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against Fusarium wilt (Fusarium
oxysporum f. sp. lentis)
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Fusarium wilt caused by Fusarium oxysporum f. sp. lentis (Fol) is the most

devastating disease of lentil present worldwide. Identification of multi-race

fusarium wilt resistance genes and their incorporation into existing cultivars

will help to reduce yield losses. In the present study, 100 lentil germplasms

belonging to seven lentil species were screened against seven prevalent races of

Fol, and accessions IC201561 (Lens culinaris subsp. culinaris), EC714243 (L. c.

subsp. odemensis), and EC718238 (L. nigricans) were identified as resistant. The

typical R gene codes for the nucleotide-binding site and leucine-rich repeats

(NBS-LRR) at the C terminal are linked to either the Toll/interleukin 1-like

receptor (TIR) or coiled coil (CC) at the N terminal. In the present study,

degenerate primers, designed from the NBS region amplifying the P-loop to

the GLPLA motif, isolated forty-five resistance gene analogues (RGAs) from

identified resistant accessions. The sequence alignment identified both classes

of RGAs, TIR and non-TIR, based on the presence of aspartate (D) and tryptophan

(W) at the end of the kinase motif, respectively. The phylogenetic analysis

grouped the RGAs into six classes, from LRGA1 to LRGA6, which determined

the diversity of the RGAs present in the host. Grouping of the RGAs identified

from Lens nigricans, LnRGA 2, 9, 13 with I2 revealed the structural similarity with

the fusarium resistance gene. The similarity index ranged from 27.85% to 86.98%

among the RGAs and from 26.83% to 49.41% among the known R genes, I2,

Gpa2, M, and L6. The active binding sites present along the conserved motifs

grouped the RGAs into 13 groups. ADP/ATP, being the potential ligand,

determines the ATP binding and ATP hydrolysis activity of the RGAs.
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The isolated RGAs can be used to develop markers linked to the functional R

gene. Furthermore, expression analysis and full-length gene isolation pave the

path to identifying the molecular mechanism involved in resistance.
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Introduction

Lentil (Lens culinaris Medikus subsp. culinaris) is one of the

most important cool-season legume food crops grown after

chickpea. It is an annual, self-pollinating diploid (2n= 14) crop

with a genome size of approximately 4Gb (Arumuganathan and

Earle, 1991). It is the oldest crop that originated in Turkey and is

now cultivated in almost all parts of the world. It is abundantly

grown in North America, Africa, the Middle East, and Asia.

Globally, lentil is grown in an area of 6.1 million ha and produces

about 6.33MT of yield. India has the largest area under cultivation

at approximately 1.51Mha and is placed second in global

production after Canada, producing 1.096 million metric tons

(FAO, 2018). Lentil is a rich source of protein (24-26%) and fiber.

It is also a source of micronutrients such as calcium, phosphorus,

and iron and essential amino acids such as lysine (Duran et al.,

2004). Lentil is abundantly grown in the rabi season in the northern

states of India, such as Delhi, Uttar Pradesh, Madhya Pradesh, West

Bengal, Rajasthan, Punjab, and Haryana. It is also grown as a

rotational rain-fed crop depending on the previous season’s residual

moisture. It is considered a valuable crop, as it consumes a

minimum input yet fixes atmospheric nitrogen, enhances soil

fertility, and generates means of livelihood for small-scale farmers

(Kumar et al., 2010). However, biotic and abiotic stresses have a

significant impact on its yield. Fusarium wilt, caused by Fusarium

oxysporum f. sp. lentis Vasudeva and Srinivasan, is one of the major

constraints in lentil production globally and in India. The disease

causes drying of leaves and seedling death during the seedling stage

as well as partial or complete wilting during the reproductive stage

(Jiskani et al., 2021). The presence of multiple races in the Indian

subcontinent has made its control more challenging (Hiremani and

Dubey, 2018). In India, it accounts for 100% of yield loss if it affects

in the seedling stage (Khare, 1981) and 50-70% in natural

conditions (Agrawal et al., 1993). Resistance breeding by

identification and incorporation of single or multiple race-specific

resistance genes into cultivars would considerably control the

disease in a geographic area. A few resistant varieties have been

released previously, but the potential of available germplasms has

been less explored. Screening for resistance during different plant

growth stages helps to identify late wilting during the reproductive

stage and the temporal variation of resistance (Bayaa et al., 1997).

