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Combined analysis of
metabolome and transcriptome
of wheat kernels reveals
constitutive defense mechanism
against maize weevils

Liangjie Lv †, Xiaorui Guo †, Aiju Zhao, Yuping Liu, Hui Li*

and Xiyong Chen*

Crop Genetics and Breeding Laboratory of Hebei, Institute of Cereal and Oil Crops, Hebei Academy
of Agriculture and Forestry Sciences, Shijiazhuang, China
Sitophilus zeamais (maize weevil) is one of the most destructive pests that

seriously affects the quantity and quality of wheat (Triticum aestivum L.).

However, little is known about the constitutive defense mechanism of wheat

kernels against maize weevils. In this study, we obtained a highly resistant variety

RIL-116 and a highly susceptible variety after two years of screening. The

morphological observations and germination rates of wheat kernels after

feeding ad libitum showed that the degree of infection in RIL-116 was far less

than that in RIL-72. The combined analysis of metabolome and transcriptome of

RIL-116 and RIL-72 wheat kernels revealed differentially accumulated

metabolites were mainly enriched in flavonoids biosynthesis-related pathway,

followed by glyoxylate and dicarboxylate metabolism, and benzoxazinoid

biosynthesis. Several flavonoids metabolites were significantly up-accumulated

in resistant variety RIL-116. In addition, the expression of structural genes and

transcription factors (TFs) related to flavonoids biosynthesis were up-regulated

to varying degrees in RIL-116 than RIL-72. Taken together, these results indicated

that the biosynthesis and accumulation of flavonoids contributes the most to

wheat kernels defense against maize weevils. This study not only provides

insights into the constitutive defense mechanism of wheat kernels against

maize weevils, but may also play an important role in the breeding of

resistant varieties.

KEYWORDS

Triticum aestivum L., Sitophilus zeamais, metabolome, transcriptome, constitutive
defense, flavonoids biosynthesis
Abbreviations: DEGs, differentially expressed genes; DAMs, differentially accumulated metabolites; VIP,

variable influence on projection; PCA, principal component analysis; TFs, transcription factors; KEGG,

Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; FLS, flavonol synthase; F3’5’H, DFR,

flavonoid 3’5’-hydroxylase; dihydroflavonol 4-reductase; ANS, PAL, phenylalanine ammonia lyase; 4CL, 4-

coumarate-CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3’H, flavonoid 3’

-monooxygenase; BZ1, anthocyanidin 3-O-glucosyltransferase.
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1 Introduction

Wheat is an important crop for human food and livestock feed;

it provides essential nutrients for human diet (Shewry, 2009).

Wheat grains are seasonal, so almost all harvest kernels must be

stored for continuous consumption. Maize weevil (Sitophilus

zeamais), one of the most destructive insect pests of stored grains,

infects grains in the field and during the storage period, resulting in

a serious loss in wheat quantity and quality (Vásquez-Castro et al.,

2012; Keskin and Ozkaya, 2014). Maize weevils and other stored

grain pests not only devour the whole grain but also cause heat,

mildew infection, and caking of stored grain, which significantly

decrease grain quantity and compromise the safety of grain storage

(Edde, 2012; Antunes et al., 2016). After the kernels are infected by

stored grain pests, the fat content and gluten content, as well as,

sedimentation value decrease.Additionally the acidity increases,

that adversely affect the quality of wheat storage and processing

(Keskin and Ozkaya, 2014; Nietupski et al., 2021). In addition,

stored pests excrete feces and larval fragments also affecting quality

of the infested grain (Ortegadorame, 1997; Edde, 2012). The

quantity and quality of stored wheat grains are directly related to

the quality of human life and food safety. Thus, the management of

the stored grain pests, especially maize weevils has been an

important concern and research interest.

Traditional methods to control maize weevils included

fumigants (e.g., phosphine, methyl bromide, Korean spices, and

medicinal plants) and insecticides (e.g., organophosphate

fenitrothion, pyrethroid, and deltamethrin) (Lee et al., 2001;

Rajendran and Gunasekaran, 2002; Muhareb, 2010; Vásquez-

Castro et al., 2012; Haddi et al., 2018; Singh et al., 2021).

However, the recurrent use of fumigants and insecticides lead to

marked increase of genetic resistance in stored insect pests (Haddi

et al., 2018; Nayak et al., 2019; Singh et al., 2021). In addition,

methyl bromide depletes the ozone in the atmosphere and several

insecticides leave behind hazardous residues in stored grain, which

seriously threaten environmental safety, food quality, and human

health (Sgarbiero et al., 2003; Joia et al., 2006; Phillips and Throne,

2010; Haddi et al., 2018). The aforementioned limitations of

chemical methods motivated research into various alternatives to

control stored insects. Improving the defensive ability of host plants

by breeding is the most sustainable, effective and eco-friendly

method. With long period of evolution, plants developed various

defense strategies to cope with insect attacking, which are

summarized as constitutive defense and induced defense (Wu and

Baldwin, 2010; Schuman and Baldwin, 2016). Constitutive defense

is produced irrespective of whether insects are present, including

physical barriers (the formation of thorns, trichomes, and cuticles)

and chemical barriers (the formation of defensive metabolites or

proteins in plant special tissues, such as flavonoids, terpenoids, and

alkaloids) (Howe and Jander, 2008; Wu and Baldwin, 2010; War

et al., 2012). The induced defense of host plants is activated

following infestation by insects. When attacked by insects, host

plants recognize and transmit insect feeding signals by a series of

networks, which activate the expression of defense-related genes to

synthesize the compounds associated with insect resistance in host

plants (Wu and Baldwin, 2010; War et al., 2012; Aljbory and Chen,
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2018). Therefore, understanding the defense mechanisms and

effectively utilizing the defense-related genes and metabolites are

necessary to enhance wheat resistance to maize weevils.

The defense mechanisms of plants are extremely complex and

involved the interaction between genes and metabolites. A single

metabolome or transcriptome cannot systematically explain the

defense mechanism. The combined transcriptomic and

metabolomic analysis reveal the differential transcript and

metabolite levels along with their relationships (Liu et al., 2022).

This technique provided a powerful strategy to directly and

comprehensively elucidate the defense mechanisms of host plants

to insects and was widely utilized in recent years. For examples, the

combined transcriptome and metabolome analysis of rice attacked

by the Asian rice gall midge indicated that rice released reactive

oxygen species which led to insect mortality by limiting nutrient

supply (Agarrwal et al., 2016). The transcriptomic and metabolomic

data showed that cotton synthesized methyl salicylate to attract the

parasitoid Peristenus spretus which led to indirect plant defense

against Apolygus lucorum infection (Huang et al., 2021).

