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Tea is one of the most consumed and widely planted beverage plant worldwide,

which contains many important economic, healthy, and cultural values. Low

temperature inflicts serious damage to tea yields and quality. To cope with cold

stress, tea plants have evolved a cascade of physiological and molecular

mechanisms to rescue the metabolic disorders in plant cells caused by the cold

stress; this includes physiological, biochemical changes and molecular regulation

of genes and associated pathways. Understanding the physiological and molecular

mechanisms underlying how tea plants perceive and respond to cold stress is of

great significance to breed new varieties with improved quality and stress

resistance. In this review, we summarized the putative cold signal sensors and

molecular regulation of the CBF cascade pathway in cold acclimation. We also

broadly reviewed the functions and potential regulation networks of 128 cold-

responsive gene families of tea plants reported in the literature, including those

particularly regulated by light, phytohormone, and glycometabolism. We discussed

exogenous treatments, including ABA, MeJA, melatonin, GABA, spermidine and

airborne nerolidol that have been reported as effective ways to improve cold

resistance in tea plants. We also present perspectives and possible challenges for

functional genomic studies on cold tolerance of tea plants in the future.
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Introduction

Tea is one of the most popular nonalcoholic beverages favored by worldwide consumers,

and represents a valuable economic, healthy, and cultural values. It is an evergreen perennial

plant that belongs to the genus Camellia, which contains over 200 species (Banerjee, 1992;

Cetinbas-Genc et al., 2020; Wu et al., 2022). Tea plants are often grown in tropical and
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subtropical regions ranging from 49° N in Ukraine to 33° S in South

Africa, making them susceptible to cold weather (Carr, 2008; Tuov

and Ryndin, 2011; Hao et al., 2018). In general, soils with a pH range

of 4.5-6.5, high humidity levels, and the temperature of 21-29°C are

the best conditions for tea plant cultivation. The continuing

deterioration of the environment and particularly cold stress have

seriously threatened the sustainable development of global tea

industry (Carr, 2008; Yadav, 2010). Tea plants have a long lifespan,

which means that their physiology has to be able to adapt to different

temperatures in order to survive in extreme environments. Therefore,

it is important to elucidate the molecular mechanisms that are

implicated in response to cold tolerance in tea plants.

Low temperature is one of the most pivotal environmental factors

that affects tea growth, yields, and quality. Under cold stress, tea

plants experience extensive physiological and biochemical changes,

including the alternations of cell membrane fluidity and protein

activity, as well as the release of many bioactivities such as reactive

oxygen species (ROS) and malonaldehyde (Theocharis et al., 2012).

Likewise, during cold acclimation of tea plants, protective

osmoregulation such as soluble sugars, amino acids (like proline)

and some amines (like polyamines) all were significantly accumulated

(Ding et al., 2020; Li et al., 2020; Wang et al., 2020). The cold-tolerant

properties of tea plants could be attributable to stronger palisade

parenchyma and reduced stomata density compared to sensitive

varieties (Samarina et al., 2020). Since tea plants are sessile and

unable to escape the adverse environment, they have to develop

relevant responsive mechanisms to adjust to cold stress. In plants, the

cold stress is perceived by cold sensors and transduced by cold

signaling, which involves a series of kinases, light receptors, calcium

channels and NO signals, and is closely correlated to the core ICE

(INDUCER OF C-REPEAT BINDING FACTOR) -CBF (C-REPEAT

BINDING FACTOR 1) -COR (COLD-RESPONSIVE GENE) pathway

or CBF-independent way. In particular, the discovery of cold sensor

of rice (COLD1) and thermosensors of rice (TT3) and Arabidopsis

(ELF3) have greatly enhanced our understanding of the plant

temperature adaptability (Ma et al., 2015; Jung et al., 2020; Zhang

et al., 2022a). Plethora of recent studies have revealed the important

roles of transcriptional, epigenetic, and post-transcriptional

regulations in cold signaling (Fowler and Thomashow, 2002;

Barrero-Gil and Salinas, 2013; Mann and Jensen, 2003).

One of the effective ways to improve the cold resistance in tea

plant is to identify the key genes responsible for cold tolerance of tea

plant and then use transgenic or cross-breeding methods to breed

new germplasms with high cold tolerance. Consequently,

investigation of the cold response mechanisms in tea plant is

fundamental for molecular breeding. Here, we summarized the

research progress of tea plants in cold response, including

molecular, physiological and biochemical responses to cold stress,

sensing and signal transduction, cold-responsive gene identification,

and their transcriptional regulation and post-transcriptional

modification during cold stress. We also propose that application of

exogenous protective substances such as ABA, MeJA (Methyl

Jasmonate), melatonin, GABA, spermidine, and airborne nerolidol

is expected to effectively improve the cold resistance of tea plants. The

key challenges and future prospects are also discussed. Despite the
Frontiers in Plant Science 02
current findings on molecular mechanism of cold tolerance of tea

plants are rather limited, the development of omics would extend our

understanding for sophisticated network of low-temperature

regulation. Our goal is to offer potential future avenues for the

development of cold-responsive systems that could serve as a

resource for woody plant breeding research.
Physiological changes of tea plants
during cold stress

Low temperature inflicts irreversible disorders to plant

physiology, posing threats to the survival and sustainable

development of plants. Cold stress can lead to leaf senescence,

seedling death, pollen abortion, bud dormancy, pollen tube

abnormality, and especially damaging the tea shoots and inhibiting

their growth (Cetinbas-Genc et al., 2020; Zheng et al., 2016; Hao et al.,

2017; Song et al., 2017; Xiao et al., 2018). Cold stress caused by

extreme temperature fluctuations commonly includes chilling stress,

frost stress, and freezing stress. In general, chilling stress occurs at the

temperature of 0-15°C, while most frost damage emerges at a clear

night, wherein radiation freezing air occupies the area. Cold stress

usually solidifies the plasma membrane elasticity and phospholipids

fluidity, and affects the channels and increases permeability of plants.

The disturbed permeability will then lead to electrolyte leakage and

enzyme inactivation for the lack of optimal temperature and pH

(Lukatkin et al., 2012). Unlike chilling and frost stress, freezing stress

often occurs when air temperature is below 0°C, which results in the

formation of an ice crystal in plant tissues (Yadav, 2010; Shi et al.,

2018). Compared to chilling stress, freezing stress is usually lethal. It

forces the intracellular water into extracellular ice, and damages the

integrity of membrane, accompanied by the disruption of cellular

compartmentalization and denaturation of membrane proteins

(Wisniewski et al., 2004).