Wild lentil species have been identified as a potential source of

resistance that can be tailored for resistance breeding (Singh et al.,

2020). Multi-location screening of germplasms identifies
02
germplasms that are resistant to multiple races present in a

geographic region (Meena et al., 2017). Conventionally, the

resistance (R) gene is isolated by transposon tagging and map-

based cloning, which is laborious and time-consuming. The

structure of the R gene is conserved across plants with a typical

NBS-LRR region at the C terminal linked to a coiled coil (CC) or

Toll/interleukin 1 receptor (TIR) at the N terminal end (Nair and

Thomas, 2007). A degenerate primer designed from the conserved

NBS region can be used to PCR amplify resistance gene analogues

(RGAs). Previously, RGAs were cloned in lentil (Yaish et al., 2004)

and other legume crops such as chickpea, fava bean (Palomino et al.,

2006), pigeon pea (Agbagwa et al., 2018), and common bean

(Garzon et al., 2013). The isolated RGAs mainly belong to the

TIR and non-TIR classes of NBS; they serve as a marker linked to

the functional R gene and help in isolating the full-length R gene

(Sekhwal et al., 2015). Previously, no lentil germplasm was

identified as resistant to multiple races of Fol. Isolation and

characterization of potential RGAs from resistant sources serve as

a useful tool for full-length gene isolation. The present study was

undertaken with the following objectives: 1. To screen 100 lentil

accessions, which belong to one cultivated species and six wild

species, to identify the resistance source against seven races of Fol; 2.

to isolate the RGA from resistant accessions for further

characterization and identification of potential interacting partners.
Materials and methods

Fungal isolates

Seven races of Fusarium oxysporum f. sp. lentis (MP-2, UP-9,

RJ-8, DL-1, CH-5, UP-12, and BR-27) that were reported earlier

(Hiremani and Dubey, 2018) were used in the present study. The

pure culture of isolates was maintained in PDA slants and stored at

4°C for further study.
Plant material

One hundred accessions belonging to Lens culinaris subsp.

culinaris (70), L. c. subsp. tomentosus (2), L. c subsp. orientalis

(7), L. c. subsp. odemensis (5), L. lamottei (3), L. nigricans (6), and L.

ervoides (7) were collected from ICAR-NBPGR, New Delhi. The

susceptible check (L-9-12) and resistant check (PL639) were
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collected from the Division of Genetics, ICAR-IARI, New

Delhi, India.
Screening and evaluation for resistance

The experiment was carried out in ICAR-NBPGR, New Delhi,

in the periods of 2020-21 and 2021-22, as per the method described

by Bayaa and Erikson (Bayaa et al., 1997). The seven races of

Fusarium oxysporum f. sp. lentis were grown in double autoclaved

sorghum seeds for 15 days. Fifteen grams of inoculum were mixed

in pots containing 2kg of sterilized soil. Surface-sterilized seeds of

100 accessions were sown in the pots, and eight plants/pot were

maintained at 24°C/22°C with their respective controls (untreated).

A few accessions showed poor germination after repeated

sowing and thus were not further screened against the respective

races in the study. These included accession IC73121 against race 7

(BR-27), IC95658 against race 2 (UP-9), IC361467 against race 5

(CG-5), IC384447 and IC53238 against race 6 (UP-12), EC718234

against race 1, 5, and 6 (MP-2, CG-5, UP-12), and EC718330

against race 4 and 6 (DL-1and UP-12).

