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laser confocal images of
hyperaccumulator Solanum
nigrum endocytosis vesicles
based on deep learning:
Comparative study of SRGAN
and SRResNet
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and Fengliang Huang1*†

1School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China,
2Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Environment,
Nanjing Normal University, Nanjing, China
It is difficult for laser scanning confocal microscopy to obtain high- or ultra-high-

resolution laser confocal images directly, which affects the deep mining and use

of the embedded information in laser confocal images and forms a technical

bottleneck in the in-depth exploration of the microscopic physiological and

biochemical processes of plants. The super-resolution reconstruction model

(SRGAN), which is based on a generative adversarial network and super-

resolution reconstruction model (SRResNet), which is based on a residual

network, was used to obtain single and secondary super-resolution

reconstruction images of laser confocal images of the root cells of the

hyperaccumulator Solanum nigrum. Using the peak signal-to-noise ratio

(PSNR), structural similarity (SSIM) and mean opinion score (MOS), the models

were evaluated by the image effects after reconstruction and were applied to the

recognition of endocytic vesicles in Solanum nigrum root cells. The results

showed that the single reconstruction and the secondary reconstruction of

SRGAN and SRResNet improved the resolution of laser confocal images. PSNR,

SSIM, and MOS were clearly improved, with a maximum PSNR of 47.690. The

maximum increment of PSNR and SSIM of the secondary reconstruction images

reached 21.7% and 2.8%, respectively, and the objective evaluation of the image

quality was good. However, overall MOS was less than that of the single

reconstruction, the perceptual quality was weakened, and the time cost was

more than 130 times greater. The reconstruction effect of SRResNet was better

than that of SRGAN. When SRGAN and SRResNet were used for the recognition

of endocytic vesicles in Solanum nigrum root cells, the clarity of the

reconstructed images was obviously improved, the boundary of the endocytic

vesicles was clearer, and the number of identified endocytic vesicles increased

from 6 to 9 and 10, respectively, and the mean fluorescence intensity was
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enhanced by 14.4% and 7.8%, respectively. Relevant research and achievements

are of great significance for promoting the application of deep learning methods

and image super-resolution reconstruction technology in laser confocal

image studies.
KEYWORDS

laser confocal, deep learning, plant cell, endocytic vesicle, super-resolution
reconstruction, SRGAN, SRResNet
1 Introduction

Confocal laser scanning microscopy (CLSM) has been used in

cellular molecular biology (Stephens and Allan, 2003), 3D imaging

of materials (Ji et al., 2021), material porosity determination

(Mauko et al., 2009), and reaction process visualization (Onuma

et al., 2017). It has also been used to identify the distribution of

fillers in a polymer matrix (Zhong et al., 2017), including the

examination of the structure of tobacco microsporocytes involved

in the intercellular migration of nuclei (cytomixis), as well as to

study live cell chiral molecular interactions (Mursalimov et al.,

2017; Stachelek et al., 2022). For the purpose of cellular molecular

biology, the high sensitivity, high spatial resolution, and super-

optical sectioning ability of CLSM make it an ideal tool for studying

biological systems, including membranes, tissues, and cell

structures. It can be used to carry out quantitative fluorescence

determination in tissues and cells, physicochemical determinations

in cells, and long-term observation of cell migration and growth. It

can also provide visual evidence for the study of plant growth

processes and phytoremediation processes and mechanisms

(Stephens and Allan, 2003; Nwaneshiudu et al., 2012; Paddock

and Eliceiri, 2014; Hall et al., 2016; Khan et al., 2020; He et al., 2021;