The stress response of plants is a complex and dynamic process.

Cumulative evidences have shown that hundreds of metabolic

processes of tea plants altered under cold stress (Shen et al., 2015).

The metabolism of soluble sugars, proline and reactive oxygen species

(ROS) are among the most pronounced changes. Soluble sugars level

is highly sensitive to cold stress. As is shown in Figure 1, cold stress

leads to the conversion of polysaccharide to disaccharide, which then

yields glucose and fructose to accelerate the accumulation of soluble

sugars. The sugars then act as osmoprotectants interacting with lipid

bilayer and stabling protein folding to confer plants with cold

tolerance (Ma et al., 2009). Besides, the soluble sugars were also

found to function as a signaling molecule to regulate the crosstalk of

hormones to activate the expression of cold responsive genes in

response to cold stress of plants (Couée et al., 2006; Rolland et al.,

2006; Janská et al., 2010). Similarly, cold and frost stress can

significantly elevate the protein levels (by 3-4 folds), and contents

of proline and cations (potassium, calcium and magnesium), which

will serve as a common compatible osmolytes to decrease ice point

and molecular chaperone to scavenge reactive oxygen species to

rescue the cold damage in plants (Figure 1, Yoshiba et al., 1997;

Ghosh et al., 2022).
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Mechanisms of sensing and signal
transduction of tea plants during
cold stress

Sensing of cold signals in tea plants

Being sessile organisms, plants have evolved relative elaborate

mechanism to sense and cope with the ever-changing temperature.

Cold signals are sensed by receptors through the cell membranes,

which then participate in the regulation of intracellular signaling

networks or cell-cell communication (Ahuja et al., 2010; Norman

et al., 2011; Jogaiah et al., 2013). Much efforts have been made to

discover the cold sensors (Figure 2). The CHILLING TOLERANCE

DIVERGENCE 1 (COLD1) is one of the currently identified cold

sensors in rice, which could mediate the chilling tolerance of rice by

regulating calcium channels and OsCBF1 gene expression (Ma et al.,

2015). It deserved to further investigate whether the function of

COLD1 gene is conservative in tea or other plant species. In addition

to COLD1, the receptor-like kinases (RLKs) and histidine kinases

(HKs) were also able to sense environmental signals. During cold

acclimation of tea plants, almost all CsRLK and CsHK genes were

particularly found to be up-regulated, suggesting their crucial roles

for cold tolerance in tea plants (Wang et al., 2013). RLK members

constitute the largest gene family of plant membrane signaling

proteins, while HKs are the most abundant and diverse membrane

receptors. Both of them are potential cold sensors in plants

(Osakabe et al., 2013). They usually regulate the expression of

many cold-inducible genes through abscisic acid signaling

pathway and/or calcium/calmodulin signaling or other manners

under cold stimuli (Murata and Los, 2006; Yang et al., 2010; Xu

et al., 2020).

Besides, previous studies demonstrated that the light receptors

were also closely related to cold response of bacteria and plants. They
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reported that cold-stress signaling pathways showed to be closely

associated with the light perception and circadian clock, but it

remains unknown how plants sense and transmit stress signals to

regulate gene expression (Chen et al., 2004; Gould et al., 2013;

Estravis-Barcala et al., 2020; Kidokoro et al., 2021; Kidokoro et al.,

2022). An activation of the phytochromes under long day conditions

triggers PIF7 (phytochrome interacting factor 7) to interact with the

circadian oscillator TOC1, subsequently bind to a G-box sequence

(CAGTG) in the CBF promoter, and thereby downregulates CBF

expression (Wisniewski et al., 2014). The blue light receptor

phytotropin perceives cold signals in liverwort Marchantia

polymorpha at its photoactivated state (Fujii et al., 2017). In

Arabidopsis, phytochrome B (phyB) photoreceptor integrates light

and ambient temperature by reversible photoconversion between

active Pfr (far-red) state and the inactive Pr (red) light-absorbing

state (Legris et al., 2016). The physical interaction of phyB and CBF1

abrogated the interaction of phyB and PIF3/4 to promote the

photomorphogenesis at 22/17°C in the light (Lu et al., 2020) (Dong

et al., 2020) Jung et al., 2016; Legris et al., 2016). In contrast, the cold-

induced CBFs stabilized the phyB thermosensor to enhance plant cold

tolerance at 4°C (Jiang et al., 2020). In plants, phytochrome signaling

pathway related gene AtFHY3/FAR1 (FAR-RED ELONGATED

HYPOCOTYL 3/FAR-RED-IMPAIREDRESPONSE 1) not only

modulates the phyA activity by directly activating the expression of

FHY1/FHL but also positively regulates cold response through

regulating JA (jasmonic acid) signaling pathway (Liu et al., 2019;

Dai et al., 2022). Unfortunately, little research has been done on the

interaction of low temperature and light signals in tea plants, with the

exception of the expression analysis of CsFHY3/CsFAR1. Almost all of

the CsFHY3/CsFAR1 family members were down-regulated under

cold stress of tea plants, suggesting their negative roles for regulating

cold tolerance in tea plants (Liu et al., 2021).

An increased expression in a set of genes related to red-light

perception (GRAVITROPIC IN THE LIGHT), blue and UV-light
FIGURE 1

The alternation of some metabolisms of tea plants during cold stress.
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perception (CRYPTOCHROME 1, EARLY LIGHT-INDUCABLE

PROTEIN 1, and UVB-RESISTANCE 8), chloroplasts relocation

(CHLOROPLAST UNUSUAL POSITIONING 1), and regulation of

chlorophyll biosynthesis (Cs213 putative cold-inducible protein),

stomatal movement (PHOSPHOGLUCOMUTASE), PSII associated

light-harvesting complex II catabolic process (FILAMENTATION

TEMPERATURE-SENSITIVE H) were also observed in tea plant

under the long term cold stress. Interestingly, among all

upregulated DEGs (differential expressed genes), the highest

expression level was observed in ELIP1 (EARLY LIGHT-

INDUCIBLE PROTEIN 1) which was upregulated 150-2000 folds

above control under long-term cold stress in tea leaves. ELIPs are

located in thylakoid membranes and are known to protect

photosynthetic machinery from various environmental stresses in

higher plants and have been reported to participate in the

phytochrome signaling pathway (Rizza et al., 2011). Additionally, it

was reported that the induction of ELIP1/2 expression is mediated via

CRY1 (CRYPTOCHROME 1) in a blue light intensity-dependent

manner (Kleine et al., 2007; Yang et al., 2017). During exposure to

high irradiance, cry1 Arabidopsis mutants displayed inhibition of

anthoc ianid in and flavonoids b iosynthes i s genes and

phenylpropanoid genes, peroxidase genes, GST and ERD9 genes

which are the components of various stress responses (Kleine et al.,

2007). In our RNAseq study, the expression of CRY1 was also

significantly increased under the 14 days of chilling stress and 3-

day freezing temperature of tea plants. According to the previous

data, CRY1 participates in the high temperature response in plants

(Ma et al., 2016), suggesting that the mechanisms of temperature

compensation might in principle be linked to the mechanisms of light
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perception (Gould et al., 2013), however the authors did not observe

an accumulation of CRY transcripts under short-term cold stress

in Arabidopsis.

