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Editorial on the Research Topic

Biology, systematics, and evolution of ferns and lycophytes in the
omics era
Ferns and lycophytes are distinct evolutionary lineages of vascular plants, with ferns being

the sister group to seed plants. The last common ancestor of seed plants, ferns, and lycophytes

is the ancestral vascular plant. Historically, both lineages have been studied together and

treated as the paraphyletic group ‘pteridophytes’, mainly because both lineages are spore-

bearing, and share many other biological features, such as the overall life cycle (PPG I, 2016).

The publication of the first complete genome of a fern took longer than other groups of

embryophytes (Li et al., 2018). The first two reported genomes, from the heterosporous and

aquaticAzolla and Salvinia, are atypical among ferns as they are less than tenfold smaller than

the average fern genome (Li et al., 2018). The first homosporous fern genomes were only

recently published (Fang et al., 2022; Huang et al., 2022; Marchant et al., 2022; Rahmatpour et

al., 2023). Although ferns and lycophytes are less speciose than flowering plants in terms of

extant diversity, their biology is crucial for understanding land plant evolution, diversification,

and origins. Inferring evolutionary processes and patterns can be facilitated by access to all

kinds of omics data (e.g. genomics, metagenomics, transcriptomics, proteomics). Despite the

availability of high-throughput sequencing data, publications on ferns and lycophytes at the

omics scale are still few relative to their importance for understanding the diversity and

biology of vascular plants. Six articles in this Research Topic examined evolutionary questions

such as whole genome duplication, gene retention, structural variation in plastomes, conflicts

in plastid phylogenomics, species delimitation, hybridization, and introgression, as well as a

new pipeline for continuously and updated Fern Tree of Life (FTOL) generation.

For about three decades, insights from molecular data have contributed to

revolutionizing our understanding of fern and lycophyte systematics and evolution (e.g.

Raubeson and Jansen, 1992; Pryer et al., 1995; Pryer et al., 2001; Schneider et al., 2004;

Schuettpelz and Pryer, 2007; Lehtonen, 2011; Testo and Sundue, 2016). Nitta et al.

developed an outstanding automated, reproducible, and open pipeline to generate a

continuously updated fern tree of life from DNA data available in GenBank named by
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the authors as FTOL (Fern Tree of Life). They combined published

data from whole plastomes and commonly sequenced plastid

regions to generate a species-level phylogeny with 5,582 species.

Nitta et al. also used the most complete list ever assembled of 51

fern fossil constraints and estimated ages older than previous

studies for families and broader clades. The authors provide the

list of fossils, a taxonomic database, and R packages via a web portal

(https://fernphy.github.io). All in all, FTOL is destined to become a

landmark tool for all research on this key group of plants over a

wide range of taxonomic scales.

So far, most of the studies are based exclusively on plastid regions

and are used to reconstruct phylogenetic relationships, patterns, and

processes of biogeographic history above and at the species level.

Inferring phylogenies from plastid sequences remains a powerful tool,

such as for barcoding (Hollingsworth et al., 2016). High copy numbers

of plastid genomes exist in cells, their structure is highly conserved,

and they are thus easily amplified. It has been hypothesized to evolve

as a single locus (Léveillé-Bourret et al., 2017), but for some groups,

congruence tests have shown that this is not always the case (e.g.

Gonçalves et al., 2019). Focusing on fern plastomes, Du et al.

investigated the structural evolution of chloroplasts in deep nodes of

the fern tree of life, with a sampling including all recognized fern

families and orders (PPG I, 2016) and 127 plastomes. The authors

were able to map several structural synapomorphies, including

inversions, changes in inverted repeats (IR) boundaries, and gene

losses, and have shown that untypical structures such as loss of IR, or

the presence of DR (direct repeat) found in other lineages of land

plants, are not present in the ferns chloroplast. The authors used their

dataset to reconstruct a phylogenetic inference and to identify an

intermediate plastomic structure, supporting evidence that the

relationship among some orders, such as the early-diverging

leptosporangiate lineages, Gleicheniales, Hymenophyllales, and

Matoniales (Dipteridaceae + Matoniaceae) is still controversial.

Focusing on a recalcitrant node in the fern tree of life, Wang

et al. tested for conflicts and systematic errors in plastome-based

phylogenetic inferences. The authors used 30 different datasets built

on different strategies using coding and noncoding regions of

plastomes from 42 species, independently and combined, using a

maximum likelihood and a coalescent tree-based method, all

compared to an aminoacid-based tree, to solve the phylogenetic

positioning of and relationships within Dennstaedtiaceae. They

found that addressing systematic errors helps to reduce conflict,

but incongruences were inherently present and should be taken into

account when using plastomes for phylogenetic inferences.

From a different perspective, Pelosi et al. used available

transcriptomic data covering a broad sampling of families to

investigate the backbone of fern phylogeny. The overall recovered

topologies based on their nuclear dataset are consistent with most

published phylogenetic inferences based on plastid and nuclear data

(e.g. Qi et al., 2018; Shen et al., 2018); however, there are some

recalcitrant nodes, including the sister group to leptosporangiates

and eupolypods , the monophyly of Gle ichenia les +

Hymenophyllales (disagreeing with the plastome results by Du

et al.), and the positioning of Aspleniaceae. The authors also

focused on whole genome duplication (WGD) events across the

fern phylogeny, finding deep and shallow WGD events along the
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fern tree, with low gene retention as found in other groups of plants

for ancient events of duplication.

Moving from the backbone to the specific clades of the fern tree of life,

Ke et al. reconstructed the phylogenetic relationships of the Schizaeaceae

family, using the broadest sampling to date, based on three plastid regions

andplastomesof selected taxa.Theauthors traced the evolutionaryhistory

of the gene losses in the plastid genome associated with the evolution of

gametophytic mycoheterotrophy, presenting a novel phylogenetic

classification for the family with the recognition of a third genus —

Microschizaea— segregated from Schizaea sensu PPG I (2016). A newly

described species of Schizaea is presented.

Focusing on species-level evolution, Petlewski et al. present a

phylogenetic analysis of lycophyte Dendrolycopodium

(Lycopodiaceae), focusing on species delimitation and hybridization

and using restriction-site associatedDNA sequencing (RADseq) and a

draft genome assembly. The authors found that Dendrolycopodium

can be divided into four clades that largely correspond to the described

taxa, although the status of the various Asian species remains

uncertain. Petlewski et al. confirm evidence of interspecific

hybridization and the occurrence of introgression in the group.

Omics data reveal new insights into ferns and lycophytes, as

well as how these tools and data can help us to better understand the

evolution of these lineages. In the near future, with the ease of access

to tools and the low cost of sequencing, we expect to see more and

more studies in the Omics and integrative Multi-Omics that focus

on ferns and lycophytes. Species evolution, reticulation (e.g.

hybridization), polyploidy, population genomics, biogeography,

cytogenomics, and evolutionary developmental biology are some

of the areas that may benefit from such endeavors.
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