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The ease of accepting or donating electrons is the raison d’être for the pivotal

role iron (Fe) plays in a multitude of vital processes. In the presence of oxygen,

however, this very property promotes the formation of immobile Fe(III)

oxyhydroxides in the soil, which limits the concentration of Fe that is available

for uptake by plant roots to levels well below the plant’s demand. To adequately

respond to a shortage (or, in the absence of oxygen, a possible surplus) in Fe

supply, plants have to perceive and decode information on both external Fe

levels and the internal Fe status. As a further challenge, such cues have to be

translated into appropriate responses to satisfy (but not overload) the demand of

sink (i.e., non-root) tissues. While this seems to be a straightforward task for

evolution, the multitude of possible inputs into the Fe signaling circuitry suggests

diversified sensing mechanisms that concertedly contribute to govern whole

plant and cellular Fe homeostasis. Here, we review recent progress in elucidating

early events in Fe sensing and signaling that steer downstream adaptive

responses. The emerging picture suggests that Fe sensing is not a central

event but occurs in distinct locations linked to distinct biotic and abiotic

signaling networks that together tune Fe levels, Fe uptake, root growth, and

immunity in an interwoven manner to orchestrate and prioritize multiple

physiological readouts.
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Introduction

As a component of redox chains and cofactor of numerous enzymes, iron (Fe) is an

indispensable micronutrient for all forms of life. In plants, Fe has essential functions in

photosynthesis and is critical to chlorophyll biosynthesis. Iron is an abundant element in

most soils; however, only a minor fraction of the total Fe is available for uptake by plant

roots. This shortage is caused by the formation of Fe(III) oxyhydroxides with extremely low

solubility, in particular in alkaline soils (Vélez-Bermúdez and Schmidt, 2022). Only in

extremely acidic soils or in the absence of oxygen, Fe is available in concentrations that may

exceed the requirement of plants and cause oxidative damage due to the formation of

radical oxygen species.

To extract sufficient Fe from the soil solution, land plants have evolved a suite of

mechanisms aimed at increasing its solubility. Two main Fe acquisition strategies - referred

to as strategy I and strategy II - have been distinguished that separate dicotyledonous and non-
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grass monocotyledonous species from grasses (Poaceae) (Marschner

and Römheld, 1986). In strategy I plants (i.e., Arabidopsis or tomato),

soil pH governs the prioritization of specific processes within the

repertoire of Fe mobilizing mechanisms. At acidic pH, Fe acquisition

relies on a tripartite protein complex that mediates the acidification of

the apoplast, the reductive splitting of Fe3+-chelates, and the uptake of

the released Fe2+ ion. In the model plant Arabidopsis thaliana, this

complex is comprised of the H+-ATPase AHA2 (Santi and Schmidt,

2009; Stéger and Palmgren, 2022), the oxidoreductase FRO2 (Robinson

et al., 1999), and the Fe2+ transporter IRT1 (Eide et al., 1996; Vert et al.,

2002). In addition, genes involved in the biosynthesis and export of the

catechol sideretin, i.e., the oxygenases F6’H1 and S8H, the cytochrome

P450 enzyme CYP82C4, and the transporter PDR9 are induced upon

Fe starvation (Fourcroy et al., 2014; Schmid et al., 2014; Tsai et al.,

2018). Fe3+-sideretin serves as a substrate for the FRO2/IRT1 Fe uptake

module. At circumneutral and alkaline pH, FRO2 function is

compromised (Susıń et al., 1996), and Fe acquisition relies chiefly or

entirely on catecholic coumarins such as esculetin and fraxetin that

form stable complexes with Fe3+ at elevated pH. Under such

conditions, the production of fraxetin is favored by increased

expression of S8H, while the expression of CYP82C4 and, thus, the

hydroxylation of fraxetin to sideretin is repressed (Gautam et al., 2021;

Tsai and Schmidt, 2021). Fraxetin either reduces Fe3+, which is then

taken up by IRT1, or forms Fe3+-[fraxetin]3 complexes that are taken

up as such via an as yet unknown transporter (Robe et al., 2021).

