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Pigeon pea is a perennial leguminous plant that is widely cultivated as a forage

and pharmaceutical plant in subtropical and tropical areas, especially in artificial

grasslands. Higher seed shattering is one of the most important factors in

potentially increasing the seed yield of pigeon pea. Advance technology is

necessary to increase the seed yield of pigeon pea. Through 2 consecutive

years of field observations, we found that fertile tiller number was the key

component of the seed yield of pigeon pea due to the direct effect of fertile

tiller number per plant (0.364) on pigeon pea seed yield was the highest.

Multiplex morphology, histology, and cytological and hydrolytic enzyme

activity analysis showed that shatter-susceptible and shatter-resistant pigeon

peas possessed an abscission layer at the same time (10 DAF); however,

abscission layer cells dissolved earlier in shattering-susceptible pigeon pea (15

DAF), which led to the tearing of the abscission layer. The number of vascular

bundle cells and vascular bundle area were the most significant negative factors

(p< 0.01) affecting seed shattering. Cellulase and polygalacturonase were

involved in the dehiscence process. In addition, we inferred that larger vascular

bundle tissues and cells in the ventral suture of seed pods could effectively resist

the dehiscence pressure of the abscission layer. This study provides foundation

for further molecular studies to increase the seed yield of pigeon pea.

KEYWORDS

pigeon pea, seed yield, yield component, structural equation model, seed shattering,
abscission layer
Introduction

Pigeon pea (Cajanus cajan (Linn.) Millsp.) is a perennial leguminous plant with a wide

range of uses because it tolerates drought and barren soil. It can be used as a forage and

pharmaceutical plant (Khuntia et al., 2022), and pigeon pea is widely planted in subtropical

and tropical regions and plays a major role in artificial grasslands. However, higher seed
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shattering is one of the most important factors in potentially

increasing the seed yield of pigeon pea.

Seed production is very important in all forage species. The seed

yield of perennial forage is affected by the contribution of its

components (Bhatt, 1973). Screening key yield components is

conducive to improving seed yield (Nouraein, 2019). Using path

analysis and regression analysis, we can determine a one-way causal

relationship between the yield components of sequential

development, that is, the causal relationship between yield

components and seed yield. This relationship has been

determined in many crops, such as soybean (Glycine max (L.)

Merrill.), perennial ryegrass (Lolium perenne L.), red clover

(Trifolium pratense L.), and chickpea (Cicer arietinum L.) (Jain

et al., 2015; Abel et al., 2017; Amdahl et al., 2017; Chopdar

et al., 2017).

Pod shattering refers to the phenomenon in which the ventral

or dorsal suture of the pod splits at the mature stage, causing seeds

to spread (Parker et al., 2020). It is often found in Cruciferae

(Rodriguez-Gacio et al., 2004; Qing et al., 2021) and Leguminosae

(Christiansen et al., 2002; Ma et al., 2020). Pod shattering is a major

means of reproduction for plants themselves, but this atavistic

phenomenon is not conducive to seed production (Abd El-

Moneim, 1993). There is a certain relationship between the

morphological characteristics of pods shatter resistance (Braatz

et al., 2018). The mechanical force ability of the abscission layer

to withstand external factors is weaker when the dehiscence degree

is stronger (Jia et al., 2021). Importantly, the abscission layer is

located at the junction of the pod ventral and dorsal sutures. With

pod growth, the water content of the pod tends to rise first and then

decline (Kuai et al., 2016). The pectin of the pod abscission layer is

decomposed by cellulase (CE) and polygalacturonase (PG), which

together promote pod dehiscence (Dong et al., 2019; Guo et al.,

2022). Meanwhile, the key cell structures (fiber cap cells, outer valve

marginal cells) controlling pod dehiscence have provided new

insight (Dong et al., 2014; Dong et al., 2017b). These results show

that pod dehiscence is under the joint regulation of factors such as

the apparent morphological characteristics, plant cell structure,

physical conditions, physiology and biochemistry, and

external environment.

