein-protein

interaction (PPI) networks. Protein pairs with correlation r-value > 0.9

were regarded as high-quality networks (hq-ntw) and were visualized

by cytoscape (Shannon et al., 2003). Gene enrichment analysis was

employed to classify proteins within hq-ntw.
Molecular docking analysis

The 2D structure of TPL was downloaded from PubChem

database (https://pubchem.ncbi.nlm.nih.gov/), then the structure

was subjected to optimization by Chem3D software (https://

library.bath.ac.uk/chemistry-software/chem3d). PyMOL (https://

pymol.org/2/) was utilized to remove the water molecues and small

ligands from the protein structures of targets downloaded from PDB

database (http://www.rcsb.org/) for subsequent step. The molecular

docking was finally performed and visualized using the hydrogen

bonded protein structure and optimized TPL structure via

AutoDockTools software (https://www.scripps.edu/sanner/software/

adt/Tutorial/index.html).
Western-blot

Western-blot assaywas performed aswe have previously described

(Jiang et al., 2021), blots were cut according to the sizes of target

proteins prior to hybridisation with antibodies during blotting and

exposed by Bio-rad imaging system. Antibody information see

Supplementary Table 1.
Novel lncRNA identification

An optimized stepwise filtering workflow that based on our

previous studies was used to identify lncRNAs (Jiang et al., 2016;

Jiang and Kong, 2020). Briefly, raw data was processed by FastQC

(Andrews, 2010) to remove low-quality reads. Stringtie (Pertea et al.,

2015) was used for transcript assembly. Transcripts with class code

“i” “j” “o” “u” “x”, exon number ≥ 2, and length over 200bp were

retained and blast against annotated lncRNAs of rat genome (ALRG)

to eliminate redundances. The transcripts were blast to pfam

database (Bateman et al., 2004) and assessed by coding potential

evaluation tools include CPC (Kong et al., 2007), CNCI (Sun et al.,

2013) and CPAT (Wang et al., 2013), respectively. Transcripts that

commonly evaluated as “noncoding” by the three analyses were

defined as novel lncRNAs. ALRG profiles were acquired from http://

ftp.ensembl.org/pub/release-87/fasta/rattus_norvegicus/dna/

Rattus_norvegicus.Rnor_6.0.dna.toplevel.fa.gz.
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Novel circRNA identification

Candidate circRNA were identified using two tools include

find_circ (Memczak et al., 2013) and CIRCexplorer (Zhang et al.,

2014) following the standard tutorials with default parameters.

Only transcripts that recognized as circRNA by both find_circ

and CIRCexplorer were subjected for further analysis. Spliced

reads per billion mapping (SRPBM) value for circRNA was

calculated through: SRPBM = Circular reads � 109
Total mapped reads � read length
Prediction of interactions between
circRNAs and miRNAs

The potential interactions between circRNAs and miRNAs were

predicted by miRanda (John et al., 2004) using default parameters.
Identification of differentially expressed
PCGs and lncRNAs

RPKM (Reads per Kilobase per Million Reads) was calculated

via formula: RPKM = Total exon reads 
mapped reads(millions) � exon length(kb). By comparing

the RPKM values, thresholds of |log(Fold change)| > 1 and p-value<

0.05 were set to define significantly differentially expressed genes.

False discovery rate (FDR) was used for adjusting p-value.

Unsupervised clustering was employed to uncover unknown

relationships among genes and biological samples.
Weighted gene co-expression network
analysis analysis

WGCNA analysis was performed following its official tutorial

(Langfelder and Horvath, 2008). Briefly, the normalized FPKM

values of PCGs and lncRNAs were pooled and generated to

adjacency matrix and subjected to “dynamicTreeCut” package

(Langfelder et al., 2008) to filter out outliner samples. Then we

used “pickSoftThreshold” function to calculate soft power values for

predicting block-wise modules.
Gene enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway mapping are useful strategies for gene

functional classification (Kanehisa, 2019; Gene Ontology

Consortium, 2021). Genes were classified to Gene Ontology and

KEGG terms via online tool DAVID (https://david.ncifcrf.gov/)

with default parameters.
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Results

Renal pathological changes

The serum creatinine (Scr) and blood urea nitrogen (BUN)

were tested and we found that H-TPL rats showed significant higher

Scr (p-value = 0.0189) than Ctrl and L-TPL, indicated that

treatment of high dosage of TPL induced declined renal function

(Figures 1A, B). H & E staining found that both L-TPL and H-TPL

rats exhibited tubular atrophy and renal blood vessel congestion

comparing with Ctrl group (Figures 1C, D),. A total of 10

representative views (3-4 views/rat, n=3) were selected for each

group for renal tubular injury scores evaluations, non-significant

differences was observed between L-TPL and H-TPL(Figure S1, S2).