Zhang et al., 2022). One important application is the filming of

plant cell endocytosis. Endocytosis plays an important role in

information transfer, nutrient uptake, and pollution remediation

in plants. The visualization of endocytosis in plant cells can provide

important theoretical support for the elucidation of life processes in

plants (Fan et al., 2015; He et al., 2023). The number of endocytosis

vesicles is important information, and currently, endocytosis cell

counting is mainly identified by manual visual counting with low

levels of efficiency and large error. At present, high-resolution and

clear images in laser scanning confocal microscopy are mostly

obtained by adjusting the relevant parameters using acquisition

software. Due to the diffraction limit in optical microscopy and the

principle of point-by-point scanning in laser scanning confocal

microscopy, and point-to-line and line-to-plane imaging, it is

difficult to directly obtain higher or ultra-high-resolution laser

confocal images using laser scanning confocal microscopes, which

greatly hinders the deep mining and use of the embedded

information in the images.

Super-resolution image reconstruction (SRIR) is a technology

for obtaining high-resolution images from low-resolution images

using algorithms. SRIR has great importance and value in practical
02
applications such as medical imaging, satellite remote sensing,

monitoring, and scientific research (Zhang et al., 2010; Isaac and

Kulkarni, 2015; Courtrai et al., 2020). Traditional super-resolution

reconstruction algorithms rely on basic digital image processing

techniques for reconstruction, including interpolation-based,

degradation-based, and learning-based super-resolution

reconstruction (Shezaf et al., 2000; Yang et al., 2008; Yang et al.,

2022). The rapidly developing technology of artificial intelligence

has injected energy into scientific research and now plays an

important role in life sciences, mathematics, chemistry, space

science, and other disciplines (Yu, 2022). Deep learning, as a core

technology in artificial intelligence, forms a new research field in

machine learning. It simulates the human brain in analyzing and

interpreting data to allow a computer to learn relevant features and

make relevant predictions according to the learned features. It has

obvious advantages over machine learning, which requires the

manual extraction of relevant features (Yann et al., 2015). The

application of deep learning to image super-resolution

reconstruction is an emerging trend. In 2014, Dong et al. used a

convolution neural network for single-image super-resolution

reconstruction and proposed a super-resolution convolution

neural network, which had a lightweight structure, could be used

online, and was the best image reconstruction model at that time

(Dong et al., 2016). Owing to the remarkable effects deep learning

produced when applied to super-resolution reconstruction, a

variety of neural networks in deep learning, such as deep

convolutional neural networks (Kim et al., 2016) and generative

adversarial networks (GAN) (Ledig et al., 2017; Yuan et al., 2022),

have been applied to image super-resolution reconstruction.

The potential to obtain high-definition images through image

super-resolution reconstruction technology has attracted the attention

of many researchers (Lin et al., 2019; Yang et al., 2020; Dreier et al.,

2021; Wei et al., 2022), but no reconstruction or application of laser

confocal images has been reported in the literature. GAN and residual

networks (ResNet) are two representative deep-learning networks.

Applying the GAN-based Super-resolution Reconstruction Model

(SRGAN) and ResNet-based Super-resolution Reconstruction Model

(SRResNet) to laser confocal image reconstruction has strong overall

importance for exploring the application of deep learning methods in

laser confocal image research. In this study, deep learning was applied

to laser scanning confocal microscopic images of the root cells of the

hyperaccumulator Solanum nigrum. We compared super-resolution

image reconstruction using SRGAN and SRResNet, evaluating
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different image quality indicators. Our results promote the intersection

of artificial intelligence and botany, environmental science, ecology,

and other disciplines and provide a new concept for the in-depth study

of phytoremediation-related cytological characteristics.
2 Research methods and steps

2.1 Deep learning model

2.1.1 SRGAN
SRGAN has the same overall structure as GAN. It is composed

of a generative network and a discriminant network, and the

perceived loss is used as the loss function (Ledig et al., 2017;

Li and Zhang, 2022; Singla et al., 2022). The generative network

of the SRGAN can take an image as an n-dimensional vector input

to generate the reconstructed image output. The discriminant

network determines the authenticity of the image generated by

the network using a loss function. For the loss function, the

perceptual loss includes content- and adversarial- loss, where the

former is the mean square error (MSE) between the reconstructed

high-resolution image feature map and the original image feature

map, and the latter is the loss when the reconstructed high-

resolution image is correctly judged by the discriminator.