Additionally, several new identified DEGs were upregulated

under the long-term cold stress of tea plants which seems to be

related to light sensing pathways. Among them, EID1

(EMPFINDLICHER IM DUNKELROTEN LICHT 1) -like F-box

protein 3 is an F-box protein that related to red-light perception and

functions as a negative regulator in phytochrome A (phyA)-specific

light signaling. F-box proteins are components of SCF ubiquitin

ligase complexes that target proteins for degradation in the

proteasome, regulates photomorphogenesis and flowering in

Arabidopsis (Marrocco et al., 2006). Similar to the previous

finding (Ohta and Takaiwa, 2014), we identified DNAJ11 and

DNAJ ERDJ3B-like in tea plant which encode co-chaperone

components, stimulate Hsp70 ATPase activity, which is

responsible for stabilizing the interaction of Hsp70 with client

proteins. Knockout of these genes in Arabidopsis thaliana caused

a decrease in photosynthetic efficiency, destabilization of PSII

complexes and loss of control for balancing the redox reactions in

chloroplasts (Chen et al., 2010). Also, FTIP 1/3 (FLOWERING

LOCUS T-INTERACTING PROTEIN 1/3) was upregulated in tea

plant under the long term cold stress. This gene is an essential

regulator of FT encoding florigen and the regulator of photoperiodic

control of flowering in plants. Loss of function of FTIP1 exhibits late

flowering under long days, which is partly due to the compromised

FT movement to the shoot apex (Liu et al., 2012). To summarise our

results on tea RNAseq data, it can be suggested that the long term

overlapping stress responses include the activation of several
FIGURE 2

Cold sensors and signal transduction in tea and other plant species.
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important genes of photo-perception which probably activate the

phenylpropanoid pathway leading to the cell wall remodeling.
Messenger molecules involved in cold
signal transduction

The cold signals perceived by plant cell-surface could be

transmitted to the other cell compartments, such as the nucleus,

where the expressions of many cold-responsive genes are activated

(Zhu, 2016). An example of such mechanisms include Calcium (Ca2+)

and IP3 (inositol-1, 4, 5-triphosphate), which are two ubiquitous

secondary messengers and play a crucial role in eliciting downstream

cold-responsive signaling pathways (Knight et al., 1996; Virdi et al.,

2015; Paknejad and Hite, 2018). Cold stress causes an activation of the

IP3-gated calcium channels, which then resulted in rapid induction of

cytosolic calcium levels (Ca2+ spark) and subsequent upregulation of

COR genes (Orvar et al., 2000; Sangwan et al., 2001). After sensing

and interacting with Ca2+, calmodulin (CaM) undergoes

conformational changes to activate CaM-binding transcription

activator (CAMTA) factors to response to cold stress. The double

mutations of camta1 and camta3 impaired cold tolerance of plants

compared to wild type, suggesting their significant roles in the cold

response. Many studies have also shown that the expression of

CAMTA3/5 is significantly upregulated under cold stress, in which

CAMTA3 further binds the CBF2 promoter to activate the expression

of DREB1B and DREB1C genes. This establishes a link between

calcium signals and cold acclimation in plants (Doherty et al., 2009;

Eckardt, 2009; Kidokoro et al., 2017). Additionally, cold stress can

stimulate the Ca2+ sensors calcineurin B-like protein (CBL), to

interact with CBL-interacting serine/threonine-protein kinases

(CIPKs), and ultimately increase the autophosphorylation and

phosphorylation activity of CIPKs. The activation of CIPKs

eventually resulted in an upregulation of CBFs genes to respond the

cold stress in plants (Zhang et al., 2019). Overall, the above evidences

indicated that Ca2+-CaM/CBL-CAMTA3/CIPK complex enables

sensing and transduction of cold signaling of plants in response to

cold stress through CBF-dependent pathways, despite their functions

in tea plants need further investigations.

Under the long-term cold stress, we also observed the elevated

expression of several genes, related to Ca2+-dependent signaling and

protein phosphorylation in tea leaves. Among them, CNX1

(Calnexin) and calreticulin-like (CRT) which were reported to bind

proteins on endoplasmic reticulum acting as molecular chaperones

(Liu et al., 2017; Joshi et al., 2019); also, CIPK12 and CIPK6 which

were reported to bind CBLs regulating Ca2+-signal response (Sardar

et al., 2017; Czolpinska and Rurek, 2018; Bai et al., 2022).

Additionally, several genes encoding the important components of

membrane trafficking system and related to Ca2+-signaling were

upregulated in tea plant under the long term cold stress, such as

STRAP (SERINE-THREONINE KINASE RECEPTOR-ASSOCIATED

PROTEIN), SAPK3 (SERINE/THREONINE-PROTEIN KINASE 3),

leucine-rich repeat receptor-like protein kinase PXY1 (PHLOEM

INTERCALATED WITH XYLEM-LIKE 1), INPP5A2 type I inositol

polyphosphate 5-phosphatase 2, glycine-rich protein A3-like GRP
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(GLUTAMINE-RICH PROTEIN), indicating their important roles

in response to long-term cold stress in tea plant. Similarly, in

Populus, the calcium-dependent protein kinase 10 (CPK10) is

upregulated under drought and frost and activates both drought-

and frost-responsive genes to induce stress tolerance (Chen et al.,

2013). In apple DEGs encoding protein phosphatases and serine/

threonine-protein kinases were upregulated in response to different

abiotic stresses (Li et al., 2019).