Grasses (i.e., rice or barley) employ high-affinity metal chelators

of the mugineic acid family - referred to as phytosiderophores - to

mobilize and take up Fe. Phytosiderophores are secreted via TOM1

(Nozoye et al., 2011), followed by uptake of the loaded Fe(III)-
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phytosiderophore complex by the high-affinity YS1 and YSL

transporters, i.e., ZmYS1 in maize, OsYSL15 in rice, or HvYS1 in

barley (Curie et al., 2001; Lee et al., 2009; Yamagata et al., 2022).

Similar to strategy I plants, rice and possibly other grasses, possess

homologs of IRT1 (Ishimaru et al., 2006) that serve in the uptake of

(ferrous) Fe when Fe2+ is abundant, for example under

waterlogged conditions.
Hemerythrin: A ubiquitous component
in Fe sensing

How plant cells sense Fe remained opaque for a long time. In

mammals, cellular Fe levels are monitored by the cytosolic Fe

regulatory proteins IRP1 and IRP2. Under Fe-sufficient conditions,

IRP1 is assembled with an [4Fe–4S] Fe–S cluster and acts as aconitase,

converting citrate to isocitrate (Figure 1). Decreasing cellular Fe levels

causes loss of the Fe-S cluster, which is essential for aconitase function.

Freed from its metabolic duties, the apoprotein is able to bind to Fe-

responsive elements (IREs) within the 5′ or 3′ UTR of mRNAs

transcribed from genes encoding proteins involved in Fe uptake and

sequestration (Rouault, 2006). Also IRP2 binds to IREs, but lacks

aconitase activity and does not harbor an Fe-S cluster. IRP2 activity is,

instead, dictated by ubiquitination and proteasomal degradation. The

E3 ubiquitin ligase complex controlling IRP2 contains the F-box

protein FBXL5, which harbors an Fe-binding hemerythrin domain.

Iron deficiency destabilizes FBXL5, decreases E3 ubiquitin ligase

activity, and increases IRP2 binding to IREs (Chollangi et al., 2012).

Similar to IRP2, IRP1 can be targeted by FBXL5 for proteasomal
FIGURE 1

Iron sensing in mammals and plants. In mammalian cells, Fe is sensed via IRP1 and IRP2, which bind to IREs to regulate the translation of genes
involved in the uptake and storage of Fe. In the presence of cytosolic Fe, IRP1 loses its sensing function and acts as an aconitase; both IRP1 and IRP2
are targeted for proteasomal degradation by FBLX5. In plants, homologs of FBLX5 (HRZ1/HRZ2) in rice and BTS/BTSL1/2 in Arabidopsis) regulate the
activation of Fe-responsive genes via the abundance of clade IVc bHLH proteins, which are subjected to proteasomal degradation in the presence of
Fe. Under Fe-deficient conditions, IMA/FEP peptides compete with clade IVc proteins for binding to HRZ/BTS, thereby revoking the inhibition of the
Fe deficiency response by degrading IMA peptides instead of clade IVc bHLH proteins. Whether plants are able to sense Fe via a possible
moonlighting function of cytosolic aconitase (ACO) enzymes has not been conclusively demonstrated for plants. Purple arrows indicate proteasomal
degradation. Figure was created with BioRender.com.
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degradation (Iwai, 2019). In plants, such a moonlighting function of

cytosolic aconitase has been questioned by the observation that, in

Arabidopsis, knockout of aconitase (ACO) genes had minor effects on

the plant’s Fe status (Arnaud et al., 2007). In rice, however, defects in

ACO1 lead to reduced expression of a subset of Fe-responsive genes,

putatively by interaction of ACO with stem-loop structures of RNA

molecules (Figure 1) (Senoura et al., 2020). The reasons for the

differences between Arabidopsis and rice plants have not been

conclusively addressed. Genetic redundancy among ACO genes in

Arabidopsis might be causative for the incongruent results.