In this study, we observed 21 morphological characteristics of

70 pigeon pea accessions to explore the relationship between yield

components and seed yield and the effect of morphological

characteristics on pigeon pea pod dehiscence. Among accessions,

by comparing differences in pod dehiscence, multiplex morphology,
Frontiers in Plant Science 02
and physiological and anatomical structure of pods, the mechanism

of pod dehiscence in pigeon pea was systematically and

comprehensively studied.
Materials and methods

Plant material

The 70 pigeon pea accessions used in this study (Table 1) were

grown at the forage base of the Chinese Academy of Tropical

Agriculture Sciences, Hainan, China (N 19°30′, E 109°30′, 149 m

above sea level). The mean annual precipitation is 2229 mm.
Experimental design and seed
yield components

The experiment began in April 2021. One experimental plot was

planted for each germplasm material, and 12 individual plants were

established in each plot. After 2 years of field observation, 10

shatter-susceptible accessions were selected, and the dehiscence

characteristics were stable. Statistical analysis of field agronomic

characteristics was carried out in 2021. After reaching the full

flowering stage, 5 pigeon peas were randomly selected from each

experimental plot for marking. Yield components were fertile tiller

number per plant (FTP), inflorescences per tiller (IT), flowers per

inflorescence (FI), ovules per flower (OF) and thousand-seed weight

(TSW). The actual seed yield per plant was calculated for 5 plants

taken from the center of each plot. Seeds were air-dried to 6 to 8%

moisture before seed yield was calculated. The potential seed yield

(PSY) per plant was determined by the following equation:

PSY   =  (FTP � IT � FI � OF � TSW)=1000
Morphological characteristics

Plant height, crown breadth, number of primary branches,

number of secondary branches, fertile tillers, length and width of

the middle leaflets on triple leaves, flowers per inflorescence,

inflorescences per tiller, and ovules per flower were measured at

the flowering stage of the plant. In the seed maturation stage, pod
TABLE 1 Basic information on the 70 pigeon pea accessions.

Code Accessions Source of seed Code Accessions Source of seed

1 D21001 Hainan 36 D21036 Guangdong

2 D21002 Hainan 37 D21037 Hainan

3 D21003 Hainan 38 D21038 Yunnan

4 D21004 Hainan 39 D21039 Hainan

5 D21005 Hainan 40 D21041 India

(Continued)
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width, length, and thickness, the number of seeds per pod, and plant

biomass were measured.
Characteristics of pod dehiscence

The mechanical force of pod dehiscence was measured by an

Adelberg HP-50 digital display push-pull meter, including vertical

and horizontal pod mechanical forces. Fifty mature pods of each

accession were dried for several weeks until the pods naturally

dehisced (without manual intervention), and the pod shattering rate
Frontiers in Plant Science 03
was determined. The torsion laps of the pod were measured by

taking the pod wall as a circle with 360 degrees of upward spiral.
Features of the abdominal suture

Two shatter-susceptible accessions (D21001, D21034) and two

shatter-resistant accessions (D21023, D21025) were selected. The

samples were obtained at 10, 15, 20, 25, 30, and 35 days after

flowering (DAF) and were saved in FAA (formaldehyde alcohol

acetic acid) fixative for paraffin sectioning of pod ventral sutures.
TABLE 1 Continued