In addition, the protein phosphatase 2C (PP2C) was upregulated

in tea plant under the long-term cold stress. PP2C are the key players

in plant signal transduction processes, acting as the central

components in ABA signal transduction and negative regulators of

mitogen-activated protein kinase (MAPK) pathway (Rodriguez,

1998). Also, probable translation initiation factor eIF-2B (tif224) is

increasingly expressed under 14-day-chilling and 3-day freezing stress

in tea plant. This gene encodes a protein which is activated through

phosphorylation by stress-sensing kinases, and leads to reduced levels

of ternary complex required for initiation of mRNA translation under

stress conditions (Wang et al., 2021). Our results confirmed that

activation of Ca2+-signaling cascades is relevant to not only the short-

term cold response but also for the long-term chilling and freezing-

responses in tea plant.

Unlike Ca2+ and IP3, the nitric oxide (NO), a gaseous signaling

molecule in plants has gained much attention for its roles in cold

tolerance. Cold acclimation induced a high expression level of

nitratereductase 1 (NIA1) and stimulated the nitrate reductase (NR)

activity, which was attributed to NR-dependent NO synthesis and

eventually resulted in freezing response of plants (Zhao et al., 2009).

Previous studies have suggested that NO could greatly induce the

expression level of the S-adenosylmethionine synthetase (MfSAMS)

gene in leaves of Medicago sativa subsp. falcata. Overexpression of

MfSAMS in plant significantly improved cold tolerance of transgenic

plants via up-regulating polyamine synthesis and oxidation (Guo

et al., 2014). In vitro application of 0.02 mM NO could dramatically

reduce the chilling injury index in tomato fruit by up-regulating the

expression of LeCBF1, whereas NO inhibitors cause severe chilling

injury (Zhao et al., 2011). Similarly, supplementing 500 uM NO in

vitro caused the tea plants to significantly accumulate osmoregulation

substances (e.g., soluble protein, soluble sugar, and proline) and

activate superoxide dismutase and catalase. The expression levels of

CsICE1 and CsCBF1 genes were up-regulated by exogenous NO,

thereby alleviating the damage of cold to tea leaves under cold stress

(Pan et al., 2016; Wang et al., 2021). However, it is unknown whether

NO regulates CBF-dependent or -independent pathways in response

to cold stress in tea plants, which needs further investigation.
Regulatory mechanisms of cold
tolerance of tea plants

ICE-CBF-COR pathway in cold response of
tea plants

Many plants have evolved sophisticated cold response

mechanisms to survive in cold stress during long-term evolution
frontiersin.org
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(Thomashow, 1999; Kalberer et al., 2006). It is commonly

acknowledged that the ICE1-CBF-COR transcriptional cascade is

one of the key cold signaling pathways, which is highly conserved

in tea and other flowering plants. Plant genomes contained two copies

of the ICE gene. The ICE1 protein was found particularly abundant in

the MYC-binding sites (CANNTG) of the CBF promoter

(Chinnusamy et al., 2003). A handful of studies have shown that

ice1 mutation blocked the expression of the CBF3 gene, whereas

overexpression of ICE1 significantly increased the expression of CBF3

in transgenic plants (Tang et al., 2020). Besides, the ICE2 is

considered a redundant duplicate of ICE1, which performs similar

activities in plants in terms of cold responsiveness (Fursova et al.,

2009; Kim et al., 2015). In plants, ICE typically regulates a large

number of downstream genes in response to cold stress, of which

CBFs serve as one of the most important targets (Vogel et al., 2005;

Wang et al., 2012). CBFs act as the on/off switches of cold response.

Their expression levels could be rapidly induced within 15 minutes

under cold treatments, affecting the expression of over 4000 putative

downstream target genes such as COR15a, COR47, and COR6.6

(Gilmour et al., 1998; Seki et al., 2001; Maruyama et al., 2004;

Maruyama et al., 2009; Park et al., 2015; Zhao et al., 2016; Shi et al.,

2018). In Arabidopsis, the CBF gene family is composed of three

tandem genes located on chromosome IV and exhibits consistent

expression patterns in response to cold stress. CBF1,3-overexpressed

Arabidopsis plant had increased freezing tolerance, while cbfsmutants

were vulnerable to freezing stress (Jaglo-Ottosen et al., 1998; Liu et al.,

1998; Medina et al., 1999). Unlike Arabidopsis, five CsCBF members

have been identified in tea plants (Wang et al., 2019). In another

investigation, six CsCBF genes were predicted (Hu et al., 2020).

Interestingly, all the CsCBFs were strongly upregulated under cold

stress, with the exception of CsCBF3 (TEA010806). Overexpression of

CsCBF1 (GenBank EU563238), CsCBF2 (KC702795), CsCBF3

(EU857638), and CsCBF5 (TPIA CSS001387) in Arabidopsis and

Nicotiana displayed an enhanced cold tolerance, with increased

photosynthesis ability, high level of proline, sugar and ROS content,

but reduced malondialdehyde under cold stress compared to wild

type (Chang et al., 2012; Yin et al., 2016; Zhou et al., 2022a; Zhang

et al., 2022b). CBF proteins can recognize C-repeat/dehydration-

responsive motif (CCGAC, CRT/DRE) in the promoters of a subset

of COR genes and activate the expression of COR genes. It was

predicted that a total of 685 potential COR genes were regulated by

CsCBF in tea plants, including circadian rhythms and hormone

signaling genes (Wang et al., 2019). Although the overexpression of

COR15A and CsCOR1 has no discernible effect on the survival of

plants under cold stress, most COR genes greatly contribute to cold

tolerance in plants (Jaglo-Ottosen et al., 1998; Li et al., 2010b). For

example, the expression of RD29A was induced by CBF3, thereby

improving the survival of frozen plants (Liu et al., 1998). Further,

CBF1 occupies the clock genes LUX promoter. LUX is required for

plants to survive in freezing stress (Chow et al., 2014). Interestingly,

many previous studies also suggested that alternative splicing event is

likely to drive the regulation complexity of CsCOR during cold

acclimation (Li et al., 2020). It is possible that the alternative

splicing of CsCOR plays an important role in cold acclimation of

tea plants.
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Transcriptional and post-transcriptional
regulation of ICE-CBF-COR genes

It is well recognized that both transcriptional regulation and post-

translational modifications play important role in regulating the CBF

cascade pathway. According to recent studies, the expression of CBFs

and the stability and transcriptional activity of ICE1 are very

important for cold tolerance. The ICE1/2 are constitutively

expressed (Tang et al., 2020). Previous studies have suggested that

the phosphorylation, ubiquitination and sumoylation of ICE1 greatly

regulates CBF expression by changing its own protein stability and

transcriptional activity (Figure 2, Shi et al., 2018; Ding et al., 2020).