Perceptual loss is continuously optimized using algorithms, and

the learning of the generative and discriminant models is

continuously supervised. When the number of iteration rounds

reaches a set value to end the training, a generative network is

obtained for image reconstruction. Figure 1 shows the process of

super-resolution reconstruction of an image based on SRGAN.

2.1.2 SRResNet
SRResNet is based on a convolutional neural network added to

a residual learning network structure (Ledig et al., 2017; Lu et al.,

2022). The main body includes two parts: a deep residual network

and a sub-pixel convolution network. It uses the MSE as the loss

function. The deep residual network adds a residual learning

module to the convolutional neural network, which effectively

solves problems of accuracy degradation and gradient dispersion

in the deep network, greatly deepens the number of network layers,

and ensures precision. Thus, the depth and precision of the training

is effectively improved, which aids efficient feature extraction and

reduces image noise. The main function of the sub-pixel

convolution model is to increase the size and the accuracy of the

enlarged image through sample learning. SRResNet uses a low-

resolution image as its input and outputs a reconstructed high-

resolution image. Figure 2 shows the process of image super-

resolution reconstruction based on SRResNet.
2.2 Image quality evaluation indicators

In the laser confocal images reconstructed by SRGAN and

SRResNet, the image quality was evaluated using three indices:

peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and
Frontiers in Plant Science 03
mean opinion score (MOS). The former two indicators are objective

evaluations, based on experimental numerical calculations, and the

latter is a subjective evaluation based on the system of visual

perception of the human eye. Taking into account the efficiency

factor of practical use, the time cost of the super-resolution

reconstruction of laser confocal images using different models was

also considered in this evaluation.

2.2.1 PSNR
PSNR represents the ratio of the maximum possible power of

the signal to the destructive noise that affects its representation

accuracy and is defined by the maximum pixel value and theMSE of

the image (Singla et al., 2022).

PSNR = 10lg(
MAX2

I

MSE
)

where MAXIrepresents the maximum value of the image point

color, and the maximum pixel value of the image is determined by

the number of binary bits. The greater the PSNR value, the better

the reconstructed image quality. For PSNR values higher than 40

dB, the image quality is excellent, while PSNRs of 30–40 dB indicate

that image quality is good.

2.2.2 SSIM
SSIM is a quality-evaluation framework based on structural

information, which comprehensively considers the brightness,

contrast, and structural information of an image (Wang et al.,

2004). It uses the image mean value as brightness estimation,

standard deviation as contrast estimation, and covariance as the

structural similarity extent estimation. The range of SSIM is 0–1,

where higher values, indicate better reconstructed image qualities.

SSIM(x, y) = ½l(x, y)�a ½c(x, y)�b ½s(x, y)�g

l(x, y) =
2mxmy + c1
m2
x + m2

y + c1

c(x, y) =
2sxy + c2

s 2
x + s 2

y + c2

s(x, y) =
sxymy + c3
sxsy + c3

where l(x, y) =
2mxmy+c1
m2
x+m2

y+c1
represents the brightness comparison of

images, c(x, y) =
2sxy+c2

s 2
x +s2

y +c2
represents the contrast comparison of the

images, s(x, y) =
sxymy+c3
sxsy+c3

represents the structural comparison of

images, m represents the mean value, s represents the standard

deviation, sxyrepresents the covariance, and ci(i = 1, 2, 3)is

a constant.