Additionally, the integrated analysis of transcriptome and

metabolome was used to elucidate the maize response to Ostrinia

furnacalis feeding, which found that the defense of maize was

mediated by phytohormones, benzoxazinoids, and volatiles (Guo

et al., 2019). In wheat, Wang et al. used a combined transcriptome

and metabolome analysis to study the defense mechanism following

the Sitodiplosis mosellana attacking, which showed that

phenylalanine and flavonoid pathway play influential roles in

wheat grain defense (Wang et al., 2022). However, previous

studies were mainly focus on induced defense mechanism, studies

related to constitutive defense mechanisms of host plants to insects

were rarely reported. Thus, we investigated the constitutive defense

mechanism of wheat kernels to maize weevils using the combined

transcriptomic and metabolomic approach.

In this study, the transcriptome and metabolome were analyzed

to determine the differences in gene expression and metabolite

accumulation between the resistant variety RIL-116 and the

susceptible variety RIL-72, as well as identified the key metabolic

pathways related to defense against maize weevils. We further

constructed the metabolic regulatory network and determined

several key genes and metabolites contributing to the constitutive

defense of wheat kernels via combined transcriptomic and

metabolomic analysis. This study not only provide a more

comprehensive understanding of the constitutive defense

mechanism in wheat kernels but also established the theoretical

basis for the utilization of defense-related genes and metabolites.
2 Materials and methods

2.1 Wheat resistance screening and maize
weevil feeding treatments

A total of 198 self-constructed recombinant inbred lines (RIL,

the 7th generation) using Zhoumai 16 and Gaoyou 8901 as parents

were planted within the experimental plot at the Institute of Cereal

and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences
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https://doi.org/10.3389/fpls.2023.1147145
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lv et al. 10.3389/fpls.2023.1147145
(HAAFS), Gaocheng District (37°95′N, 114°71′E), Shijiazhuang
City, Hebei, China, during the 2017-2018 and 2018-2019 growing

seasons. Each variety was planted with three replications in a row

2.0 m long with 25 cm spacing between the rows. An average of 40

seeds were sown in each row. All fields were managed normally

without pesticides. After maturity, the wheat kernels were harvested

and stored at a granary in an experimental station with

approximately 13% moisture content. A temperate monsoon

climate is characteristic of the study area, with temperatures after

wheat harvest (June to September) averaging 26.30°C, average

humidity of 76.67%, and a mean rainfall of 115 millimeters

(https://www.ncei.noaa.gov/). The maize weevils used in this

study were from stored wheat in Institute of Cereal and Oil

Crops, Hebei Academy of Agriculture and Forestry Sciences, and

were kept in culture on whole wheat kernels in incubator with 27°C,

75% RH. Concerning the maize weevil treatment, three replicates of

each harvest variety were mixed and transferred into an incubator

with adult maize weevils which were two weeks after emergence for

50 days. The maize weevils were allowed to freely gnaw, and the

highest resistant and susceptible varieties were identified.
2.2 Morphological observations
and germination rate statistics

After two years of screening, the resistant variety RIL-116 and

susceptible variety RIL-72 were obtained and planted with three

replicates in the 2019-2020 growing season. Each replicate containing

approximately 40 seeds were planted in a single row with a length of

2.0 m and row spacing of 25 cm. After maturity, the wheat kernels of

RIL-116 and RIL-72 were harvested and followed by maize weevils

freely feeding treatment. 100 RIL-116 and RIL-72 wheat grains were

randomly selected and placed on culture plates to record the

morphological characteristics. The seeds were germinated in the

illumination germination box, and the germination rate was

calculated. The morphological characteristics of eroded grains and

germinated seeds were imaged with a digital camera (Cannon90D).
2.3 Metabolome analysis

At the grain filling stage on day 35, a total of six group,

including three replicates of susceptible variety RIL-72 which was

designated as CK (CK1, CK2, and CK3) and three replicates

of resistant variety samples RIL-116 (IR1, IR2, and IR3), were

collected and analyzed by metabolomics profiling. Biological

samples were freeze-dried by vacuum freeze-dryer (Scientz-100F)

for metabolome analysis. The metabolome sequencing was

performed by Wuhan Metware Biotechnology Co., Ltd (Wuhan,

China). The freeze-dried samples were crushed using a mixer mill

(MM 400, Retsch) with a zirconia bead for 1.5 min at 30 Hz. A 100

mg of lyophilized powder was dissolved in 1.2 mL 70% methanol

solution, vortexed for 30 seconds every 30 minutes for 6 times in

total. The samples were placed in a refrigerator at 4°C overnight.

Following centrifugation at 12000 rpm for 10 min, the extracts were

filtreted (SCAA-104, 0.22 mm pore size; ANPEL, Shanghai, China,
Frontiers in Plant Science 03
http://www.anpel.com.cn/) before UPLC-MS/MS analysis. A 75mL
centrifuged supernatant was transferred to a fresh glass vial for

UPLC-MS/MS analysis. The quality control (QC) and qualitative

and quantitative analysis of metabolites were performed as

described by of Lv et al. (Lv et al., 2022). The principal

component analysis (PCA) of all samples was completed using R

software (http://www.r-project.org/). The differential metabolites

were selected based on the combination of a statistically significant

threshold of variable influence on projection (VIP) values obtained

from the OPLS-DA model and fold change from the ratio of

resistant plants (IR) to susceptible plants (CK). Metabolites with

VIP ≥ 1.0 and fold change ≥ 2 or fold change ≤ 0.05 were considered

as differential metabolites. Hierarchical clustering (Euclidean

distance) was performed with MeV4.9 to explore the pattern of

metabolite abundance. The differential metabolites were annotated

using the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database, followed by enrichment pathway analysis.
2.4 Transcriptome analysis