Code Accessions Source of seed Code Accessions Source of seed

6 D21006 Hainan 41 D21042 Hainan

7 D21007 Hainan 42 D21043 Hainan

8 D21008 Hainan 43 D21045 India

9 D21009 Guangxi 44 D21046 Guangdong

10 D21010 Hainan 45 D21047 Hainan

11 D21011 Hainan 46 D21048 Hainan

12 D21012 Hainan 47 D21049 Guangxi

13 D21013 Guangxi 48 D21050 Yunnan

14 D21014 Jiangxi 49 D21051 Guangdong

15 D21015 Jiangxi 50 D21054 Guangxi

16 D21016 Guangxi 51 D21055 India

17 D21017 Guangxi 52 D21056 Hainan

18 D21018 India 53 D21057 Yunnan

19 D21019 India 54 D21059 Yunnan

20 D21020 India 55 D21061 Hainan

21 D21021 Hainan 56 D21063 Yunnan

22 D21022 Fujian 57 D21065 Hainan

23 D21023 Hainan 58 D21066 Yunnan

24 D21024 Hainan 59 D21067 Yunnan

25 D21025 Hainan 60 D21076 Yunnan

26 D21026 Hainan 61 D21080 Yunnan

27 D21027 Hainan 62 D21081 Hainan

28 D21028 Guangdong 63 D21084 Guangdong

29 D21029 Hainan 64 D21086 Yunnan

30 D21030 Hainan 65 D21090 Yunnan

31 D21031 Hainan 66 D21094 Myanmar

32 D21032 Hainan 67 D21095 Myanmar

33 D21033 EL Salvador 68 D21099 EL Salvador

34 D21034 Hainan 69 D21100 Pakistan

35 D21035 Hainan 70 D21103 Kenya
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The plant tissues were stained for 25 min with 0.7% toluidine blue.

Then, the target area was selected with CaseViewer 2.4 scanning

software for 120 images. After imaging, Image-Pro Plus 6.0 software

was used to measure the single vascular bundle cell area, abscission

layer cell area, vascular bundle area, width of the vascular bundle

area and single vascular bundle cells, length of the vascular bundle

area and number of vascular bundle cells.
Physiological characteristics

The pod wall and seed of each pod were separated at 20, 25, 30,

and 35 DAF to calculate water content. Enzyme activity was

determined with a cellulase and polygalacturonase activity

detection kit (Beijing Solarbio Science & Technology Co., Ltd.).
Data and statistical analysis

Microsoft Excel was used for data entry and tables. Data

analysis was done with DPS 7.05 (DPS Inc., USA) software and

origin2022bsr1 was used for figures, A 3DHISTECH (Hungary)

panoramic slice scanner was used for tissue sectioning,

3DHAISTECH (Hungary) CaseViewer 2.4 was used for tissue

observation, and Media Cybemetrics (U.S.A.) Image-Pro Plus 6.0

was used for tissue data analysis. Structural equation modeling

(SEM) is a powerful tool for examining relationships between

causally linked intercorrelated variables. Each single-headed arrow

in a structural equation model represents a causal relationship

where the variable at the tail of the arrow is a direct cause of the

variable at the head.
Results

Yield components and seed yield

From the yield components and seed yield (Table 2), we found

that the average actual seed yield was only 6% of the potential seed

yield, indicating that there is great potential to increase seed yield in

pigeon pea. The small coefficient of variation for flowers per

inflorescence indicated that this component had better overall

stability. The variation coefficients for inflorescences per tiller and

fertile tiller number per plant were relatively large, indicating that

the seed yield is largely affected by these two components.
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The SEM showed that the direct effect of fertile tiller number per

plant (0.364) on pigeon pea seed yield was the highest of the 5

components (Figure 1). Furthermore, the negative indirect effect of

inflorescences per tiller (-0.330), based on fertile tiller number per

plant, was large. No indirect or direct effect was observed for flower

number per inflorescence or thousand seed weight.
Mechanical characteristics of the pod

Pod dehiscence was observed in the field (Figures 2A, B), and

the highest seed shattering rate was 100% in 70 pigeon pea

accessions (Figure 2C). Prior studies indicate that the ratio of

actual seed yield to potential seed production for pigeon peas is

quite low. We hypothesize that this phenomenon may be

responsible for poor seed yield.

The pod wall torsion lapse number, the horizontal and vertical

pod mechanical forces were significantly different (p< 0.01) between

shatter-resistant and shatter-susceptible pigeon pea accessions. The

results showed that the pod wall torsion lapse number of shatter-

susceptible pigeon pea accessions (1.65) was significantly (p< 0.01)

higher than that of shatter-resistant pigeon pea accessions (0.01)

(Figure 3A). Horizontal and vertical pod-shattering mechanical

forces for shatter-resistant pigeon pea accessions (9.83 N,

13.40 N) were significantly (p< 0.01) higher than those of shatter-

susceptible pigeon pea accessions (3.18 N, 3.21 N); mechanical

forces were 3.09 and 4.17 times those of the shatter-susceptible

pigeon pea accessions, respectively (Figures 3B, C).
Morphological characteristics of pods