2.2.3 MOS
MOS measures image quality as scored by professionals in

related fields who observe images with their eyes (Singla et al.,

2022). It is a comprehensive evaluation of images by observers in

terms of color, clarity, noise, texture, and so on. Originally used as a
frontiersin.org
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criterion for evaluating the quality of a compressed voice, it came to

be used to evaluate image quality. The range of MOS is 1–5 points;

the larger the score, the better the image quality and the higher the

clarity. Usually, several professionals are selected to score image

quality, and the average score is taken as the final scoring result.
2.3 Research Steps

2.3.1 Sample preparation and
observation of endocytosis

The test samples were collected from Solanum nigrum grown

hydroponically for 4 weeks in a greenhouse (photoperiod: 16-h/8-h

day/night, light intensity: 100 mmol/m2/s, temperature: 22°C) in 1/2

Hoagland nutrient solution. About 1 cm fresh Solanum nigrum root
Frontiers in Plant Science 04
was cut, and than in 0.5 mL of 10 mM FM4-64 dye (4-{6-[4-

(Diethylamino)phenyl]-1,3,5-hexatrien-1-yl}-1-[3-(triethylammonio)

propyl]pyridinium dibromide) was stained for 30 min. Then the

samples were carefully removed and washed with deionized water to

clean the surface of the dye, placed on slides, and sealed with coverslips.

They were observed within 1 h via CLSM (Nikon Eclipse Ti, Japan)

using a complementary metal-oxide-semiconductor image sensor with

an image resolution of 1024×1024. The light source is a laser with an

excitation wavelength of 488 nm and an emission wavelength of 500—

530 nm. After setting the parameters, use the 4× objective lens was

used to find the sample under the bright field and adjust the position

and lens focal length to bring the image to the middle of the field of

view. Then, the 20× objective lens was applied, and the appropriate

brightness of the field of view was adjusted. After this, the 60× oil lens

was used, and mirror oil was dripped onto the surface of the objective
FIGURE 1

Image super-resolution reconstruction process for SRGAN.
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lens. Next, the brightness of the field of view and the lens focal length

were adjusted to clarify the image; finally, the bright field was closed,

the laser was turned on, and the appropriate laser intensity was chosen

to take the fluorescent image of the root hair cells.

2.3.2 Dataset production
A dataset was produced using test samples from the confocal

laser scanning microscope. The 8294 images that were obtained

from sampling were used to create a dataset of which the ratio of the

training set to the test set was 100:45, which meets the requirements

of deep learning for the training and test sets without interfering

with either. We selected 200 of these images as the set for training

the model in each batch. Then, 90 were used as the test set to

evaluate the model reconstruction effect.
Frontiers in Plant Science 05
2.3.3 Model training and testing
Both models were implemented using the PyTorch framework.

The training and testing processes were performed on the training

and test sets, respectively, using Ubuntu on an Intel E5-2678 v3 64

G 1 TB + 256 G solid-state computer that had a dual NVIDIA

2080Ti (video memory 12 G).

The training learning rate of the model was set to 2×10-4, and

the backpropagation algorithm adopted was Adam (Kingma and

Jimmy, 2015). First, the training set images were input into the

model in batches for training: 200 images were randomly selected

for training in each batch, and 200 batches of training were carried

out to obtain effective weights.

The reconstruction effect of the model was evaluated based on

the test set.
FIGURE 2

Image super-resolution reconstruction process for SRResNet.
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2.3.4 Evaluation of reconstruction quality
Combined with the dataset images and the reconstructed

images during training and testing, the super-resolution

reconstruction process and the post-reconstruction image quality

of the SRGAN and SRResNet models were evaluated by obtaining

the values for PSNR, SSIM, and MOS and the time required for the

reconstruction process. The MOS was determined as the average

result provided by the 26 selected professionals after scoring the

reconstructed images obtained in different ways.
3 Results and discussion

To obtain and analysis a high-resolution reconstructed image,

4× image reconstruction (4×, 4 times the width and height) as single

reconstruction and 16× image reconstruction (16×, 16 times the

width and height) as secondary reconstruction were used here.