The grain filling stage of wheat is appromately five weeks. At the

grain filling stage, three biological replicates of kernels from

resistant and susceptible varieties were collected on days 7, 14, 21,

27 and 35. A total of 100 kernels from 25 plants were collected for

each replicate. A total of 30 individual samples were used for RNA-

Seq analysis. The transcriptome sequencing was performed by

Wuhan Metware Biotechnology Co., Ltd (Wuhan, China). The

total RNA was extracted using TRIzol reagents from Invitrogen

(CA, USA). Based on the instructions provided by the manufacturer

(Illumina), 100ng RNA was used to construct the RNA-seq library

and cDNA was synthesized with SuperScript II reverse transcriptase

(Invitrogen, CA, USA). After the second-strand cDNA was

synthesized and linked, The cDNA was purified by AMPure XP

system and the library quality was assessed on the Agilent

Bioanalyzer 2100 system. Then, the enriched and purified cDNA

fragment was sequenced on the Illumina HiSeq platform. In

order to generate clean readings, low-quality raw readings were

filtered out of sequenced raw readings. The clean reads were

mapped to wheat reference genome (http://plants.ensembl.org/

Triticum_aestivum/Info/Index) to get location information using

HISAT242. Differentially expressed genes (DEGs) of resistant

plants relative to susceptible plants were detected with a threshold

of |log2FC| ≥ 1 and a false discovery rate (FDR)<0.05. The DEGs

were annotated by the Gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) databases. GO

categories and KEGG pathway enrichment of DEGs were

generated using R software. The RNA-seq reads were available at

the NCBI Sequence Read Archive (https://www.ncbi.nlm.nih.gov/

bioproject/PRJNA803964).
2.5 Weighted gene co-expression
network analysis

The WGCNA was performed using the WGCNA package in R.

After the filtration of low expression genes with FPKM < 0.1, the
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expression values of DEGs were imported into WGCNA package to

construct co-expression modules. The soft threshold power in this

study was set as 15. The co-expression modules were construct

using the WGCNA algorithm and visualized using the WGCNA

dendrogram and color function. The dynamic tree cut method,

which merged highly correlated modules using a correlation

coefficient greater than 0.75, was used to further determine the

co-expression gene modules of the gene dendrogram. To identify

the important modules, the association between modules and

samples were calculated using the default settings and visualized

by a heat map. The Connectivity between genes was calculated, and

the genes with high connectivity (K value) in each module were

considered as hub genes. Finally, the hub genes and their highly

connected genes in specific modules were identified and visualized

by Cytoscape software.
2.6 Correlation analysis of transcriptomic
and metabolomic data

We determined the correlation between DEGs and differenrially

accumulated metabolites (DAMs), and utilized the cor function in R

to calculate the Pearson correlation coefficient and p values. The

correlation coefficients between genes and metabolites greater than

0.8 were selected to draw a correlation cluster heat map. In order to

identify the common pathways, DEGs and DAMs were

simultaneously mapped to the KEGG database. Using a coefficient

method, the correlation network diagram between genes and

metabolites from common KEGG pathways were visualized using

Cytoscape software. To further elucidate the relationship between

genes and corresponding metabolites, the KEGG pathway map

was constructed.
3 Results

3.1 Evaluation of resistance and
morphological characteristics of wheat
varieties to maize weevils

The resistance of the tested wheat RIL varieties against maize

weevil was observed and calculated (Figure S1). The RIL-116 variety

was found to be highly resistant to maize weevils after two years of

screening, while the RIL-72 was susceptible to maize weevils. Two

other varieties, RIL-119 and RIL-13, showed middle levels of

resistance to the maize weevils during two consecutive years of

growing season. In 2019-2020, the RIL-116 and RIL-72 varieties

were mainly planted and harvested. Three repeated mixtures of

each experimental material were used to observe morphology. The

kernels of RIL-116 and RIL-72 were stored in the same environment

with maize weevils freely feeding, which resulted in infection of

most of RIL-72 wheat grains by maize weevils and exhibited obvious

brown and decayed. Under prolonged of infection, wheat kernels

fed by maize weevils gradually became empty (Figure 1A). By

contrast, only few RIL-116 kernels were attacked by maize weevils

and turned slightly brown (Figure 1B). Additionally, the
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The results showed that the germinate rate of RIL-116 (closed to

98%) was significantly higher than that of RIL-72 (only 14%)

(Figures 1C, D). The results indicated that maize weevils

preferred to feed on susceptible variety RIL-72 but not the

resistant variety RIL-116. Thus, we conjectured that RIL-116

likely contained several special substances, which contributed to

greater defense ability against maize weevils.
3.2 Metabolite profiles of RIL-72
and RIL-116

To clarify the endogenous defense mechanism of wheat against

maize weevils, three biological replicates of each RIL-72 and RIL-

116 wheat kernels at 35days after grain filing stage were used for

metabolome analysis by UPLC-MS/MS. Based on the qualitative

and quantitative analysis, a total of 509 metabolites were identified

in six wheat kernels samples including 3 terpenoids, 2 tannins, 64

phenolic acids, 63 others, 51 organic acids, 41 nucleotides and

derivatives, 67 lipids, 9 lignans and coumarins, 87 flavonoids, 75

amino acids and derivatives, and 47 alkaloids (Figure S2A and Table

S1). The PCA was used to understand the overall differences of

metabolic profile between inner and inter-group variations of RIL-

72 (CK) and RIL-116 (IR). The two-dimensional PCA plot revealed

three biological replicates of each variety clustered together,

indicating high repeatability among same varieties. Whereas, the

metabolic profiles between two varieties presented separation trend,

which certified significant differences in these metabolites between

inter-group. (Figure S2B). Additionally, OPLS-DA was performed

to facilitate the identification of DAMs. The Q2 > 0.9 and P< 0.5 of

OPLS-DA verification diagram indicated the robustness and

reliability of the model (Figure S2C). Thus, the VIP of OPLS-DA

model combined with fold change was used to screen DAMs.

Based on a VIP ≥ 1.0 and a fold change ≥ 2 or ≤ 0.05, a total of

83 DAMs were obtained in IR vs. CK, including 56 up-accumulated

and 27 down-accumulated metabolites (Figure 2A and Table S1).

The differential metabolites were visualized using the heatmap with

hierarchical cluster analysis shown in Figure 2B, which further

demonstrated the significant difference in metabolites between IR

and CK. These DAMs might be related to the difference resistance

between resistant and susceptible wheat varieties. The 56 up-

accumulated metabolites were divided into seven classes, mainly

including flavonoids, lipids, and alkaloids. Among the up-

accumulated metabolites, flavonoids accounted for the largest

proportion (Figure 2C). The main down-accumulated metabolites

were alkaloids, amino acids, and andphenlic acids (Figure 2D). To

further find the defense-related metabolites, the top 10 up-

accumulated and down-accumulated DAMs were screened and

the detailed information were listed in Figure 2E and Table S2.