Indeed, ICE1 is ubiquitinated and degraded by the high expression of

osmotically responsive gene 1 (HOS1, E3 ubiquitin ligase), leading to

the instability of ICE1 protein and low expression of CBF (Dong et al.,

2006; Park et al., 2011). Whereas cold-activated SUMO E3 ligase SIZ1

(SAP and Miz) -mediated sumoylation of ICE1 increases its stability,

positively regulating the cold tolerance in plants (Miura et al., 2007).

In addition, three protein kinases also mediated the post-translational

modification of ICE1. Low temperature induces the open stomata 1

(OST1) kinase activity, which then interacts with ICE1 and HOS1,

improving the ICE1 activity and suppressing HOS1-mediated ICE1

degradation (Ding et al., 2018). By contrast, the other two protein

kinases Brassinosteroid-insensitive 2 (BIN2) and mitogen-activated

protein kinase 3/6 (MPK3/6) interacts with, and phosphorylate ICE1,

which promoted the degradation of ICE1 (Li et al., 2017a; Ye et al.,

2019). Moreover, MPK6 attenuated the inhibitory effect of MYB15 on

CBF expression to enhance freezing tolerance in Arabidopsis (Agarwal

et al., 2006; Kim et al., 2017). Mechanistically, jasmonate-zim-domain

protein 1/4 (JAZ1/4) can also inhibit the CBF translational activity by

interacting with ICE1/2 in Arabidopsis (Hu et al., 2013a). The most

recent study in tea plants found that CsWRKYs (CsWRKY29 and

CsWRKY37) conferred plants cold tolerance, and CsWRKY4/

CsOCP3 (OVEREXPRESSOR OF CATIONIC PEROXIDASE 3)

interacted with CsICE1 and inhibited its transcriptional activation

on CsCBF1/3, demonstrating the relevance of CsCBF cascade

pathway on cold tolerance of tea plants (Peng et al., 2022; Zhao

et al., 2022).

The expression of CBFs is regulated by several types of

transcriptional activators or repressors involved in light signaling,

phytohormones signaling, circadian rhythms and Ca2+ signaling

(Figure 2). Recent studies have shown that the PIFs (PIF3, 4, and

7), downstream genes of photoreceptor and thermosensor phyB,

negatively regulates the expression of CBF and freezing tolerance of

Arabidopsis (Leivar et al., 2008; Lee and Thomashow, 2012). Chilling

stress initiates the formation of CBFs-PIF3-phyB complex which later

serve to control the cold adaption (Jiang et al., 2020; Xu and Deng,

2020). The transcription factors (TFs) in hormone signaling maintain

the homeostasis of CBF levels. For instance, the CBFs expression are

repressed by ethylene insensitive 3 (EIN3) in ethylene pathway, but

up-regulated by brassinazole-resistant 1/brassinosteroid insensitive 1-

EMS-supressor 1 (BZR1/BES1) in brassinosteroids signaling (Shi

et al., 2012; Li et al., 2017b). Circadian rhythms core genes are

likely to antagonistically function to keep the rhythmic expression

of CBF. Circadian clock associated 1/late elongated hypocotyl (CCA1/
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LHY) are shown to activate the expression of CBFs by binding to their

promoters, while pseudo-response regulators (PRRs) inhibit the

expression of CBFs (Nakamichi et al., 2009; Dong et al., 2011). In

Arabidopsis, CCA1/LHY regulates cold-responsive DREB1

expression only under gradual decrease in temperature during the

day, whereas rapid drop in the temperature can induce the cytosolic

calcium levels and activate Ca2+ signaling (Kidokoro et al., 2017). Ca2

+ signaling impairment prevents CsCBF expression but accumulates

higher catechins under cold conditions, suggesting their potential

correlations in response to cold stress of tea plants (Ding et al., 2019).

The CsCAMTA2 (orthologous gene of CAMTA3 in Arabidopsis) was

strongly up-regulated in tea plant, and the cis-element [(G/A/C)

CGCG(C/G/T) or (A/C)CGTGT, CsCAMTA targeted] was

observed in the promoter of CsCBF1 and CsCBF2 (Zhou et al.,

2022b). There had been at least 8 Calmodulin-like (CBL) genes and

25 CIPK genes identified in tea plants, which were further divided into

four and five subfamilies. Of them, four CsCBLs (CsCBL1/3/5/9) and

nineteen CsCIPKs genes were significantly induced by cold stress.

Studies have shown that CsCBL1 could interact with CsCIPK1/10b/

12, while CsCBL9 was found to interact with CsCIPK1/10b/12/14b;

hence, the Ca2+-CsCBL-CsCIPK module mediated cold stress

signaling in tea plant was proposed (Li et al., 2019b; Ma et al.,

2019; Wang et al., 2020). In Arabidopsis, it was reported that

CAMTAs worked together to suppress the SA (salicylic acid)

s yn the s i s by t a r ge t ing EDS1 (ENHANCED DISEASE

SUSCEPTIBILITY 1) and to improve freezing tolerance (Kim

et al., 2013).

Furthermore, the post-translational modification of CBFs is

important in cold tolerance. For instance, cytosolic redox protein

thioredoxin h2 interacts with CBF and reduces the transformation of

oxidized CBF oligomers (inactive) to active monomers, whereby this

structural switching and functional activation of CBFs confers the
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plant with cold tolerance (Lee et al., 2021). It is worth to note that

epigenetic regulation, including DNA methylation, chromatin

remodeling, and small RNA regulation, also extensively influences

the cold tolerance of plants throughout the entire life (Park et al.,

2018). A recent study showed that hundreds of cold-responsive genes,

including CsCBF4 and CsUGT91Q2, were significantly demethylated

during cold stress, indicating that DNA methylation is involved in

cold response of tea plants (Tong et al., 2021). Besides, the histone

deacetylases were also reported to participate in the cold stress

response of tea plants. Low temperature reduced the transcription

ofHD2 type histone deacetylase in tea plant, indicating that chromatin

remodeling mediated by histone modifications may regulate the

expression of cold-responsive genes (Ma et al., 2013; Yuan et al.,

2020). Degradome sequencing has identified 763 related cleavage

target genes and miRNAs associated with cold stress tolerance. There

were 74 and 91 differentially expressed microRNAs (miRNAs)

identified from cold-tolerant ‘Yingshuang’ and cold-sensitive ‘Baiye

1’ cultivars, respectively. Of them, miR156, miR159, and miR396

showed distinct expression patterns among different cold-sensitive tea

varieties under cold conditions (Zhang et al., 2014b). In addition, 14

circular RNAs have been identified to contribute to the chilling

tolerance of tea plant (Huang et al., 2023).
Identification and characterization of cold-
responsive genes in tea plants

The innovation of genomic and transcriptomic sequencing,

together with functional genomics, have identified a total of 128

gene/families involved in cold response in tea plants (Table 1). For

example, the cold-responsive bZIP transcription factor CsbZIP6 and

CsbZIP18 were experimentally evidenced to reduce the freezing
TABLE 1 List of the genes/gene families involved in cold tolerance of tea plant.