The performance of disease pressure was compared with

resistant and susceptible checks. Disease incidence was recorded

every week until the pod-filling stage, and a scale of 1-9 was used

(Bayaa and Erskine, 1990) to identify resistant accessions for further

RGA isolation and characterization. The accessions showing less

than 1% incidence were considered highly resistant and were given

a scale of 1, with 2-10% incidence being resistant (3), 11-20%

incidence being moderately resistant (5), 21-50% incidence being

moderately susceptible (7), and with more than 50% incidence

being susceptible (9).
Genomic DNA isolation and
PCR amplification

Genomic DNA of three accessions, IC201561, EC714243, and

EC718238, showing resistance to the majority of races were isolated

using the CTAB method with a slight modification (Murray and

Thompson, 1980; Dubey and Singh, 2008). About 1g of leaves was

weighed and ground to a fine powder in liquid nitrogen using a

prechilled pestle and mortar. The powder was transferred to

centrifuge tubes containing a 2% CTAB buffer preheated at 65°C.

The mixture was incubated in a water bath at 65°C for one hour

with occasional mixing followed by the addition of 15ml

chloroform:isoamyl alcohol (24:1). The samples were centrifuged

at 10,000g for 10 min, and the upper aqueous phase was carefully

transferred to a fresh tube. The aqueous layer was precipitated with

0.6 volume of isopropanol and 0.1 volume of 3M sodium acetate for

1hr at -20°C and then centrifuged at 15,000g at 15min. The

obtained pellet was washed with chilled 70% ethanol and

centrifuged at 10,000g for 10min. The pellet was air dried until

the ethanol evaporated completely and dissolved in 70µl TE (10

mM tris hydrochloric acid and 1 mM sodium EDTA, pH 8). The

quality and quantity of the DNA samples were evaluated by 0.8%
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agarose gel electrophoresis and nanodrop and stored at -20°C. A

previously designed degenerate single primer pair, from the

conserved NBS region of the R gene amplifying the P-loop to the

GLPLA motif, was used in the present study (Supplementary

Table 1). The PCR reaction of 25µl was carried out in 0.2ml PCR

tubes containing 10x Taq buffer (Thermo Fisher), 0.5µl of 10mM

dNTPs, 10pmol of each degenerate primer, 1U of Taq polymerase

(Thermo Fisher), and 100ng of the template. PCR amplification was

carried out with the specific conditions of initial denaturing at 95°C

for 5 min, followed by 36 cycles of denaturation at 95°C for 1min,

annealing at 45°C for 1 min, and elongation at 72°C for 1 min,

followed by final elongation at 72°C for 5 min and cooling at 4°C in

a thermal cycler (Bio-rad). The amplified products were visualized

by 1.2% agarose gel electrophoresis. The PCR product

corresponding to 510 bp was eluted and purified using a

QIAquick Gel Extraction kit (Qiagen, Hilden, Germany).
Cloning and sequencing

The purified PCR product was ligated to pGEMT easy vector

(Promega, Madison, Wis.) and cloned to E. coli JM109 according to

manufacturer’s protocol. About 50 positive colonies from each

transformation were screened using the colony PCR. Clones

producing a band of ≈510bp were further proceeded for plasmid

isolation and EcoRI (Thermo Fisher) restriction digestion. Plasmids

were isolated using the Wizard Plus Plasmid Minipreparation Kit

(Promega) and sequenced by the Sanger sequencing method.
In silico characterization

The sequences were trimmed for vector contamination, and a

similarity search was performed using the BLAST algorithm in the

GenBank database. The amino acid sequences were deduced using

Expasy. Multiple alignment of the obtained amino acids was carried

out using CLUSTALX in the BioEdit software. The phylogenetic

tree was constructed by the neighbor-joining method (Saitou and

Nei, 1987) with Poisson correction in the MEGAX software along

with the NBS region of the known R genes: N (U15605), L6

(U27081) , M (U73916) , RPP5 (AAFO8790 .1) , RPP4

(AAM18462.1), RPP1 (AT3444670), RPS4 (CAB50708.1), Mla

(AAG37356), Pi-ta (ACY24970.1), Pi36 (ADF29629.1), Pib

(BAA76282.2), I2 (AF004878), RPP13 (AAF42831), RPM1

(AQ39214) , Pr f (U65391) , Gpa2 (AF195939) , RPP8

(AAC78631.1.), and FOM-2 (AY583855.1) (Kumar et al., 2018).