Compared with CK, myricetin-O-rhamnoside was the most up-

accumulated metabolite with the highest log2 fold change value of

11.04. 1-O-Feruloyl-3-O-caffeoylglycerol showed the lowest log2

fold change value of -13.33 and thus was the most down-

accumulated metabolites. Flavonoids were reported contained 10

major subgroups: chalcones, aurones, flavanones, flavones,
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isoflavones, dihydroflavonols, flavonols, leucoanthocyanidins,

anthocyanidins, and flavan-3-ols (Nakayama et al., 2019).

Notably, all of the top 10 up-accumulated metabolites were

flavonoids, including 5 flavonoid, 2 flavonols, 1 flavonoid

carbonoside, and 2 dihydroflavonol (Table S2). Thus, we

speculated that accumulation of flavonoids was the most highly

related to resistance of wheat to maize weevils.

In order to explore the key metabolic pathway involving in

wheat defense against maize weevils, the KEGG annotation and

enrichment analysis of DAMs were performed. A number of KEGG

pathways were enriched and the top 20 pathways were listed in

Figure 2F. KEGG pathway analysis showed that the DAMs were

mainly enriched in the following six pathways: flavonoid

biosynthesis, flavone and flavonol biosynthesis, isoflavonoid

biosynthesis, anthocyanin biosynthesis, glyoxylate and

dicarboxylate metabolism, and benzoxazinoid biosynthesis, which

indicated that these pathways might be involved in wheat defense

against maize weevils. Among the above pathways, flavonoid

biosynthesis, flavone and flavonol biosynthesis, isoflavonoid

biosynthesis, and anthocyanin biosynthesis were the branches of

flavonoids biosynthesis. This result indicated that flavonoids

biosynthesis-related pathway was the most key metabolic pathway

related to wheat defense against maize weevils. Taken together, the

metabolic results suggested that the biosynthesis and accumulation

of flavonoids contribute the most to wheat defense against

maize weevils.
3.3 Transcriptome analysis of RIL-72
and RIL-116

To explore the dynamic molecular events of metabolic

differences at the transcriptional level, the wheat kernels of RIL-
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72 (CK1-5) and RIL-116 (IR1-5) at five different grain filling stages

were collected for transcriptome analysis. The numbers of 1, 2, 3, 4,

and 5 represented days 7, 14, 21, 27, and 35 after grain filling stage,

respectively. After removing low quality reads, a total of 420.87 Gb

of clean bases were generated from 30 samples (three biological

replicates for each stage). Each sample contained at least 12 Gb with

GC percentages of 53.61%-60.27%. The quality scores of Q20 were

96.99%-97.93% and those of Q30 were 92.34%-94.1% (Table S3).

When the clean data were mapped to the wheat reference genome,

the proportion of clean reads successfully matching to the wheat

genome was higher than 85.74% (Table S3). Overall, these results

indicated the high quality of transcriptome data for further analysis.

Pearson’s correlation coefficient (r) was used as an index to

evaluate biological repeated correlation. R2> 0.8 between three

biological repeats of each wheat group suggested good stability

and reproducibility of transcriptome data in the tested wheat

kernels and the high reliability of the experimental methods

(Figure 3A). Further, the DEGs were identified according to |log2

fold change| ≥ 1 and FDR< 0.5. The hierarchical clustering heatmap

of total DEGs obtained from all samples was presented in Figure 3B,

which showed distinct expression level of DEGs among different

samples. A total of 12297 DEGs (4743 up-regulated and 7554 down-

regulated), 6977 DEGs (3530 up-regulated and 3447 down-

regulated), 6817 DEGs (3343 up-regulated and 3474 down-

regulated), 7880 DEGs (3999 up-regulated and 3881 down-

regulated), and 9547 DEGs (4946 up-regulated and 4601 down-

regulated) were identified in the comparison between CK1 and IR1,

CK2 and IR2, CK3 and IR3, CK4 and IR4, and CK5 and IR5,

respectively (Figure 3C). The DEGs with annotations identified

from five stages were listed in Table S4-S8. The common and

unique DEGs among the five comparisons were exhibited in a Venn

diagram, which showed 2153 DEGs were expressed in all the five

comparisons (Figure 3D). Based on above analysis, the changes in a
A B

DC

FIGURE 1

The characteristics and germination test of RIL-116 and RIL-72 after maize weevils attacking. (A, B) The characteristics of RIL-116 and RIL-72 after maize
weevils attacking: (A) RIL-116, (B) RIL-72. (C, D) The germination test of RIL-116 and RIL-72 after maize weevils attacking: (C) RIL-116, (D) RIL-72.
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large number of transcripts between CK and IR suggested obvious

difference in gene expression profile, which might be related to the

difference in metabolite accumulation and resistance between CK

and IR.

To explore the function classification of the above DEGs, a Gene

Ontology enrichment analysis was performed. The DEGs were

annotated into 54 GO terms, which were classified into three

major GO categories including 16 invoving cellular component,

12 associated with molecular function, and 26 involving biological

process base on five comparisons (CK1 versus IR1, CK2 versus IR2,
Frontiers in Plant Science 06
CK3 versus IR3, CK4 versus IR4, and CK5 versus IR5) (Table S9).

The top 30 GO terms were shown in Figure 4A, concerning the

cellular component category, the major GO term were cell, cell part,

and organelle. In molecular function, most DEGs were involved in

binding, catalytic activity, and transporter activity. The major GO

terms of biological process were cellular process, metabolic process,

and response to stimulus. To further analyze the biological function

of the above DEGs, all annotated DEGs were subjected to KEGG

pathway analysis. The results revealed 135 (CK1 versus IR1), 132

(CK2 versus IR2), 132 (CK3 versus IR3), 130 (CK4 versus IR4), and
A B

D

E F

C

FIGURE 2

The metabolic profiling of RIL-116 and RIL-72. (A) Volcano plot of differential metabolites in the comparison of RIL-116 (IR) and RIL-72 (CK). Each
point in the volcano map represents a metabolite, red represent up-accumulated metabolites and blue represent down-accumulated metabolites.
(B) Clustering heat map of differential metabolites. The level of each metabolites relative content were depicted by color range from blue (low) to
red (high). (C) The number of classification of up-accumulated metabolites. (D) The number and classification of down-accumulated metabolites.
(E) The abundance histogram of top 10 up-accumulated metabolites (red-bars) and top 10 down-accumulated metabolites (green bars). (F) KEGG
analysis of differentially accumulated metabolites.
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128 (CK5 versus IR5) KEGG pathways were exposed, which were

divided into five categories: genetic information processing, cellular

processes, metabolism, environmental information processing, and

organismal systems. The details of KEGG pathways were listed in

Table S10. The summary of top 40 common KEGG pathways in five

comparisons were showed in Figure 4B. These results revealed that

metabolic pathways was the most significantly enriched followed by

biosynthesis of secondary metabolites and plant-pathogen

interaction. In conclusion, DEGs analysis suggested that the

metabolite change in resistant and susceptible varieties might be

due to the differentially expressing of genes involved in these

metabolic processes.