While a possible function of plant aconitase in the perception of

Fe awaits further clarification, solid support for a role in Fe sensing

was provided for the hemerythrin domain-containing proteins

HRZ1 and HRZ2 and their homologs in Arabidopsis, BRUTUS

(BTS) and the BRUTUS LIKE proteins BTSL1/BTSL2 (Long et al.,

2010; Kobayashi et al., 2013; Selote et al., 2015; Hindt et al., 2017;

Aung et al., 2018; Rodrı ́guez-Celma et al., 2019). OsHRZ-

knockdown plants are more tolerant to Fe deficiency and display

higher Fe levels in shoots and grains than the wild type, suggesting

that OsHRZ negatively regulates Fe uptake (Kobayashi et al.,

2013). In support of this supposition, hrz mutant lines display

severe Fe toxicity symptoms when grown on high Fe media (Aung

et al., 2018). The C-terminal regions of HRZ/BTS proteins harbor a

RING domain that confers E3 ligase activity for ubiquitination,

making these Fe sensors functionally similar to the mammalian Fe

regulator FBXL5 (Figure 1). In contrast to FBXL5, which is

stabilized by the presence of Fe, BTS and HRZ are unstable under

Fe-sufficient conditions (Selote et al., 2015; Guo et al., 2021). In

Arabidopsis, loss-of-function of BTS, BTSL1, or BTSL2 causes
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constitutive activation of Fe-responsive genes (Hindt et al., 2017;

Rodrıǵuez-Celma et al., 2019), suggesting functional homology to

HRZ proteins. Under Fe-sufficient conditions, BTS and HRZ bind

clade IVc bHLH proteins (bHLH105/ILR3, bHLH115, bHLH34/

IDT1, and bHLH104 in Arabidopsis, and POSITIVE REGULATOR

OF IRON DEFICIENCY RESPONSE (PRI) 1-4 in rice), and

mediate their degradation (Selote et al., 2015; Xing et al., 2021).

In the absence of Fe, clade IVc proteins are stable and promote a

signal cascade that ultimately triggers root Fe uptake (Figure 2)

(Gao et al., 2019; Akmakjian et al., 2021; Liang et al., 2020).
Ironman and other superheroes: Fe
sensing in plants

In Arabidopsis, BTS binds the clade IVc bHLH proteins

bHLH105 and bHLH115 via a C-terminal domain (Li et al.,

2021). A similar domain is also found at the C-terminus of

IRONMAN (IMA)/FE-UPTAKE-INDUCING PEPTIDE (FEP)

peptides (Li et al., 2021). IMA/FEP constitutes a ubiquitous

family of peptides present in all flowering plants, including the

basal angiosperm Amborella trichopoda (Grillet et al., 2018;

Hirayama et al., 2018). The A. thaliana genome harbors eight

IMA genes; only two homologs of this family were found in rice

(Grillet et al., 2018). In Arabidopsis, overexpression of IMA leads to

pronounced accumulation of Fe and Mn in all plant parts; octuple

ima8xmutants display an extremely chlorotic phenotype. Owing to

their increased abundance upon Fe deficiency, IMA peptides

compete with clade IVc bHLH proteins for binding to BTS,
FIGURE 2

Regulatory cascade governing the expression of genes involved in Fe uptake and homeostasis in Arabidopsis and rice. Under Fe-sufficient
conditions, BTS degrades clade IVc bHLH proteins and inhibits downstream signaling. When cytosolic Fe becomes limited, URI (clade IVb) is
phosphorylated and promotes the transcription of clade Ib bHLH proteins, which forms heterodimers with FIT (bHLH29) to induce the root Fe
uptake. bHLH11 recruits TOPLESS/TOPLESS-RELATED (TPL/TPRs) co-repressors and counteracts the expression of clade Ib bHLH transcription
factors. Detailed explanations regarding the various components are given in the text. Rice homologs are denoted in red letters. Figure was created
with BioRender.com.
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preventing their degradation and promote induction of

downstream Fe deficiency responses (Figure 2) (Li et al., 2021).

Interaction with IMA peptides, specifically IMA1/FEP3, has also

been demonstrated for BTSL proteins (Lichtblau et al., 2022),

indicative of functional homology between BTS and BTSLs.