Using a learning rate of 2×10-4 and the Adam back-propagation

algorithm, 200 images were randomly selected from the training set

in each batch, and the training images were input into the SRGAN

and SRResNet models implemented using PyTorch. After 200

training batches were completed, effective weight parameters were

obtained when the loss function was 0.0164.
3.1 Super-resolution reconstruction of
laser confocal images

In all, 90 laser confocal images of the test set were input into the

trained SRGAN and SRResNet models. Figure 3 shows the results

and comparison of the original image, single reconstruction image,

secondary reconstruction image, and local magnification 10× maps

corresponding to the two kinds of images.

Table 1 compares the quality evaluation indicators (PSNR,

SSIM, MOS) and time required for those reconstruction of

different models (see Appendix for MOS evaluation) for the

images in Figure 3. The MOS values of the images reconstructed

by SRGAN and SRResNet were larger than those of the original

image, with a maximum increase of 15.6%. The PSNR values were at

a minimum of 37.268 and a maximum of 47.690, and the image

quality was greatly improved. The PSNR and SSIM of the images

following the secondary reconstruction of the same model were

higher than those following the single reconstruction, with

maximum increases of 21.7% and 2.8% for PSNR and SSIM,

respectively, following secondary reconstruction. The MOS values

of the secondary reconstruction images of different models were

lower than those of the single reconstruction, and the time cost of

the secondary reconstruction process was far higher than that of the

single reconstruction. The time-consuming ratio of secondary and

single reconstructions was greater than 130:1, and the maximums

for SRGAN and SRResNet were 139.1 and 130.8, respectively. These

results indicate that the reconstructions significantly improved
Frontiers in Plant Science 06
image quality, signal-to-noise ratio, and image contrast; however,

multiple reconstructions could reduce perceived quality to a certain

extent, and result in a very large time cost.

For the same reconstruction times, the PSNR and SSIM values

were higher in SRResNet than in SRGAN, the MOS values were

lower in SRResNet than in SRAGN, and the time costs were similar

between the two. This indicates that SRResNet had superior

performance in improving the signal-to-noise ratio and image

contrast, but had inferior perceived quality to that of SRGAN.
3.2 Reconstruction and recognition of
endocytic vesicles in Solanum nigrum
root cells

Figure 4 shows a comparison of the original laser confocal

image, SRGAN reconstruction image, and SRResNet reconstruction

image of Solanum nigrum root cells containing endocytic vesicles

and the 10× local magnification maps of endocytic vesicles. The

image qualities of the SRGAN and SRResNet reconstructions were

better than that of the original image. Further, the boundary

clarities of endocytic vesicles were significantly better than those

in the original image.

Next, the reconstructed images were automatically identified

using YOLOv5 for endocytic vesicles using the same model

parameters and weights. Figure 5 shows the quantitative

recognition effect corresponding to the original image, the

SRGAN single reconstruction image, and the SRResNet single

reconstruction image. Endocytic vesicles are marked with yellow

boxes and the regions where the extra vesicles were identified by the

two models are marked with blue boxes.

Six, nine, and ten endocytic vesicles were identified in the three

images, respectively. These results indicate that the reconstruction

effectively improved the quantitative recognition effect, confirming

the improvement of image quality. The image details were richer,

which would aid the mining of the deep-level information

contained in the image. The recognition effect of the SRResNet-

reconstructed image was better than that of the SRGAN-

reconstructed image.