Considering the essential functions of transcription factors

(TFs) in regulating genes expression, we also investigated their

expression profiles. A total of 973 differentially expressed TFs from

five paired comparisons were divided into 73 categories (Table S11).

These TFs were distributed in 10 major families, including 57 AP2/

ERF, 31 bHLH, 88 MYB/MYB-related, 50 WRKY, 42 bZIP, 539

Others, 57 B3, 36 C2H2, 42 NAC, and 31 C2C2. (Figure 5A). The

TFs families MYB, bHLH, NAC, and WRKY play a vital role in

plant defense against biotic stress. Therefore, the defense-related

transcription factors against maize weevils were further identified

from these four families. Based on the transcriptional levels of these
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candidate TFs (Figure 5B), the TFs although derived from the

same family, showed different expression trends. Most transcription

factors of MYB, NAC, and bHLH showed higher transcript

levels in IR than that in CK suggesting positive regulation to

wheat resistance to maize weevils, and vice versa. The

expression of bHLH TFs TraesCS5B02G306800 and NAC TFs

TraesCS6A02G406700 annotated to flavonoids biosynthesis were

up-regulated in the resistant variety, suggested that these two TFs

might play positive roles in wheat resistance to maize weevils by

activating the biosynthesis of defense flavonoids. The results

revealed that these TFs might be the key regulatory factors of

downstream gene related to insect resistance, which in turn

contributed to difference in CK and IR to maize weevils.
3.4 Co-expression network analysis
of DEGs

After filtering out the genes with FPKM < 1, 22936 DEGs were

used for weighted gene co-expression network analysis to identify

modules and networks correlated with resistance of wheat to the

maize weevils. As shown in the hierarchical cluster tree (Figure 6A),

the co-expression modules were constructed according to
A B

DC

FIGURE 3

The overall analysis of RIL-116 and RIL-72 transcriptomic data. (A) Correlation analysis of all samples. (B) Clustering heat map of all DEGs from 30
samples. The relative expression level of each genes depicted by color range from green (low) to red (high). (C) The number of up- and down-
regulated DEGs in five comparisons (IR1 vs. CK1, IR2 vs. CK2, IR3 vs. CK3, IR4 vs. CK4, and IR5 vs. CK5). (D) The venn diagram of DEGs in five
comparisons to display the common and unique number of DEG.
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the dynamic tree cut algorithm and different modules were

represented by distinct colors. The genes with similar expression

dynamics were divided in same modules and the minimum number

of modules was set to 30 genes. After merging the modules with a

correlation greater than 0.75, a total of 23 co-expression modules

ranging in size from 52 genes in the thistle1 module to 5092 genes in

the darkturquoise module were identified (Table 1). A heat map of

the correlation between 23 modules and the hierarchical clustering

of modules were displayed in Figure S3.

The correlation heat map between modules and different

samples was shown in Figure 6B. And the genes expression

profiles of 23 modules were shown in Figure S4. We mainly

focused on the modules, which gene expression patterns were

significantly related to wheat resistane to maize weevil at late

grain filling stage. Finally, 9 special modules (blue, cyan,

darkgreen, darkgrey, darkolivegreen, darkred, darkslateblue,

lightcyan, and thistle1) were found and plotted the diagram of

gene expression patterns (Figure 6C). The 465 genes in the darkred

module and 542 genes in the lightcyan module displayed opposite

expression pattern in susceptible and resistant samples during the
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whole grain filling stage. The blue module with 2195 genes and cyan

module with 1594 genes were significantly correlated with stage 5 in

susceptible and resistant samples, respectively. While the darkgreen

module contained 391 genes and darkolivegreen module contained

276 genes with opposite expression profiles at stage 5 in susceptible

and resistant samples. The 76 genes in darkslateblue, 408 genes in

darkgrey, and 52 genes in thistle1 modules were positively

associated with stages 3 to stage 5 in resistant samples. These

results suggested the important role of these modules in the

wheat resistance to maize weevils.

The hub genes, which had high connectivity in the module

likely played the central role. The top 10 genes in each module were

considered as hub genes according to the gene connectivity value. A

total of 90 hub genes were identified from 9 special modules, which

were liasted in Table S12. The metabolome results indicated that

flavonoids biosynthesis-related pathway was the most vital for

wheat defense against maize weevils. Among these 90 hub genes,

TraesCS6D02G057800 (encoding a flavonoid 3’,5’-hydroxylase) in

the blue module and TraesCS1D02G319700 (encoding a flavonol

synthase) in the thistle1 module were designated to flavone and
A B

FIGURE 4

The GO classification and KEGG enrichment analysis of DEGs. (A) The GO classification of DEGs from five comparisons (IR1 vs. CK1, IR2 vs. CK2, IR3
vs. CK3, IR4 vs. CK4, and IR5 vs. CK5). a:molecular function, b: cellular component, and c: biological process. (B) The KEGG pathway enrichment of
DEGs in five comparisons. a: cellular processes, b: environmental information processing, c: genetic information processing, d: metabolism, and e:
organismal systems.
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flavonol biosynthesis (ko00944) and flavonoid biosynthesis

(ko00941), respectively. Thus, the subsequent analyses were

performed on genes from blue and thistle modules. We analyse

the KEGG pathway of DEGs in both two modules and top 18

pathways were showed in Figure S5. The KEGG pathway analysis

indicated that the most of DEGs were enriched in plant hormone

signal transduction, plant-pathogen interaction, MAPK signaling

pathway - plant, flavonoid biosynthesis, and phenylpropanoid

biosynthesis. Further, the hub genes of each module and high

connective genes were selected and visualized by Cytoscape

software to construct the interaction network. The hub genes of

each module co-expression network were highlighted by red

triangles (Figures 6D, E). These results implied that these genes

might be responsible for the wheat resistance to maize weevils.
3.5 Integrated metabolomic
and transcriptomic analysis