Similar to what has been observed for bts mutants, loss of BTSL1

and BTSL2 function induces constitutive Fe deficiency responses

(Rodrıǵuez-Celma et al., 2019). BTSL1 and BTSL2 also interact with

FIT to mediate its ubiquitination (Rodrıǵuez-Celma et al., 2019).

The reason for this duality of Fe sensors may lie in their different

localization. While BTS localizes to the stele, BTSL proteins are

primarily expressed in the epidermis and cortex cells, providing a

first barrier against Fe overload, which would be detrimental to the

cells (Rodrıǵuez-Celma et al., 2019). Notably, no BTSL homologs

have been identified in graminaceous species.

OsIMA1 and OsIMA2 appear to function similar to Arabidopsis

IMA/FEP peptides (Kobayashi et al., 2021). Overexpression of both

homologs conferred Fe deficiency tolerance to rice plants and led to

the accumulation of Fe in all tissues, including seeds. Both OsIMA1

and OsIMA2 interact with OsHRZ protein in the same manner as

AtIMA with AtBTS (Peng et al., 2022), suggesting that this modus

operandi of Fe uptake regulation is common in flowering plants.

Notably, OsHRZ and AtBTS promote the degradation of IMA

peptides to decrease their presence when Fe becomes available (Li

et al., 2021; Peng et al., 2022). IMA peptides can bind Fe through an

aspartic acid-rich region and may get destabilized in the presence of

Fe (Grillet et al., 2018). A tempting hypothesis was put forward by

Peng et al. (2022). The authors suggested that Fe bound to IMA

peptides is delivered to the hemerythrin domain of HRZ/BTS

proteins to inactivate them, and, subsequently, induce Fe uptake.
Events at or downstream of HRZ/BTS

Interestingly, BTS activity is not only controlled by IMA

peptides and Fe. In Arabidopsis, the pathogen Pseudomonas

syringae hijacks BTS to manipulate the availability of Fe in the

apoplast of its host (Xing et al., 2021). In Arabidopsis mutant lines

that are unable to adequately perceive the effector protein AvrRps4

secreted by the bacterium, the bacterial attack inactivates BTS.

Capture of BTS suppresses the degradation of clade IVc bHLH

proteins and increases host Fe levels. It appears that the C-

terminus of AvrRps4 acts in a similar manner than IMA peptides

to promote downstream Fe signaling (Xing et al., 2021).

Two glutaredoxins, OsGRX6 and OsGRX9, have been identified

as OsHRZ-interacting proteins. In addition, OsGRX6 interacts with

the basic leucine zipper transcription factor OsbZIP83 (Kobayashi

et al., 2022). All three proteins are putative targets of OsHRZs for

ubiquitination and 26S proteasome-dependent degradation.

Overexpression of OsbZIP83 affected internal Fe translocation

and phytoalexin biosynthesis, suggesting multiple roles of this

module acting downstream of the OsHRZ pathway. The function

of the glutaredoxins is unclear at present, but a role in Fe-S cluster-
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mediated Fe signaling or utilization is a possible scenario, which

may be conserved in other species such as Arabidopsis (Yu et al.,

2017; Cheng et al., 2020). Another possible function of

glutaredoxins is inter-organ signaling. Such function was

previously demonstrated for the plant-specific class III

glutaredoxin family peptides CEP DOWNSTREAM 1 (CEPD1)

and CEPD2, which regulate the expression of the nitrate transporter

NRT2.1 (Ohkubo et al., 2017; Ota et al., 2020). While this is an

exciting possible role of glutaredoxins, their exact function in Fe

sensing still awaits further clarification.

In addition to its role as a hub governing root Fe uptake, BTS

seems to have functions that go beyond Fe sensing. In Arabidopsis

leaves, BTS negatively regulates genes involved in energy

metabolism, affecting in particular mitochondrial and plastidal

genes (Choi et al., 2022). This is, although unexpected, not

entirely surprising since, owing to the role of Fe in electron

transport, cellular Fe homeostasis is tightly connected with

energy metabolism.