Category Functional type Gene symbol

Transcription factors

Expression analysis RAV, GSP, CAMTA, GARP, NLR, SAP, SDIR

Cloning identification BES1, C2H2-ZFP, CIGR, CPP, FHY3/FARI, DELA, DREB, GRF, MYB, NAC, WOX, ZF-HD, bHLH

Functional characterization bZIP, CBF, ICE, WRKY, HSF

Structural genes

Sugar signaling AMY, BAM, FRK, GLU, GolS, HXK, TPP, RS, INV, UGT, SUT, TIP, TMT, SCAF, SWEET, PMI, SUS, SPS, PMM

Regulator genes AOX, C5-MTase, CIPK, CPK, CSD, dMTase, MKK, MPK, PLD, SCPL, DPE, SNRK, HDAC, MIEL, BAP, RAC

Redox CAT, GPX, GST, POD, PPO, SOD, GSHS, GGP, GME, GMP, GPP, MIOX

Cell remodeling AGP, ENODL, AXY, API, GALT, RRT, PPME, XTH, UXS, GAE, XUT, PMEI, TBL

Hormone signaling LOX, NCED, G3O2, GR, DHN, JAZ, IPT, PNPO, GalLDH, GalUR, DHAR, GalUR, AO, APX, MIOX, TTL

Carotenoid biosynthesis CHXB, CHXE, CRTISO, PDS, ZDS, PSY, Z-ISO

Terpenoid metabolism TPS, DXS, DXR, HDS, LCY, IPT

Ca2+ signaling CAM, CBL, CML,

Osmoregulator LEA, P5CS, AQP, FAD

Amino acid Metabolism GS, ARG

Fiber signaling HCT, CesA

Light signaling psbA, psbD
Please check Supplemental Table 1 for details.
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tolerance of tea plants by ABA-independent and ABA-dependent

pathway, respectively (Wang et al., 2017; Yao et al., 2020b). In

addition, a total of 89 structural genes involving in sugar signaling,

redox process, ascorbic acid metabolism, hormone signaling,

carotenoid biosynthesis, terpenoid metabolism, Ca2+ signaling,

osmoregulator, amino acid metabolism, fiber signaling, and light

signaling, were also identified and characterized to be associated

with cold tolerance of tea plants. Correspondingly, 59 sugar-related

genes engaged in sugar metabolism, transportation and signaling are

solidly stimulated, including the beta-amylase gene (CsBAM),

disproportionating enzyme gene (CsDPE2), fructokinase gene

(CsFRK), invertase gene (CsINV5), Suc-phosphate synthase gene

(CsSPS) and raffinose synthase gene (CsRS2) (Yue et al., 2015).

Sugar signaling and osmoregulator related genes regulate the cold

tolerance of tea plants mainly through the osmotic-dependent

pathway. Overexpression of Invertase 5 (CsINV5) enhanced the

cold tolerance of transgenic Arabidopsis through up-regulating the

transcription of HXK2 and P5CS1/2 (Qian et al., 2018). CsSWEET1a,

CsSWEET16 and CsSWEET17 improved the freezing resistance of

plants by promoting sugar transport across the plasma membrane

(Wang et al., 2018; Yao et al., 2020a). The sequences of proline

biosynthesis and degradation have been identified and available at

NCBI, CsP5CS (pyrroline-5-carboxylate synthase, KJ143742.1),

CsOAT (Ornithine-D-aminotransferase, KJ641844.1) and CsP5CR

(pyrroline-5-carboxylate reductase, KY368574), CsP5CDH

(pyrroline-5-carboxylate dehydrogenase, KY368572) and CsProDH

(Pro-dehydrogenase, KY368573) included (Ban et al., 2017).

Besides, the phenylpropanoid pathway serves as a rich source of

metabolites in plants, as a starting point for the biosynthesis of lignin,

flavonoids and coumarins (Fraser and Chapple, 2011; Hori et al.,

2020; Oliveira et al., 2020). Recent studies showed upregulation of

lignin biosynthesis genes along with downregulation in cellulose

biosynthesis genes under osmotic stresses in tree species

(Wildhagen et al., 2018; Chen et al., 2019; Hori et al., 2020).

Additionally, an increased level in xyloglucan endotransglucosylase/

hydrolase (XTH) and expanding proteins, affecting the cell wall

plasticity and reinforcement of the secondary wall with

hemicellulose and lignin deposition to increase cell wall thickening

were highlighted (Gall et al., 2015). In accordance with these data, our

RNAseq data revealed many upregulated genes related to the cell wall

remodeling and biosynthesis in tea plant (UDP-Arap, XTH30, AGPS1,

BGLU, ENODL2, AXY4, UEL-1, PRP-F1, API, PPME, GALT6,

GATL7, UXS2, UXS4, TBL32, GlcAT14A, XUT1, GAE3, 4CL, API,

RRT1, rfbC, glucan endo-1,3-beta-glucosidase 7-like and 8-like, etc.)

confirming the importance of this pathways in the long-term cold

stress in tea plant. Additionally, elevated expression of beta-

glucosidase (BGLU) that catalyzes intermediates for cell wall

lignification synthesis was observed in tea. Also, several DEGs

(RRT1, PPME, XTH, UXS2, UXS4, GAE3, XUT1) related to

xyloglucan and pectin biosynthesis were upregulated in tea leaves

under the long-term cold stress. Among them, RRT1 (RG-I

RHAMNOSYLTRANSFERASE 1) is required for both cellular

adhesion and cell wall plasticity (Takenaka et al., 2018). PPME,

pect ines terase- l ike PMEs (PECTIN METHYLESTERASE

INHIBITORs) maintains apoplastic Ca2+-homeostasis, controlling

stomatal movements and in regulating the flexibility of the guard

cell wall (Wu et al., 2018). Previous studies have also suggested that
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inhibiting the pectin methylesterase activity of tea plants, including

Pectin Methylesterase Inhibitor 2 and 4 (CsPMEI2 and CsPMEI4),

slightly reduces the cold tolerance of transgenic Arabidopsis (Li et al.,

2021). XTHs (Xyloglucan endotransglucosylase/hydrolase) cuts and

re-joins hemicellulose chains in Plant cell wall, contributing to wall

assembly, affecting cellulose deposition (Wu et al., 2018).