The results for podmorphological characteristics showed that the

pod length of shatter-susceptible pigeon pea accessions (6.37 cm) was

significantly (p< 0.05) lower than that of shatter-resistant pigeon pea

accessions (7.08 cm) (Figure 4A). Pod width, thickness, and the

thickness-width ratio of shatter-resistant pigeon pea accessions were

higher than those of shatter-susceptible pigeon pea accessions, but

there were no significant differences (Figures 4B–D).
Correlations between agronomic traits and
pod-shattering rate

Correlations between the shattering rate and 21 field agronomic

traits showed that the pod shattering rate of pigeon pea was
TABLE 2 Analysis of seed yield and yield components.

Index FTP IT FI OF TSW (g) SY (g) PSY (g) SY/PSY (%)

Maximum 152.7 26.3 8.3 5.8 177.8 349.5 7875.8 14

Minimum 21.0 5.5 7.3 3.9 77.5 31.1 793.8 1

Average value 79.0 11.6 7.9 4.8 99.2 156.8 3219.3 6

Standard deviation 28.3 5.4 0.3 0.4 16.2 68.9 1615.6 3

Variable coefficient (%) 35.9 46.2 4.3 7.5 16.3 43.9 50.2 50.5
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extremely significantly negatively correlated (p< 0.01) with the

horizontal and vertical pod-shattering mechanical force. The pod

shattering rate was significantly positively correlated (p< 0.05) with

pod length (Figure 5).
Histological analysis of pod ventral sutures

We compared the microstructure of ventral sutures

(Figure 6A) in pigeon pea accessions at six developmental

stages. The abscission layer cells of shatter-susceptible
Frontiers in Plant Science 05
accessions initially formed at 10 DAF (Figure 6B, a1 and b1)

and began to degrade at 15 DAF (Figure 6B, b2) outward from

the mesocarp to the exocarp and inward to the endocarp

(Figure 6B, a4 and b4). The pods had completely dehisced at

30 DAF (Figure 6B, a5 and b5). The shatter-resistant pod

accessions also had an abscission layer that formed at 10

DAF (Figure 6B, c1 and d1). With the development of pods,

the abscission layer degraded by 20 DAF (Figure 6B, c3 and d3)

but without breaking through the endocarp and exocarp, and

dehiscence was achieved at 35 DAF (Figure 6B, c6 and d6).
Characterization of pod abscission
layer cells

The pod abscission layer cell characterization showed that the

area of abscission layers cells and single vascular bundle cells, the

width of single vascular bundle cells and the vascular bundle area

were higher in shatter-resistant accessions than in shatter-

susceptible accessions at 30 DAF (Figure 7). Single vascular

bundle cell width and single vascular bundle cell area of shatter-

resistant accessions were significantly (p< 0.05) higher than those of

shatter-susceptible accessions at 30 DAF (Figures 7A, D). The width

of the vascular bundle area of shatter-susceptible accessions was

extremely significantly (p< 0.01) higher than that of shatter-

resistant accessions at 20 DAF (Figure 7B). The abscission layer

cell area of shatter-resistant accessions was extremely significantly

(p< 0.01) higher than that of shatter-susceptible accessions at 35

DAF (Figure 7C).
FIGURE 2

Different seed shattering habits of the pigeon pea accessions. (A) Different pods development stages of shatter-susceptible and shatter-resistant
pigeon peas at 5, 10, 15, 20, 25, 30, and 35 days after flowering (DAF). (B) Schematic diagram of the types of shatter-resistant and shatter-susceptible
pods of pigeon pea. (C) Shattering rate of 70 pigeon pea accessions. Bars indicate the mean ± SD.
FIGURE 1

The structural equation model linking pigeon pea seed yield to yield
components. Each arrow illustrates a relationship in which the
change in one variable at its head directly causes the change in
another variable at its tail. Dotted arrows represent nonsignificant
pathways. Greater standardized coefficients (given beside each
significant path) show a stronger relationship between the variable
at the head and the variable at the tail.
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B