However, wider intercellular gap between renal tubules was

observed in H-TPL than L-TPL (Figures 1C, D).
Potential targets of TPL nephrotoxicity
predicted by network
pharmacology-based analysis

Network pharmacology-based analysis was performed to predict

potential targets related with TPL renal toxicity. A total of 537 targets

were predicted by GeneCards, OMIM, and DRUGBANK databases

and 31 targets by the TCMSP database, we found that 17 were

overlapped. The visualization of the interplay among TPL,

nephrotoxicity and the 17 overlapped targets (OTs) was shown in

Figures 2A, B by cytoscape3 (Shannon et al., 2003). These OTs were

ported to STRING database to acquire their protein-protein

interaction (PPI) pairs (Figure 2B). Contribution score (CS) was

used to assess the importance of interested genes in contributing TPL

renal toxicity, it is the number of gene nodes that correlated with each

overlapped target (OT) within the PPI network. The contribution

scores of 17 OTs were shown in Figure 2C, among which STAT3,

TNF and JUN rank the top 3 genes with ≥ 11 gene nodes. By ranking
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the CSs, genes with CSs≥ 4were regarded as candidate targeted genes

related to TPL renal toxicity (CTGs-TPL) (Figure 2C). Potential

targets were subjected gene enrichment analysis and the top KEGG

terms were shown in Figure 2D. Western-blot (WB) assay was

employed to validate the association between the top-ranked

CTGs-TPL include Stat3 and c-Jun, it showed that c-Jun were

decreased in both L-TPL and H-TPL rats (Figure 2E), suggesting

that c-Jun is a potential target of TPL. In addition, the activation

status of c-Jun, the phosphorylated c-Jun (pc-Jun) was also inhibited

slightly (Figure 2E), Considered the vital importance of Stat3 in renal

function, two key factors that play essential roles in the upstream

and/or downstream of Stat3 signaling include Jak2 and IL17 were

selected to investigate their expression levels by WB assays although

Stat3 and phosphorylated-Stat3 (pStat3) showed non-significant

changes with TPL treatment (Figure S3). Nevertheless, neither

Jak2/phosphorylated-Jak2 (p-Jak2) nor IL17 showed response to

TPL treatment (Figure S2), demonstrating that TPL may not serve

as a potential ligand for either Stat3/IL17 or Stat3/Jak2 signaling in

the process of TPL nephrotoxicity.

To discovery the structure-based associations between

identified targets and TPL,

a molecular docking based strategy was applied to predict the

ligand-target interactions between TPL and interested targets

include CD86, IL4, CXCL8, STAT3 and CD40. Their interactions

were visualized in Figure 3.
Dysregulated protein coding genes

As H-TPL rats showed aggravated renal pathological changes

with wider intercellular gap between renal tubules, we selected H-

TPL renal tissues instead of L-TPL for deep RNA-seq to elucidate

the underlying molecular mechanisms of TPL induced renal

toxicity. A total of 178 up-regulated and 152 downexpressed

PCGs were obtained (Table S2). The gene enrichment analysis

(GEA) indicates that up-regulated PCGs are classified (rich factor >
FIGURE 1

Serum creatinine (Scr), BUN and H & E staining in TPL treated rats. (A) Scr levels were significantly elevated in H-TPL groups; (B) BUN levels showed
slightly but not statistically significant changes in L-TPL and H-TPL rats comparing with Ctrl group; (C, D) Representative captures of H & E staining
of L-TPL (C) and H-TPL (D) kidneys, the yellow box is renal congestion and blue box is renal tubules atrophy. * indicates p < 0.05; ns indicates not
significant.
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10) to vitamin digestion and absorption (hsa04977), Nitrogen

metabolism (hsa00910), glycine, serine and threonine metabolism

(hsa00260), steroid biosynthesis (hsa00100), citrate cycle (TCA

cycle) (hsa00020) and proximal tubule bicarbonate reclamation

(hsa04964) (Figure 4A). The downexpressed PCGs were

significantly enriched in circadian rhythm (hsa04710) signaling
Frontiers in Plant Science 05
(rich factor > 10) (Figure 4B). Co-expression correlation of

protein-protein pairs was calculated by WGCNA. The networks

of protein-protein interaction (PPI) were shown in Figure S4, the

core genes include Ptcd3 and Cdk1.