Additionally, more genes related to pectin biosynthesis were found

upregulated under long-term cold stress in tea plant, namely UXS2/4

(UDP-GLUCURONIC ACID DECARBOXYLASE 2/4) and GAE3

(UDP-D-GLUCURONATE 4-EPIMERASE 3). These genes are

required for the biosynthesis of heteroxylans and xyloglucans and

for the side chains of pectin (Kuang et al., 2016; Borg et al., 2021).

Cell walls remodeling proteins contain hydroxyproline-rich O-

glycoproteins (HRGPs), which is classified into extensins (EXTs),

arabinogalactan-proteins (AGPs) and Hyp/Pro-rich proteins (H/

PRPs) (Cassab and Varner, 1988; Basu et al., 2015; Ajayi et al.,

2021). According to our results, a set of genes involved in H/PRPs

and AGPs metabolism (AGPS1, UEL-1, API, GALT6, GATL7,

GlcAT14A, ENODL2, PRP-F1, etc.) were highly upregulated in tea

plant suggesting that glycosylation of HRGPs is an important

responsive mechanism under the long-term stress. Additionally,

some genes (e.g., TBL27/32) related to O-acetylation of

polysaccharides were upregulated under long-term cold in tea plant

which is consistent with some earlier findings (Sun et al., 2020). O-

Acetylation of polysaccharides change the physicochemical properties

and acetyl-substituents inhibit the enzymatic degradation of wall

polymers (Gall et al., 2015) suggesting the important role of the

both processes for the long-term stress responses of tea plant. Thus,

the increasing the cell wall plasticity, thickness and hydrophobicity by

lignin biosynthesis, glycosylation of HRGPs, o-acetylation of

polysaccharides, pectin biosynthesis and branching, xyloglucan and

arabinogalactan biosynthesis can serve as important mechanisms of

long-term cold responses in tea plant.

A well-known effect of abiotic stress in plants is the production of

ROS, which can eventually oxidize lipids, proteins, and DNA, and

thereby trigger the cell death (Akula and Ravishankar, 2011; Bartwal

et al., 2013; Estravis-Barcala et al., 2020). Redox process and ABA

metabolism regulated cold tolerance mainly through scavenging

reactive oxygen species. For example, Glycosyltransferase

CsUGT91Q2, CsUGT78A14, and CsUGT71A59 confer cold

resistance to tea plant by improving the ROS clearance ability

(Zhao et al., 2019a; Zhao et al., 2019b; Zhao et al., 2021). According

to our recent results, in tea plant several upregulated DEGs related to

lipid metabolism were upregulated under long term cold stress. For

examples, the homologs of SEC14, an important regulators of

phospholipid metabolism (Campos and Schaaf, 2017), EDR2, a

negative regulator of cell death (Vorwerk et al., 2007), and genes

encoding remorin-like (REMs) proteins accumulated in lipid rafts

and physically interact with receptor-like kinases (Cai et al., 2020),

probable phospholipid hydroperoxide glutathione peroxidase

(PHGPX) participates in scavenging of lipid hydroperoxide (Jain

and Bhatla, 2014), endoplasmic reticulum oxidoreductin-1-like

(ERO1) participating in protein folding under oxidative stress

(Matsusaki et al., 2019), probable carboxylesterase 11 (CXE11)

which is involved in the catabolism of volatile esters such as butyl

and hexyl acetate and activation of MeJA signaling (Cao et al., 2019),

luminal-binding protein genes (BIP5-like) which increase in anti-
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oxidative defenses under water stress in transgenic tabacco and

soybean (Valente et al., 2009). These results suggest the lipid

stabilization against ROS can be an important mechanism of the

long-term cold and freezing responses in tea plant.

Similarly, cold-induced enzyme or hormone pathway genes also

affect the cold tolerance of tea plants. According to the recent studies,

hormone-signaling pathways are consistently up-regulated under

cold stress, which are involving in those of JA, brassinosteroids

(BRs), and ABA (Wisniewski et al., 2014; Zheng et al., 2022).

Interestingly, auxin signal transduction is activated in the opposite

pattern with ethylene transduction it some tree species (Estravis-

Barcala et al., 2020). In tea plant several new upregulated DEGs

involved in hormone signaling were upregulated under the long-term

cold stress (GID1C-like, LOG3-like, ILR1-like6, TTL1, TTL3, and

2g29380). These genes are related to the abovementioned signaling

pathways. For example, GID1 (GA INSENSITIVE DWARF1) can bind

negative regulators of GA responses called DELLA proteins

(Hauvermale et al., 2014). LOG is a cytokinin-activating enzyme

plays a pivotal role in regulating cytokinin activity (Kuroha et al.,

2009). ILR1 (IAA-LEUCINE RESISTANT 1) regulates the rates of

amido-IAA hydrolysis resulting in activation of auxin signaling

(Sanchez Carranza et al., 2016). TTL1 (TETRATRICOPEPTIDE-

REPEAT THIOREDOXIN-LIKE 1) regulates the transcript levels of

several dehydration-responsive genes, such as CBF2, ERD1 (early

response to dehydration 1), ERD3, and COR15a (Rosado et al., 2006;

Lakhssassi et al., 2012). These results indicate a complex

transcriptional landscape in response to abiotic stress, and in

particular they show highly variable interactions between different

hormone signal transduction pathways.

Long-term cold stress down-regulated CsLOX expression while

short period of low temperatures induced the expression of CsLOX1, 6

and 7, which highlights the role of JA in triggering and regulating cold

tolerance of tea plants (Zhu et al., 2018). E3 ligase gene MIEL1

inhibited the accumulation of anthocyanin in apple by degrading

MdMYB1 protein (An et al., 2017). Similar to the function of

MdMIEL1, overexpression of the CsIEL1 gene in Arabidopsis

decreased anthocyanin level during cold stress, which is possibly

caused by the degradation of positive regulator through 26S-

proteasome-mediated ubiquitination pathway (Xing et al., 2021).