C

A

FIGURE 3

Pod mechanical characteristics of shatter-susceptible and shatter-resistant pigeon pea. (A) Pod wall torsion laps number. (B) Pod-shattering
mechanical force for horizontal. (C) Pod-shattering mechanical force for vertical. ** Significant difference (p< 0.01) between shatter-susceptible and
shatter-resistant pigeon peas.
B

C D

A

FIGURE 4

Pod morphological characteristics of shatter-susceptible and shatter-resistant pigeon pea. (A) Pod length. (B) Pod width. (C) Pod thickness.
(D) thickness to width ratio. *Significant difference (p < 0.05) between shatter-susceptible and shatter-resistant pigeon peas.
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In addition, the vascular bundle area, vascular bundle cell

number and length of the vascular bundle area of shatter-

susceptible accessions were lower than those of shatter-resistant

accessions at 30 DAF and 35 DAF (Figures 7E–G).

Further principal component analysis was performed on 7

indices and the pod shattering rate. Six stages of pod development

were divided into pod growth stage (10, 15, 20 DAF) (Figure 8A) and

development stage (25, 30, 35 DAF) (Figure 8B). According to PCA
Frontiers in Plant Science 07
of the pod growth stage, PC1 and PC2 explained 70.1% of the total

variation in shatter-resistant and shatter-susceptible pigeon pea

accessions. Single vascular bundle cell area and vascular bundle

area were the most significant factors (Figure 8A). According to

PCA of the pod development stage, PC1 and PC2 explained 75.4% of

the total variation, and vascular bundle area and abscission layer cell

area were the most s ignificant factors affecting seed

shattering (Figure 8B).
B

A

FIGURE 6

Histological analysis of the abscission zone. (A) Schematic diagram of the cross-section of the suture in the belly of pigeon pea pods. EX, Exocarp;
ME, Mesocarp; EN, Exocarp; VB, Vascular bundle; AL, Abscission layer. (B) Cross-sectional structure of pod ventral sutures at different development
stages of hatter-susceptible and shatter-resistant pigeon peas.
FIGURE 5

Heat map of correlation between agronomic traits and pod-shattering rate. Y = shattering rate; X1 = inflorescences per tiller; X2 = pods number per
branch; X3 = ovules per flower; X4 = seeds per pod; X5 = seed weight per plant; X6 = plant height; X7 = crown breadth; X8 = length of the center
of shape; X9 = width of the center of shape; X10 = phytomass; X11 = pod length; X12 = pod width; X13 = pod thickness; X14 = primary branches
number; X15 = secondary branches number; X16 = fertile tillers number of per plant; X17 = pod-shattering mechanical force for horizontal; X18 =
pod-shattering mechanical force for vertical; X19 = thousand-seed weight; X20 = flowers per inflorescence; X21 = setting rate. *Significant
difference (p < 0.05) of probability, **Significant difference (p < 0.01) of probability.
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Pod moisture variation

Comparing pod moisture variation for shatter-resistant and

shatter-susceptible pigeon pea accessions at different development

stages showed that the pod wall water content of shatter-susceptible

accessions was lower than that of shatter-resistant accessions during

pod development and reached significant difference (p< 0.05) at 25

DAF and 30 DAF (Figure 9A). The seed water content of shatter-
Frontiers in Plant Science 08
resistant pigeon pea accessions was consistent with the trend of pod

wall water content (Figure 9B).
Hydrolytic enzyme activity

The CE activity showed the trend of first increasing and then

decreasing. The CE activity of shatter-resistant accessions was
BA

FIGURE 8

Principal component analysis of (A) pod growth stage (10, 15, 20 DAF) and (B) pod development stage (25, 30, 35 DAF). SR=shattering rate;
S1= single vascular bundle cell width; S2=single vascular bundle cell area; S3= width of vascular bundle area; S4=abscission layers cell area; S5=the
length of vascular bundle area; S6=vascular bundle area; S7=the number of vascular bundle cell.
B C