The confidence value was checked by bootstrapping 10,000

replicates from the original data. The probable full-length R gene

was found when it was aligned to the lentil reference genome, Lens

culinaris CDS Redberry, and a phylogenetic tree was constructed

including the lentil R gene by the neighbor-joining method in

MEGAX. The percent sequence similarity between the

representative RGAs from each class and among the known R

genes, L6, M, I2, and Gpa2, was determined by the DNAMAN 8

software using the Needleman and Wunsch (Global model) and
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PAM matrix score. Multiple expectation maximizations for motif

elicitation (MEME) was used for the motif identification and

characterization compared with the known R gene (Bailey et al.,

2009). The active binding site of the RGAs and their potential

ligands were determined using the web-based I-TASSER software

(Zhang, 2008, Yang et al., 2015). The relationship between ABS was

determined by constructing a phylogenetic tree, using maximum

likelihood in MEGAX. The secondary structure of the RGAs with

percent alpha helix, beta strands, and presence of the

transmembrane helix were determined by the Phyre 2 Software

(Kelley et al., 2015). The tertiary structure of the RGAs was

determined using the I-TASSER software based on the C-score,

TM-score, and RMSD (root mean square deviation), and the best-

predicted tertiary structure was selected. The tertiary structure of

the lentil R genes was determined using Phyre2.
Results

Screening of germplasms against Fol races

One hundred accessions of lentil were screened against seven

races of Fusarium wilt from the seedling to pod filling stages at 7

days interval for two cropping seasons, 2020-2021 and 2021-2022,

and were graded into five classes with a scale of 1-9 based on disease

incidence (DI). The accessions showed varying degrees of resistance

to races of Fol (Supplementary Tables 2, 3). The number of

accessions exhibiting high-resistance (HR) responses were 24 (L.

culinaris subsp. culinaris), 26 (L. c. subsp. tomentosus), 39 (L. c

subsp. orientalis), 27 (L. culinaris sub sp. odemensis), 17 (L.

lamottei), 39 (L. nigricans), and 26 (L. ervoides) in 2020-21 and

21 (L. culinaris subsp. culinaris), 24 (L. c. subsp. tomentosus), 38 (L.

c subsp. orientalis), 26 (L. culinaris sub sp. odemensis), 17 (L.

lamottei), 38 (L. nigricans), and 25 (L. ervoides) in 2021-22

against races 1 and 7, respectively. Wild species, such as L.

culinaris sub sp. odemensis (EC714243), showed resistance to all

the races of Fol in both seasons. Accessions belonging to L. culinaris

subsp. culinaris (IC201693 and IC241532) were found to be

susceptible to all the races of Fol.

Accessions of L. culinaris subsp. culinaris and L. culinaris sub

sp. orientalis showed the most diverse reaction, with a scale of 1-9

and mean disease incidence (DI) of 4.85-7.20 ± 0.29-0.32 and 3.00-

6.67 ± 1.2-1.9, respectively, in 2020 and 4.88-7.22 ± 0.28-0.36 and

3.00-6.67 ± 1.2-1.9 in 2021, to all the races of Fol. All the accessions

belonging to L. c sub sp. tomentosa were highly resistant to race 3

(RJ-8) and 7 (BR-27), with a mean DI of 1.00 ± 0.0 during both

seasons. All the accessions of L. lamottei were highly resistant to

race 3 (RJ-8), with a mean DI of 1.00 ± 0.0 during 2020 and 2021. In

contrast, they showed moderate susceptibility to susceptible

reaction, with a mean DI of 7.67 ± 0.6 to race 5 (CG-5) and race

7 (BR-27) (Tables 1, 2). Variation in the mean DI between the races

might be associated with the virulence of race and the differential

interplay between host and race. The CV value of wild species

showed large variation due to the smaller sample size and varied

disease reactions within species (Figures 1, 2). Variation in the

disease incidence of a few accessions was observed in two seasons,
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which might have been due to the varied environmental conditions,

such as temperature.
Amplification and cloning of RGA

After screening, the accessions with seven races of Fol—

IC201561 (L. culinaris. subsp. culinaris), EC714243 (L. c. subsp.