In addition, transcriptome analysis shows only 12% of cold-

responsive genes are dependent on the CBF regulons in Arabidopsis

thaliana, indicating the presence of the other low-temperature

regulation pathways (Fowler and Thomashow, 2002). Indeed,

several previous studies have showed that many cold-inducible

genes, including Alpha-tubulin (CaTUA), dehydrin (CsDHN1, 2),

spermine synthase (CsSPMS), fatty acid desaturase (CsSAD), H1

histone (CsHis), CsbZIP and CsHSF function in cold response of tea

plants in a CBF-independent pathway (Paul et al., 2012; Paul and

Kumar, 2013; Wang et al., 2014; Zhu et al., 2015; Ding et al., 2016).

Many phytohormone (auxin, cytokinins, ABA, gibberellins, JA,

ethylene and brassinosteroids) responsive genes are intimately

linked to the CBF-independent regulon under cold acclimation

(Zhao et al., 2014; Joshi et al., 2016; Wani et al., 2016). With the

development of transcriptomics and genomics, many CBF-

independent transcriptional regulation factors involved in cold

adaptions would be identified.
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Exogenous feeding to improve cold
tolerance in tea plants

At present, the primary method of reducing cold stress in tea

production is to breed cold-resistant tea plants and optimize

cultivation conditions, most likely in a greenhouse or with a

protective film. Applying exogenous substances, on the other hand,

are the simplest, most convenient, and most effective method (Zhang

et al., 2022b). In general, 93 metabolites changed significantly under

cold stress, such as catechin, flavonoid, ABA and JA (Hao et al., 2018).

These results corresponded to those in which low temperature

increased accumulation of flavan-3-ols and proanthocyanidins,

indicating that phytohormones and secondary metabolites may

contribute to cold regulation in tea plants (Zhang et al., 2014a).

Indeed, treatment with plant growth regulators spermidine (0.025

mM, 0.05 mM, 0.1 mM) alleviates damages caused by cold stress in

pollen tubes of tea varieties (Cetinbas-Genc et al., 2020). Exogenous

application of ABA not only induces CsCOR1 expression but also

rapidly close stomata to reduce water loss, thereby ABA effectively

alleviates chilling damage to plant, consistent with the changes in

proline content (Li et al., 2010a; Hong et al., 2017). As efficient

elicitor, exogenous methyl jasmonate application induces the

expression of CsMYBs, and thus effectively promotes ROS

scavenging and anthocyanin biosynthesis to alleviate cold stress

damage (Han et al., 2022). Melatonin treatment alleviates cold

stress on tea plant by improving biosynthesis antioxidant enzyme

and antioxidant defense and redox homeostasis (Li et al., 2018a; Li

et al., 2018b; Li et al., 2019a). Additionally, supplementation of g-
aminobutyric acid also contributes to the improvement of cold

tolerance of tea plants, as exogenous application of CaCl2, which

has the same effect on cold tolerance. (Huang et al., 2015; Zhu et al.,

2019). Airborne nerolidol and nerolidol glucoside exposure were also

found to enhance cold stress tolerance of the tea plant through

accumulating CsCBF1 and CsUGT91Q2 expression (Zhao et al.,

2019b). However, the mechanism by which exogenous substances

orchestrate cold tolerance has yet to be determined.
Conclusions and perspectives

Tea is a perennial and evergreen woody crop, which is mainly

cultivated in tropical and temperate regions. Low temperature stress

poses serious threat to the tea plant growth and distribution.

Therefore, it is critical to elucidate the physiological and molecular

mechanisms through which tea plant cope with cold stress and

introduce the most effective and preventive measures for cold

stress. In the last few decades, the research on cold stress has

mainly focused on the physiological and biochemical changes and

gene expression profiles of different tea varieties during low

temperature. Here, we described the putative cold sensors and

signaling transduction pathways, coupled with existing research.

Despite significant efforts, only a few potential cold sensors have

been identified due to redundancy in sensor coding genes and

challenging experimental techniques. (Zhu, 2016). To survive in

adverse cold conditions, tea plant has evolved precise adaptive

mechanisms, particularly known as ICE-CBF-COR pathway.
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Growing reports suggest the crosstalk between other factors, such as

hormones, light and circadian clock pathway, and cold signaling can

effectively balance the cold tolerance and plant growth, which is

worthy for further research (Achard et al., 2008; Hong et al., 2017;

Janda et al., 2021). Although emerging evidence shows that the

transcriptional regulation, epigenetic regulation and post-

transcriptional modifications played a significant role in CBF

signaling, the related regulatory networks still wait for further study

in tea plant. We also carefully checked the literature and listed

hundreds of gene families involving in cold stress. Finally, the

influence of exogenous application on tea plant was also outlined,

albeit with an unclear molecular basis.

The recent comparative genomics, transcriptomics, and

proteomics-based analysis have revealed large numbers of genes

related to low temperature and enriched the gene resource of tea

plant, expanding comprehensive understanding about process

involving cold stress (Wang et al., 2013; Hu et al., 2013b; Li et al.,

2019; Xia et al., 2020; Lei et al., 2021). However, the biological nature

of tea plants precludes the biotechnological strategies in itself; for

instance, perennial woody and self-incompatible characteristics,

successful genetic transformation systems and some experimental

protocols successfully used for Arabidopsis and other model plants

cannot be fully applied in case of tea plants. Thus, the discovery of

novel genes and most reliable functional identification of candidate

genes is still an important but challenging topic for tea researchers.

The cold signaling, light and hormone signaling are tightly

connected under cold stress. The light receptor also functions as cold

sensor, suggesting the integration between temperature and

photoreceptors, while the exact mechanism of cold perception needs

further study. Due to resource limitations, plants tend to transfer more

resources at the expense of normal growth and development to activate

the defense system under cold stress, a response termed tradeoff

between growth and defense. Low temperature induced the increase

of growth inhibiting hormones such as ABA and JA, and the decrease

of growth promoting hormone levels such as IAA and GA; therefore,

unraveling the connection between hormone and cold signals is an

important step for researching plant growth and development.

In the near future, establishing high-efficient transgenic system

for tea plant are necessary. The rich polyphenols directly kill

Agrobacterium as antibacterial agent and block the T-DNA

transport channel to tea plant cells as protein precipitation agent,

thus leading to low conversion efficiency. Thus, the co-domestication

of Agrobacterium and issues of tea pant could be a good method to

establish an efficient genetic transformation system. Compared with
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many other crops, tea plants need more measures to be taken to

accelerate molecular design breeding for highly cold-tolerant

tea plants.
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