To explore the key genes and metabolites contributing to wheat

kernels defense against maize weevils and elucidate the molecular
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regulatory relationships between them, the combined analysis of

metabolomic and transcriptomic data was performed. First, the

DEGs and DAMs were enriched to KEGG pathway and found 33

common enrichment pathways (Table S13). Among these

pathways, 31 DEGs and 3 DAMs were involved in flavonoid

biosynthesis, 6 DEGs and 4 DAMs were involved in flavone and

flavonol biosynthesis, 1 DEG and 2 DAMs were associated with

anthocyanin biosynthesis, 27 DEGs and 3 DAMs were enriched in

glyoxylate and dicarboxylate metabolism, and 13 DEGs and 2

DAMs were associated with benzoxazinoid biosynthesis

(Figure 7A). To clarify the relationship between DEGs and DAMs

in wheat kernels defense against maize weevils, the correlation

analysis was carried out. The DAMs and DEGs with Pearson′ s
correlation coefficient greater than 0.8 were selected to draw the

heat map which clearly exhibited strong positive and negative

correlations between genes and metabolites (Figure 7B).

From the metabolomic and transcriptomic analysis, we

concluded that flavonoids biosynthesis-related pathway plays the

most important role in wheat resistance to maize weevils.

The relationship between DEGs and DAMs associated with

flavonoids biosynthesis metabolism was reflected by the correlation
A B

FIGURE 5

The classification and expression pattern of differentially expressed transcription factors. (A) The family distribution of transcription factors. (B) A heat
map exhibit the expression pattern of transcription factors in different comparisons according to log2 fold change. The colors range from blue to
red indicate low to high expression.
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network diagram (Figure 7B). The differentially accumulated

myricetin-O-rhamnoside was positively regulated by the genes

TraesCS7A02G141000 and TraesCS6B02G074100 encoding flavonol

synthase (FLS) and flavonoid 3′5′‐hydroxylase (F3′5′H), respectively,

and negatively regulated by the genes TraesCS7B02G412700 and
Frontiers in Plant Science 10
TraesCS6A02G041800 encoding dihydroflavonol 4-reductase (DFR)

and anthocyanidin synthase (ANS), respectively. Hesperetin-7-O-

glucoside, hesperidin, vitexin, and neohesperidin were regulated

positively or negatively by the DEGs annotated in flavonoids

biosynthesis-related pathway. Moreover, the correlation network of
A B

C

D E

FIGURE 6

The WGCNA of differentially expressed genes. (A) The hierarchical clustering dendrogram of DEGs. The modules were divided base on the dynamic
tree cut method. The color row was used to visualization of original modules and merged modules. (B) The correlation heat map between modules
and samples based on Pearson's correlations. Each cell contains the corresponding correlation and p-value. The colors from green to red indicate
low to high correlation. (C) The genes expression profiles of modules related to wheat resistance. (D) The genes co-expression network of blue
module. (E) The genes co-expression network of thistle module. The hub genes in each were highlighted by red triangles.
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DEGs and DAMs annotated in benzoxazinoid biosynthesis and

glyoxylate and dicarboxylate metabolism were also visualized

in Figure 7D and Figure S6, which suggested that these

genes could directly or indirectly affect the biosynthesis of

corresponding metabolites.

In order to further understand the relationship between key

genes and metabolites, the DEGs from five comparisons and DAMs

concerned with flavonoids biosynthesis metabolism were mapped

to the corresponding KEGG pathway diagram (Figure 8). The

flavonoids biosynthesis metabolism was related to four pathways,

including flavonoid biosynthesis, flavone and flavonol biosynthesis,

isoflavonoid biosynthesis, and anthocyanin biosynthesis. As

flavonoids biosynthesis was initiated from phenylpropanoid

biosynthesis, the KEGG pathway map analyses of DEGs and

DAMs annotated in the above five pathways were illustrated. The

reactions in the phenylpropanoid pathway are catalyzed by

phenylalanine ammonia lyase (PAL), and 4‐coumarate‐CoA ligase

(4CL). Most of the genes encoding 4CL were up-regulated in IR.

The chalcone synthase (CHS), chalcone isomerase (CHI), flavonoid

3′ -monooxygenase (F3′H), flavonol synthase (FLS), DFR, and ANS

are key enzymes in the flavonoid biosynthesis, catalyzing the

formation several metabolites, which flow to other branches

of flavonoid biosynthesis metabolic pathway. The gene expression

of FLS, CHS, CHI, F3′H, DFR, and ANS were increased in resistant

wheat kernels. Particularly, FLS (TraesCS7A02G141100 and

TraesCS7A02G141000) and CHS (TraesCS2A02G035300) were

significantly elevated in IR. F3’5’H could participate in

catalytic synthesis of luteolin and quercetin which were the

precursors of luteolin 7-o-neohesperidoside and isoquercitrin.

The transcriptomic data showed up-regulation of F3’5’H

(TraesCS6B02G074100) in five different grain filling stages. The

anthocyanidin 3-O-glucosyltransferase (BZ1) participated in the

formation of cyanidin-3-O-(6’’-p-Coumaroylglucoside) and

delphinidin-3-O-(6’’-p-Coumaroylglucoside). The expression of

BZ1 was up-regulated in resistant variety at late grain filling

stages. These results indicated that the up-regulation of these
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genes in IR led to the increase in the content of direct or indirect

downstream flavonoids (isovitexin, vitexin, neohesperidin, and so

on), which might be responsible for higher wheat resistance to

maize weevils (Figure 8). In conclusion, we demonstrated that the

resistance of wheat kernels against maize weevils was mainly related

to the co-expression of these key DEGs and DAMs related to

flavonoids biosynthesis pathways.
4 Discussion

Wheat is considered as the dominant crops and widely used for

human food and livestock because of its unrivalled cultivation range

and high yield (Shewry, 2009). During the wheat storage, maize

weevils are the most destructive pests. The infestation of maize

weevils on storage kernels caused serious losses in wheat quality and

quantity (Vásquez-Castro et al., 2012; Keskin and Ozkaya, 2014).