D E F

G

A

FIGURE 7

Characterization of pod abscission layer cells. (A) Area of single vascular bundle cell. (B) Width of vascular bundle area. (C) Area of abscission layers
cell. (D) Width of single vascular bundle cell. (E) Length of vascular bundle area. (F) Vascular bundle area. (G) Number of vascular bundle cell.
*Significant difference (p < 0.05), **Significant difference (p < 0.01) between shatter-susceptible and shatter-resistant pigeon peas.
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significantly (p< 0.01) higher than that of shatter-susceptible

accessions at 20 DAF and 25 DAF. However, the CE activity of

shatter-resistant accessions decreased immediately after 25 DAF

and was lower than that of shatter-susceptible accessions at 30 DAF

and 35 DAF (Figure 10A).

The PG activity showed an increasing trend during pod

development. The PG activity of shatter-susceptible accessions

was lower than that of shatter-resistant accessions from 20 DAF

to 30 DAF, but there was no significant difference. However, the PG

activity of shatter-susceptible accessions increased immediately

after 25 DAF and was significantly (p< 0.01) higher than that of

shatter-resistant accessions at 35 DAF (Figure 10B).
Discussion

Yield components and seed shattering
contribute to seed yield

Seed yield is controlled by yield components, other agronomic

traits and environmental factors. In this study, the average ratio of

actual seed yield to potential seed yield in pigeon pea was 6%, which

was much lower than that of Lolium perenne (13%), Dactylis

glomerata (17%), Festuca arundinacea (11%) or Cleistogenes

songorica (43%) (Falcinelli, 1999; Li et al., 2014). Meanwhile, the
Frontiers in Plant Science 09
highest seed shattering rate was 100% in 70 pigeon pea accessions.

These results demonstrate that there is great potential to increase seed

yield in pigeon pea, and higher seed shattering is one of the most

important factors. Fertile tiller number per plant had a direct effect on

the seed yield of pigeon pea, while the negative indirect effect of

inflorescence number per tiller, based on the fertile tiller number per

plant, was large. No indirect or direct effect was observed for flower

number per inflorescence or thousand seed weight. These results

differ from previous studies and show that seed yield in pigeon pea is

not limited by the number of inflorescences, such as in cowpea

(Vigna unguiculata (L.) Walp.) or red clover (Trifolium pratense L.)

(Amdahl et al., 2017; Mashood et al., 2022). However, these results

are similar to several other reports, which showed that fertile tiller

number was the most important seed yield component in lentil (Lens

culinaris Medik.) (Sharma et al., 2022) and chickpea (Cicer

arientinum L.) (Ton and Anlarsal, 2017). These results indicate

that decreasing seed shattering and increasing fertile tiller number

will improve the actual seed yield of pigeon pea.
Agronomic characters affect
pod dehiscence

A previous study pointed out that in soybean, there was a strong

correlation between the seed number per pod and pod dehiscence
BA

FIGURE 10

Specific activity of two cell wall-degrading enzymes, cellulase (A) and polygalacturonase (B) in the abscission zone. Bars indicate the mean ± SD.
Double asterisk indicate a significant difference in the enzyme activity between shatter-susceptible and shatter-resistant accessions at the p< 0.01
level.
BA

FIGURE 9

Pod wall water content (A) and seed water content (B) of shatter-susceptible and shatter-resistant pigeon peas accessions. *Significant difference (p
< 0.05) between shatter-susceptible and shatter-resistant pigeon peas.
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(Kataliko et al., 2019). In this study, we found that the horizontal

and vertical pod-shattering mechanical forces, pod length, and

number of tertiary branches were the main factors determining

the pod-shattering rate of pigeon pea. By observing pod dehiscence

characteristics, we found that shatter-resistant pigeon pea

accessions were more capable of withstanding mechanical forces

and lower pod torsion laps than shatter-susceptible pigeon pea

accessions which was consistent with soybean (Funatsuki et al.,

2014). Therefore, we inferred that the torsion force was the driving

force, and pod torsion lapse was an intuitive performance feature of

determining pod dehiscence in pigeon pea, which was consistent

with a previous study (Dong et al., 2017b).
Differences in histological and cytological
characteristics in the abscission zone

Some researchers have noted that pod dehiscence is related to

the cell tissue structure of pods (Tu et al., 2019; Kucek et al., 2020).