Next to liver, kidney exerts the second most robust rhythms of

circadian gene expression (Zhang et al., 2014; Myung et al., 2019).
A B

D

E

C

FIGURE 3

Visualizations of the interactions between targets and TPL by molecular docking analysis. (A) IL4; (B) STAT3; (C) CD40; (D) CXCL8; (E) CD86.
A B D

E

C

FIGURE 2

Target genes predicted to be associated with triptolide nephrotoxicity by network pharmacology-based analysis. (A) Visulization of interpalys
between TPL and its predicted targets; (B) PPI network of TPL renal toxicity candidate target genes; (C) List of top 15 target genes ranked by
contribution scores and they were regarded as candidate targeted genes related to TPL renal toxicity (CTGs-TPL); (D) KEGG terms of potential
targets by gene enrichment analysis; (E) Western-blot assay of c-Jun and pc-Jun in Ctrl, L-TPL and H-TPL groups (from left to right, n = 3/group).
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Among these dysregulated PCGs in H-TPL rats, we noticed that

multiple circadian genes such as Per1, Per2, Per3 and Cry were

significantly downexpressed. Previous study found that Per1 in

kidney is important for renal sodium handling and necessary for

maintaining homeostasis (Douma et al., 2022); therefore, Per1 was

selected and validated by western blot assay, it showed that Per1 was

decreased in TPL treated kidney (Figure 4C). Although the roles of

circadian genes are unknown in the mechanisims of TPL renal

toxicity, our results suggested that TPL may relate with the

circadian pace of kidney function.

It is interesting that we noticed that c-Jun was not among the

significant dysregulated genes by TPL treatment, suggesting that c-

Jun may involve in TPL toxicity in renal tissues via post-

transcriptional regulation.
Significantly differentially
expressed lncRNAs

After a strict filtering pipeline, a total of 6061 novel lncRNAs

were identified and combined with the annotated lncRNAs of rat

genome (ALRG) for next-step analysis. The length distribution and

exon number density plots were shown in Figure 5A, B and Figure

S5. The majority of novel lncRNAs and ALRG own 2 exons. Unlike

ALRG that generally enriched in 200 - 500bp, the length of novel

lncRNAs are mostly distributed in 200 - 500, 500 - 1000 and > 3500

bp (Figures 5A, B). A total of 131 up- and 119 down-expressed

lncRNAs were identified as significantly differentially expressed
Frontiers in Plant Science 06
lncRNAs (SDElncs) in H-TPL (p-value< 0.05). Increasing studies

have demonstrated that lncRNAs usually owns the capacity to

regulate their nearby genes (Statello et al., 2021). To illustrate the

potential roles of SDElncs, genes that locate within 100kb of

SDElncs were acquired and own strong correlations with

SDElncRNAs (weight value > 0.8) were defined as target genes

(Figure 5C). A total of 26 genes were identified and subjected for

GEA. We surprisingly found target genes, alike with the

dysregulated PCGs, were also enriched in vitamin digestion and

absorption (hsa04977) and metabolic related pathways such as

Alanine, aspartate and glutamate metabolism (hsa00250)

(Figure 5D), which suggesting that abnormal metabolism of

amino acids was potentially related with TPL nephrotoxicity.
CircRNA signatures

A total of 1529 high-quality novel circRNAs were identified. By

calculating the SRPBM values, only 7 circRNAs were found

deferentially expressed in H-TPL rats with p-value< 0.05 (Table

S1). As circRNAs can be served as miRNA sponges, we utilized

miRanda tool (Enright et al., 2003) to predict the potential

connections between dysregulated circRNAs and miRNAs.

Ranking by tot scores, the top 10 circRNA-miRNA pairs were

shown in Table 1. Previous studies reveled that miR-207 was up-

regulated in renal and urine of rats with renal fibrosis and decreased

in ischemia-reperfusion injury (IRI) model of mouse (Wei et al.,

2010; Shi et al., 2018). We found that both circ: Chr 6:124934385-
A B

C

FIGURE 4

Identification of significant dysregulated genes in the renal tissues of H-TPL rats. (A, B) KEGG enrichment analysis of significant overexpressed
(A) and downexpressed genes (B, C) Western-blot assay of Per1 in Ctrl, L-TPL and H-TPL groups.
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124981303 and circ: Chr11: 66774701-66795896 are strongly

targeted with miR-207 (Tot scores > 1000), suggesting these two

circRNAs may be involved with mi-207 related renal function

regulation although the deep mechanisms is unknown.
Discussion

TPL has been applied as an useful compound for treatment of

multiple renal diseases for decades; however its toxicity largely

limited its clinical practice. Metabolites has been studied in a broad

field such as screening for new therapeutic targets, discovery and

validation of disease biomarkers. Multitude studies have applied

metabonomics technology to investigate TPL, the regulating
Frontiers in Plant Science 07
mechanisms and the toxicities (Du et al., 2014; Li et al., 2019);