Compared with the harmful insecticides and fumigants, a safer and

more effective approach to prevent maize weevil attacking was to

improve the inherent defense ability of wheat (Phillips and Throne,

2010; Douglas, 2018; Kang et al., 2019). Thus, it is essential to

elucidate the defense mechanism of wheat against maize weevils. In

this study, a resistant variety RIL-116 and a susceptible variety RIL-

72 to maize weevils were identified through screening during two

consecutive growing seasons. We explored the constitutive defense

mechanism of wheat against maize weevils using the combined

transcriptome and metabolome data of resistant RIL-116 kernels

and susceptible RIL-72 kernels. The DAMs were enriched in

flavonoids biosynthesis-related pathway, benzoxazinoid

biosynthesis, and glyoxylate and dicarboxylate metabolism, which

were well known typical insect and pathogen defense-related

metabolic pathways in previous researches. For examples, the

flavonoids biosynthesis-related pathway was correlated with the

resistance of wheat kernels to Sitodiplosis mosellana, Zanthoxylum

bungeanum to Fusarium zanthoxyli, cucumber to Sphaerotheca

fuliginea, common bean to Tetranychus urticae, apple leaves to
TABLE 1 The genes number table of each modules.

Label Module Gene No. Label Module Gene No.

M01 blue 2195 M13 orange 2107

M02 brown4 564 M14 lightcyan 542

M03 darkgray 408 M15 darkgreen 391

M04 lightyellow 279 M16 darkolivegreen 276

M05 bisque4 126 M17 plum1 108

M06 thistle1 52 M18 darkturquoise 5092

M07 cyan 1594 M19 darkred 465

M08 skyblue 190 M20 darkslateblue 76

M09 black 2104 M21 darkorange2 84

M10 thistle2 541 M22 brown 4898

M11 darkorange 289 M23 mediumpurple3 281

M12 lightcyan1 274
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Gymnosporangium yamadai, and alfalfa to thrips (Lu et al., 2017;

Hoseinzadeh et al., 2020; Li et al., 2021; Zhang et al., 2021a; Zhang

et al., 2021b; Wang et al., 2022). Consistent with our study indicated

the flavonoids biosynthesis was a typical defense pathway to biotic

stress, although plant-pathogen have a feeding difference compare

to plant-insects. Another study revealed that the metabolic pathway

of benzoxazinoids biosynthesis mediated in the direct and indirect

defense of maize against Ostrinia furnacalis (Guo et al., 2019). The

glyoxylate and dicarboxylate metabolism enhanced plant resistance

to environmental stress (Zhao et al., 2020). He et al. reported that

glyoxylate and dicarboxylate metabolism was significantly enriched

in Nicotiana benthamiana response to Chinese wheat mosaic virus

infection (He et al., 2021). Among the above pathways, flavonoids

biosynthesis-related pathway was the most enriched. In addition,

several DEGs and their corresponding metabolites annotated in

flavonoids biosynthesis-related pathway in our study displayed

differential profile between resistant and susceptible varieties.
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These results implied that these genes and metabolites play an

essential role in the constitutive defense of wheat against

maize weevils.

The secondary metabolites play important roles in plant defense

against insects through direct defense (producing defense-related

compounds) and indirect defense (producing volatiles to attract the

natural enemies) (Aljbory and Chen, 2018; Qi et al., 2018). In

particular, the flavonoids, which deter insect oviposition, feeding,

and development were widely recognized as key defense substances

(Monique and Simmonds, 2001; Mithofer and Boland, 2012; Dong

and Lin, 2021). In the present study, flavonoids such as vitexin,

isovitexin, isoquercitrin, hesperetin-7-O-glucoside, neohesperidin,

myricetin-O-rhamnoside, luteolin-7-O-rutinoside, diosmetin-6-C-

glucosideand accumulated in the resist variety higher than that in

susceptible variety, which suggested that these flavonoids might be

involved in the wheat resistance against maize weevils. In a previous

study, feeding by Sitodiplosis mosellana induced the accumulation
A B

DC

FIGURE 7

The combined analysis of trancriptome and metabolome. (A) The number of DAMs and DEGs enriched in common KEGG pathways. ko00941:
flavonoid biosynthesis, ko000942: anthocyanin biosynthesis, ko00944: flavone and flavonol biosynthesis, ko00630: glyoxylate and dicarboxylate
metabolism, and ko00402: benzoxazinoid biosynthesis. (B) The correlation coefficient clustering heat map between DAMs and DEGs based on
Pearson's correlation coefficient. The colors from green to red indicate low to high correlation. (C) The correlation network diagram between DAMs
and DEGs involved in flavonoids biosynthesis-related pathways. HJAP110: myricetin-O-rhamnoside, Lmzp002365: hesperetin-7-O-glucoside,
mws0036: hesperidin, msw0048: vitexin, and pme0001: neohesperidin. (D) The correlation network diagram between DAMs and DEGs annotated in
benzoxaziniod biosynthesis pathway. Hmlp002485: DIBOA-glucoside and msw2591: DIBOA. Metabolites are represented by green circles and genes
are represented by gray circles. The size of the red circle represents the number of genes associated with the metabolite. The thickness of the ring
frame of metabolite circles indicate the differential multiple of metabolites. The red and green lines indicate positive and negative correlation,
respectively. The line thickness between nodes represents the degree of correlation between two nodes.
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of hesperetin and neohesperidin in wheat (Wang et al., 2022). In

Zanthoxylum bungeanum, the levels of vitexin and isovitexin, and

luteolin-7-O-rutinoside were significantly increased after Fusarium

zanthoxyli infestation (Li et al., 2021). The precursor of

isoquercitrin was quercetin, which was reported as a resistance-

related activator to improve plants resistance against pathogens and

insects (Maddox et al., 2010; Golawska et al., 2014; Kang et al.,

2019). Another study revealed that Cucumis melo synthesized

diosmetin-6-C-glucosideand, which was responsible for the

defense against pathogen after inoculation with F. pallidoroseum

(Filho et al., 2020). Our results were consistent with previous

reports further indicating that vitexin, isovitexin, isoquercitrin,

diosmetin-6-C-glucosideand, and neohesperidin were the key

defense compounds and the dramatic accumulation of flavonoids
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contributed to the constitutive defense of wheat against maize

weevils. Moreover, myricetin-O-rhamnoside the most up-

accumulated metabolite with the highest fold of 11.04 in resistant

wheat kernels, was produced by enzymatic transformation of

myricetin. Previous studies revealed myricetin was responsible for

the anthelmintic effect in vitro (Zangueu et al., 2018). Other

flavonoids such as hesperidin and isoscoparin accumulated at

3.57 fold and 1.97 fold higher levels in resistant than that in

susceptible wheat kernels in our study. These results suggested

that these flavonoids might play important role in the defense of

wheat against maize weevils. However, the detail effect of these

flavonoids substances to insects need to be further verified.