Whether HRZ has similar functions remains to be elucidated. In

rice, and possibly other strategy II plants, a group of proteins

specific to grasses may be involved in Fe sensing. IDE-binding

factor 1 (OsIDEF1) is a metal-binding protein that is critical for

inducing the early Fe deficiency response in rice (Kobayashi et al.,

2007). An exact placement of OsIDEF1 into the puzzle of Fe sensing

and signaling is still pending.
Signaling Fe deficiency: An
infinite puzzle?

The transcription factor FIT plays a key role in governing Fe

acquisition in Arabidopsis by forming heterodimers with the clade

Ib bHLH proteins bHLH38, bHLH39, bHLH100, and bHLH101

that confer DNA binding and act together with FIT as key

regulators for a large suite of Fe uptake genes (Jakoby et al., 2004;

Colangelo and Guerinot, 2004; Yuan et al., 2008; Wang et al., 2013;

Cai et al., 2022; Liang, 2022) (Figure 2). Induction of FIT/bHLH Ib

is dependent on clade IVc bHLH proteins (Gao and Dubos, 2021).

A further layer of regulation is added by the clade IVb proteins

bHLH121 (UPSTREAM REGULATOR OF IRT1/URI), bHLH11,

and bHLH47 (POPEYE/PYE) (Figure 2). Under Fe-deficient

conditions, URI is phosphorylated and interacts with bHLH IVc

proteins to induce the transcription of genes encoding clade Ib

transcription factors (Kim et al., 2019; Gao et al., 2020; Lei et al.,

2020). Binding of clade IVc proteins to bHLH11, on the other hand,

represses the expression of clade Ib bHLH transcription factors by

recruiting TOPLESS/TOPLESS-RELATED (TPL/TPRs) co-

repressors (Li et al., 2022). PYE is another negative regulator of

the Fe deficiency response (Long et al., 2010). PYE interacts with the

bHLH IVc proteins bHLH104, ILR3/bHLH105, and bHLH115 to

form a complex that represses FERRITIN and genes involved in Fe

distribution (Tissot et al., 2019). Moreover, PYE can directly
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negatively regulate genes encoding clade Ib proteins as well as its

own expression (Pu and Liang, 2022). Interestingly, IRL3 and PYE

are critical for photoprotection by preventing the accumulation of

singlet oxygen during Fe deficiency (Akmakjian et al., 2021).

A comparable regulatory module governs Fe uptake in rice

plants (Figure 2). Here, the AtFIT homolog OsFIT/OsbHLH156

binds to the sole member of the rice bHLH Ib clade, IRON-

RELATED TRANSCRIPTION FACTOR 2 (IRO2) (Ogo et al.,

2007). The FIT-IRO2 heterodimer coordinates the expression of

the rice Fe uptake genes IRT1, TOM1, YSL15, NAS1, NAS2,

NAAT1, and DMAS1 (Liang et al., 2020; Wang et al., 2022).

Similar to Arabidopsis, the OsFIT/OsIRO2 dimer is dependent on

bHLH IVc and bHLH IVb proteins, which positively and negatively

regulate downstream responses. PRI1-4 (clade IVc) proteins are

critical for the induction of OsFIT/OsIRO2 (Kobayashi et al., 2019).

OsIRO3 (clade IVb) is a homolog of AtPYE and acts as negative

regulator of the Fe deficiency response (Zheng et al., 2010). Similar

to Arabidopsis bHLH11 (but unlike PYE), IRO3 recruits TOPLESS/

TOPLESS-RELATED (TPL/TPR) co-repressors and directly

regulates IRO2 expression (Li et al., 2022; Pu and Liang, 2022).

IRO3 also binds to PRI1 and PRI2 to repress their transactivation

activity (Li et al., 2022). The clade IVb protein bHLH61 binds to

PRI1, and the bHLH61-PRI1 dimer recruits TPL/TPR to repress

root-to-shoot translocation of Fe at high Fe levels (Wang

et al., 2022).
Multiple Fe sensors orchestrate plant
responses to environmental cues

While Fe is only available for root cells exposed to the soil

solution, the demand for the metal may differ dramatically among

cell types and tissues and may be dynamically altered over time. In

addition, pathogens may affect the requirement for Fe of sink

tissues. Infection with the airborne necrotrophic fungus Botrytis

cinerea was shown to activate the Fe deficiency response in

Arabidopsis, probably caused by Fe depletion by the pathogen

and defense responses based on the Fe-dependent generation of

an oxidative burst (Lu and Liang, 2022). Iron deficiency induced by

B. cinerea activated FIT-dependent signaling, which in turn

triggered ethylene biosynthesis and ethylene-based immunity,

suggesting overlapping Fe and immune signaling cascades.