Finally, the mean fluorescence intensity of each image shown in

Figure 5 was analyzed using ImageJ. The intensities were 175.654,

200.981, and 189.387 for the original image, the SRGAN

reconstruction image, and the SRResNet reconstruction image,

respectively, enhanced by 14.4% and 7.8% by the two

models,respectively.
4 Conclusion

Super-resolution reconstruction technology based on deep

learning can be used in the study of laser confocal images. Single

reconstruction (4×) and secondary reconstruction (16×) using the

SRGAN and SRResNet models significantly improved the
frontiersin.org
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FIGURE 3

Comparison of single and secondary reconstruction images of different models in different images. (1A) Original image 1(pixel: 1024×1024) and local
magnification map(pixel: 102×66). (1B) SRGAN single-reconstruction image(pixel: 4096×4096) and local magnification map(pixel: 410×264).
(1C) SRGAN secondary-reconstruction image(pixel: 16384×16384) and local magnification map(pixel: 1638×1056). (1D) SRResNet single-
reconstruction image(pixel: 4096×4096) and local magnification map(pixel: 410×264). (1E) SRResNet secondary-reconstruction image(pixel:
16384×16384) and local magnification map(pixel: 1638×1056). (2A) Original image 2(pixel: 1024×1024) and local magnification map(pixel: 102×66).
(2B) SRGAN single-reconstruction image(pixel: 4096×4096) and local magnification map(pixel: 410×264). (2C) SRGAN secondary-reconstruction
image(pixel: 16384×16384) and local magnification map(pixel: 1638×1056). (2D) SRResNet single-reconstruction image(pixel: 4096×4096) and local
magnification map(pixel: 410×264). (2E) SRResNet secondary-reconstruction image(pixel: 16384×16384) and local magnification map(pixel:
1638×1056).
TABLE 1 Comparison of the quality evaluation indicators and time required for different reconstruction.

Image PSNR/dB SSIM MOS Time (s)

1A (original image 1) 3.385

1B (SRGAN 4×) 37.465 0.943 3.885 27.414

1C (SRGAN 16×) 38.982 0.952 3.769 3813.655

1D (SRResNet 4×) 39.293 0.967 3.615 29.886

1E (SRResNet 16×) 47.587 0.994 3.538 3852.368

2A (original image 2) 3.462

2B (SRGAN 4×) 37.268 0.935 3.846 26.965

2C (SRGAN 16×) 39.673 0.960 3.731 3592.584

2D (SRResNet 4×) 39.192 0.967 3.692 27.720

2E (SRResNet 16×) 47.690 0.994 3.577 3625.298
F
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evaluation indicators PSNR, SSIM, and MOS of the image as well as

the resolution. The maximum PSNR was 47.690, indicating that the

quality of reconstructed image was significantly improved. The

PSNR and SSIM of the secondary reconstruction image were
Frontiers in Plant Science 08
obviously better than those of the single reconstruction, with

maximum increases of 21.7% and 2.8%, respectively. Additionally,

the objective evaluation of the image quality was good, but the MOS

was generally lower than that of the single reconstruction, and the
FIGURE 4

Comparison of the three types of images of Solanum nigrum root cells containing endocytic vesicles. (A) Original image(pixel: 1024×1024) and local
magnification map(pixel: 102×102). (B) SRGAN single-reconstruction image(pixel: 4096×4096) and local magnification map(pixel: 410×410).
(C) SRResNet single-reconstruction image(pixel: 4096×4096) and local magnification map(pixel: 410×410).
FIGURE 5

Comparison of recognition of endocytic vesicles in laser confocal images of Solanum nigrum root cells. (A) Recognition of endocytic vesicles in
original image(pixel: 1024×1024). (B) Recognition of endocytic vesicles in SRGAN single-reconstruction image(pixel: 4096×4096). (C) Recognition of
endocytic vesicles in SRResNet single-reconstruction image(pixel: 4096×4096).
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perceptual quality was weakened. The reconstruction effect using

SRResNet was better than that obtained using SRGAN. The images

reconstructed by SRGAN and SRResNet also clarified the

boundaries of endocytic vesicles in Solanum nigrum root cells.

They also revealed more vesicles (9 and 10, respectively, versus

only 6 in the original image). Finally, the mean fluorescence

intensity was enhanced by 14.4% and 7.8%, which indicates the

feasibility of deep mining of the embedded information in laser

confocal images.
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