The biosynthesis of flavonoids was a complex metabolic process

which derived from phenylpropanoid pathway controlled by a
FIGURE 8

The expression profiles of DEGs and DAGs involved in flavonoids biosynthesis metabolism in the wheat kernels of resistant variety and susceptible
variety. The rectangels with different colors represent the metabolites in the comparison of CK vs. IR. Red indicates up-accumulated. Sky blue
indicates down-accumulated. Gray indicates not differential metabolites or not annotated metabolites. 4CL: 4-coumarate—CoA ligase; ANS:
anthocyanidin synthase; CHI: chalcone isomerase; CHS: chalcone synthase; CYP73: trans-cinnamate 4-monooxygenase; FLS: flavonol synthase;
F3'H: flavonoid 3'-monooxygenase; DFR: dihydroflavonol 4-reductase; F3'5'H: Flavonoid 3'5'-hydroxylase; BZ1: anthocyanidin 3-O-
glucosyltransferase; PAL: phenylalanine ammonia-lyase. The expression profiles of each annotated gene encoding enzymes are presented as
heatmaps. The color bar represent the value of log2 fold change with the scale ranging from blue (low) to red (high). (1): phenylpropanoid
biosynthesis, (2): flavonoid biosynthesis, (3): isoflavonoid biosynthesis, (4): flavone and flavonol biosynthesis, and (5): anthocyanin biosynthesis.
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series of enzymes (Jiang et al., 2016; Nakayama et al., 2019). The

gene expression regulated to the biosynthesis of these flavonoids

were bound to change because of the content change of flavonoids

substances. Consistent with the accumulation of flanovoids in

resistant variety, the combined transcriptomic and metabolomic

analysis in this study showed that most of the genes related to

flavonoids biosynthesis, including TraesCS7A02G141100 ,

TraesCS7A02G141000, and TraesCS6B02G074100 were in varying

degrees up-regulated in resistant variety. Our results consistent with

previous reports indicating that the structural genes encoding

flavonoids biosynthesis-related enzymes were involved in the

defense against insects and pathogens. For examples, a flavonoids

biosynthesis-related gene flavanone 3-hydroxylase (F3H) in rice

was considered positively mediate the flavonoid levels and brown

planthopper resistance (Dai et al., 2019). Several key genes involved

in flavonoids biosynthesis were significantly induced in common

bean after Tetranychus urticae attacking (Hoseinzadeh et al., 2020).

The expression of flavonoid biosynthesis genes such as CHS, DFR,

ANS, and FLS increased more than 10-fold after Gymnosporangium

yamadai infection in apple leaves (Lu et al., 2017). Thus, our study

provided a large number of candidate genes related to wheat defense

against maize weevils, which serve as an important guideline for

manipulating wheat defense ability against maize weevils by genetic

engineering approach.

Benzoxazinoids represent an important class of defensive

secondary metabolites against insects and pathogen in crops, such

as such as maize, wheat and rye (Niemeyer, 2009; Stahl, 2022).

Benzoxazinoids are commonly present as glucoside in plants, and

are hydrolyzed to toxicity aglucones by glucosidases after insects

and pathogens attacking (Niemeyer, 2009; Wouters et al., 2016). We

found that the levels of benzoxazinoids DIBOA and its glucoside

DIBOA-glc were decreased in the resistant variety. The first toxic

material in benzoxazinoids biosynthesis pathway was DIBOA (Frey

et al., 2009). The decrease of DIBOA conduced to reduce auto-

toxicity in plants. A previous study reported that DIMBOA-Glc was

t rans formed to HDMBOA-Glc by the ac t ion of O-

methyltransferase in wheat and maize (Li et al., 2018). Ostrinia

furnacalis attacking in maize induced a decrease in DIBOA-glc and

DIMBOA-Glc and a significant increase in HDMBOA-Glc, which

was thought entrust more resistance to insects (Guo et al., 2019).

We speculated that the reduction of DIBOA-glc might lead to the

accumulation of downstream major defense substance such as

DIMBOA-Glc or HDMBOA-Glc. Thus, the contributions of

benzoxazinoids to wheat kernels defense against maize weevils

need to be further investigation.

Our study indicated that the higher accumulation of defense

flavonoids contributed the most to the stronger constitutive

defense ability in the resistant variety than the susceptible

variety. Chemical defense-related metabolites were effective

against multiple insects and pathogens, for instance, cinnamic

acid plays a defensive role against Sitodiplosis mosellana,

Scirpophaga incertulas, Nilaparvata lugens (Usha Rani and

Jyothsna, 2010; Wang et al., 2022). Additionally, coumarin

reduced the natality rate of Aphis craccivora and the survival

rate of Acyrthosiphon pisum (Mansour et al., 1982; Kang and

Wang, 2019). The constitutive defense flavonoids were always
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accumulated in resistant wheat kernels regardless of the presence

of insects. Thus, we speculated that resistant wheat variety had

wide-spectrum defense against multiple insects, not just against

maize weevils. Previous study assumed that plant defense entailed

metabolic cost, which reduced the resources available for growth

and reproduction (Morris et al., 2006). With the limited resources,

the trade-off between growth and defense in plants was

particularly important. The wide-spectrum defense may reduce

plant allocation costs (Koricheva et al., 2004). Therefore, we

imaged the constitutive wide-spectrum defense of resistant

wheat variety was not only a behavior of self-interest but also an

effective way to produce resistant varieties.

In summary, comprehensive transcriptome and metabolome

analyses of the constitutive defense mechanism using resistant IR

and susceptible CK wheat kernels, indicated that the biosynthesis of

flavonoids plays a mainly role in wheat constitutive defense against

maize weevils. Different from other studies investigating induced

response mechanism, this study focused on the original metabolism

and transcription of host plants and elucidated the constitutive

defense mechanism of wheat against maize weevils. In addition, we

provided key metabolites and genes related to insect defense, which

promoted the breeding of resistant varieties.
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