To explore the development of the abscission zone in pigeon pea, we

synthetic analyzed histological and cytological characteristics. There

were obvious abscission layers in both shatter-susceptible and

shatter-resistant pigeon pea accessions. Even during pod

development, we found that shatter-susceptible and shatter-

resistant pigeon peas had abscission layers at the same time. In

addition, we also found that during the late development of pods,

the vascular bundle area and vascular bundle cell number were the

most significant negative factors affecting seed shattering.

Therefore, it was speculated that larger vascular bundle tissue and

cells were better able to withstand the dehiscence pressure from the

abscission layer (Jia et al., 2021).
Water content and hydrolytic
enzyme activity

A previous study showed a correlation between pod water

content and pod dehiscence (Menendez et al., 2019). The water

content of pods can indirectly explain the ability of the vascular
Frontiers in Plant Science 10
bundles of pods to transport nutrients (Zhang et al., 2018). The

water content of the pod wall of shatter-resistant pigeon pea was

significantly higher than that of shatter-susceptible pigeon pea at 25

DAF and 30 DAF in this study, indicating that at these times, the

cell wall of shatter-susceptible pigeon pea had a higher degree of

lignification. This result was also confirmed by histological staining.

CE and PG participate in the degradation of cellulose and

pectin; they are two important hydrolase enzymes in the cell wall,

and many studies have shown that these two enzymes can destroy

the structure of plant cell walls and are closely related to pod

dehiscence (Zhao et al., 2017; Dong et al., 2017a; Muriira et al.,

2015). Previous studies have shown that the activities of these two

enzymes reach a maximum at the pod maturity stage, and shatter-

susceptible pod materials will transition from nondehiscence to

dehiscence, while the opposite trend occurs in shatter-resistant pod

materials (Christiansen et al., 2002).

In this study, the pods reached physiological maturity at 30

DAF. The CE and PG levels of shatter-susceptible pigeon pea began

to be higher than those of shatter-resistant pigeon pea at this time,

indicating that the two enzymes began to cleave the cell mass in

shatter-susceptible pigeon pea, which destroyed the cell wall and

caused the pods to dehisce.
Model diagram

We found that shatter-susceptible and shatter-resistant pigeon

peas had abscission layers at the same time, but that abscission layer

cells dissolved earlier in shatter-susceptible pigeon pea, which led to

the tearing of the abscission layer. There was a positive correlation

between pod torsion laps, tertiary branch number and dehiscence of

pigeon peas. There was a negative correlation between pod length,

single vascular bundle cell width, vertical and horizontal pod-

shattering mechanical force, the single vascular bundle cell area

and abscission layer cells, vascular bundle area and dehiscence of

pigeon pea. In addition, we inferred that larger vascular bundle

tissues and cells in the ventral suture of seed pods could effectively

resist the dehiscence pressure of the abscission layer. Based on this,

we propose a “balance conservation model” (Figure 11).
FIGURE 11

Balance conservation model.
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Conclusion

In the present study, we found that there is great potential to

increase seed yield in pigeon pea, and higher seed shattering is one

of the most important factors. Fertile tiller number was the key

component of seed yield. Multiplex morphology, histology, and

cytological and hydrolytic enzyme activity analysis showed that

shatter-susceptible and shatter-resistant pigeon peas had an

abscission layer at the same time, but that abscission layer cells

dissolved earlier in shatter-susceptible pigeon pea, which led to the

tearing of the abscission layer. The vascular bundle cell number and

vascular bundle area were the most significant negative factors

affecting seed shattering. CE and PG were involved in the

dehiscence process. In addition, we inferred that larger vascular

bundle tissues and cells in the ventral suture of seed pods could

effectively resist the dehiscence pressure of the abscission layer. This

study provides a foundation for further molecular studies to

increase the seed yield of pigeon pea.
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