A central node of convergence of distinct environmental signals

is the R2R3-MYB-like transcription factor MYB72, first identified as

a prerequisite for growth on alkaline substrates (Palmer et al., 2013).

MYB72 regulates the secretion of Fe-mobilizing coumarins

particularly at alkaline pH (Gautam et al., 2021), thereby enabling

plants to extract Fe from recalcitrant pools and to thrive in

calcareous soils. MYB72 was also identified as a key player in

induced systemic resistance (ISR; Zamioudis et al., 2014).

Conspicuously, both Fe deficiency and volatile organic
Frontiers in Plant Science 05
compounds from ISR-inducing Pseudomonas bacteria can trigger

MYB72 expression, indicating that Fe acquisition can be increased

independently of the availability of the nutrient (Zamioudis et al.,

2015). Homozygous myb72 mutants are unable to mount ISR

against various pathogens including B. cinerea, suggesting that

MYB72 is required for ISR against a wide range of pathogens

(Trapet et al., 2021).

A sensor mediating the crosstalk between multiple signaling

pathways was recently identified in a GWAS approach (Platre et al.,

2022). Extracellular domains of the LRR receptor kinase SRF3 sense

a signal that communicates the lack of Fe or flg22-mediated Fe

decrease and regulate root growth and bacterially elicited immune

responses. Homozygous srf3 mutants resemble the excess Fe

phenotype of bts-1 and opt3-2 mutants, suggesting that SRF3

negatively regulates Fe uptake. SRF3 is preferential expressed on

the (bulk) plasma membrane and at the neck of plasmodesmata and

becomes depleted in response to low Fe conditions. Elicitation of

bacterial immune responses results in SRF3-dependent decrease of

cellular Fe levels, leading to what is referred to as nutritional

immunity in animals, i.e., the sequestration of Fe as a means to

limit pathogenicity. Whether SRF3 is connected to other Fe sensing

elements and, if so, how the information from different nexuses is

orchestrated to tune Fe uptake by roots remains to be established.
Untangling Fe sensing: Peeling
the onion

The remarkable complexity and ever-increasing number of

transcription factors and regulators involved in Fe signaling makes

the elucidation of the mechanisms underlying the perception and

communication of the plant’s Fe status a quasi-Sisyphean task.

Moreover, recent findings support the involvement of additional

regulatory layers such as microRNAs and epigenetic control in Fe

signaling (Singh et al., 2021; Bakirbas andWalker, 2022; Du et al., 2022;

Zhu et al., 2022), which need to be considered to generate a more

complete picture of the events that are employed to control cellular Fe

homeostasis. Commonly, changes in the Fe status do not occur as such

but in combination with other cues such as pathogen attack, alterations

in soil pH, or imbalances in ion availability or uptake. Thus, the

recalibration of the plant’s Fe status may involve prioritization of

competing interests represented by source (roots) and sink (non-root)

tissues, microbial Fe piracy, and the influence of beneficial bacteria,

which may not act entirely selfless when hijacking the plant's Fe

acquisition repertoire. Improper intracellular transport of Fe to sites

of high demand such as mitochondria and chloroplasts constitutes a

further factor that can affect Fe sensing. While sensu strictu an Fe

sensor is defined by its ability to interpret the prevailing Fe level by

binding or interacting with Fe, input derived from other stimuli may,

more indirectly, affect downstream signaling that leads to readjustment

of cellular Fe levels. It appears clear that neither decoding the exact
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mechanisms by which Fe is sensed nor solving the puzzle as to how this

information is conveyed and interlinked with the perception and

signaling of other cues has yet been completed. However, some

milestones have been localized that may serve as a point of reference

during the mapping of the circuits that secures plant fitness in the not

always friendly arms race for Fe.
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