however, the transcriptional changes of TPL nephrotoxicity were

rarely reported. In this study, a combined approach of network

pharmacology method and RNA-seq was used to elucidate the

molecular mechanisms of TPL nephrotoxicity. RNA-seq analysis

found that a series of circadian genes, such as Per1-3, were

significantly dysregulated in renal tissues along with H-TPL

treatment. Per1-3 are closely related with renal rhythm. Per1 acts

as a circadian clock transcription factor and was regulated by

aldosterone, a steroid hormone increases blood pressure via

elevating blood volume and Na+ retention (Douma et al., 2022).

Myung et al. demonstrated that the mouse kidney of adenine diet

induced chronic kidney disease (CDK) model displayed

disorganization of Per2 expression (Myung et al., 2019). Per3
TABLE 1 The top 10 miRNA-circRNA interaction pairs ranked by Tot_scores.

miRNA circRNA Tot_Scores Positions

miR-320-5p 6:124934385-124981303 1973 1398 1911 2510 1211 1323 2813 1581 2198 1472 2378 2300 1608 1124

miR-3557-5p 11:66774701-66795896 1334 3240 7004 6394 2685 2835 1684 5020 5102 5855

miR-207 6:124934385-124981303 1253 1577 527 1217 1817 210 1398 1127 722

miR-337-3p 11:66774701-66795896 1203 1929 7259 580 7055 6716 1893 3024 587

miR-207 11:66774701-66795896 1074 4055 4779 6296 1763 5711 218 6812

miR-127-5p 11:66774701-66795896 1050 125 5264 4301 1792 5339 6845 2597

miR-3575 5:151944768-151947717 1048 287 312 634 414 579 464 537

miR-3584-5p 4:51682050-51690235 1011 456 539 426 398 366 561 651

miR-3551-5p 9:37960098-38013690 948 278 2478 1751 541 5371 822

miR-103-1-5p 1:134783877-134848903 925 1 3942 1332 3830 2641 3256
A

B

DC

FIGURE 5

Features of lncRNA genes in the renal tissues of H-TPL rats. (A, B) Comparison of lengths between ALRGs (A) and novel lncRNAs (B, C) Pairs of
SDElncs and 27 candidate target genes predicted by location and WGCNA; (D) KEGG terms of the 27 target genes.
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exerts dynamic expression patterns in pan renal carcinoma (Liu

et al., 2021). Through western blot assay, we validated that Per1 was

decreased along with TPL treatment, suggesting that Per1 is

involved in the regulation of TPL nephrotoxicity.

For identifying candidate targets of TPL nephrotoxicity by

network pharmacology based analysis, Huang et al. employed

GeneMANIA database and screened out 39 direct-targets in male

rats (Huang et al., 2019). Although there is no evidence suggested

that TPL toxicity has sexual difference, our study utilized female rats

to identify TPL regulated proteins and found that female rats seem

to tolerant the renal toxicty under both L-TPL and H-TPL

treatment with low renal injure rate. Comparing with Huang’s

study, a more strict filtering standard and different databases were

used and we gained highly consistent targets. Our further

investigations by western-blots validated that c-Jun protein is a

potential target of TPL. c-Jun protein is a widely expressed

transcription factor associated with a variety of diseases include

human renal diseases (Blau et al., 2012). In glomerular and tubular

cells, c-Jun was activated and its activation involves in the

regulation of renal inflammation and/or fibrosis (De Borst

et al., 2007).

RNA-seq and network pharmacology are different techniques to

elucidate relevant candidate molecular targets from two

perspectives. Network pharmacology is a novel approach that

widely applied for discovering the targets involved in the process

of TCM compounds or modern drugs treatment in a specific disease

via integrating biomedical, pharmacological and computational

approaches while RNA-seq can gain us a cohort of genes with

differential expression directly. A combination of these two

techniques definitely provide a more comprehensive knowledge of

molecular mechanisms in the process of TPL induced renal toxicity.

In this study, Pe1 and c-Jun are two candidates related with TPL

nephrotoxicity identified by these two analyses, respectively.

Although little evidence has been implied on the connections

between Per1 and c-Jun and the mechanisms among c-Jun, Per1,

TPL and nephrotoxicity are remain explored, our study suggested

that c-Jun protein and Per1 are possibly to be involved in TPL

induced renal toxicity via two independent pathways.
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