odemensis.), and EC718238 (L. nigricans)—demonstrated resistance

response to Fol and were used for RGA isolation and

characterization (Figure 3). The degenerate primer was designed

based on the conserved region of NBS amplifying the P-loop to the

GLPLA region (Supplementary Table 1) and used for PCR

amplification of genomic DNA of selected resistant accessions,

IC201561, EC714243, and EC718238. An amplicon of 510 bp in

size was eluted and cloned to the pGEMT vector and E. coli JM109

cells (Figure 4). Fifty positive clones from each accession were

selected for the colony PCR, and clones producing ≈510 bp further

proceeded for plasmid isolation. Plasmids were isolated and

restriction digested using EcoRI to confirm the insert and

sequenced (Supplementary Figures 1–3). Among the 90

sequences, 45 sequences showed high similarity to the known

R gene and were deposited in the NCBI database (Supplementary

Table 4). These sequences were translated using Expasy,

and the sequences showed similarity ranging from 76 to 91% with

a known R gene, RUN1 and RRP13 of Medicago truncatula and N

of Trifolium partense, and 84-99% similarity with a previously

isolated lentil, pea, and French bean RGA (Supplementary Table 4).
Multiple sequence alignment and
phylogenetic analysis of RGAs

Multiple sequence alignment of the deduced amino acid

sequences of the RGAs and known R genes, N, L6, M, I2, and

Gpa2, revealed the presence of conserved motifs such as P-loop,

RBNS-A, kinase 2, kinase 3, RBNS-C, and GLPLA (Figure 5).

The phylogenetic tree was constructed using the neighbor-

joining method to determine the relationship between the

obtained RGAs and the known R genes. The resulting tree gave

rise to two branches, TIR-NBS-LRR and non-TIR-NBS-LRR. All

the lentil RGAs were grouped in the TIR branch except for

LnRGA2, LnRGA9, and LnRGA13, which were grouped in the

non-TIR branch. All lentil TIR-RGAs and R genes L and M were

clustered separately from RPP4, RPP5, RPP1, N, and RPS4. The

TIR-RGAs were further classified into five classes, LRGA1-

LRGA5, comprising 22, 2, 1, 11, and 6 lentil RGAs in each

class. All the LoRGAs isolated from L. c. subsp. odemensis were

clustered together in class LRGA1, reflecting the sequence

homology among themselves. The RGAs isolated from

cultivated species and wild species were grouped in LRGA 4

and LRGA 5, revealing their conserved nature. Clustering of

LnRGA3, 9, and 13 into class LRGA6 along with the R gene I2

reveals their sequence homology with the fusarium wilt resistance

gene. Grouping of isolated RGAs to TIR and non-TIR classes

reflects the diversity of the RGAs present in the genus (Figure 6).
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The isolated RGAs were aligned with the lentil reference genome,

Lens culinaris CDS Redberry. Twenty R genes from the reference

genome showed high similarity with the isolated RGAs from the

present study. Phylogenetic analysis revealed the clustering of

lentil R genes and isolated RGA together (Figure 7).

The percent similarity of amino acids among the lentil RGAs

and between R genes L6, M, I2, and Gpa2 was determined using

DNAMAN 8 software. Amino acid similarity ranged from 27.85%

(LcRGA2 and LnRGA2) to 86.98% (LnRGA1 and LcRGA5) among

the RGAs. Similarity ranged from 26.83% (LnRGA13 and L6) to

49.41% (LnRGA13 and I2) when compared with the known R

genes (Table 3).
Motif identification and characterization

Motifs of TIR and non-TIR RGAs were determined using the

Multiple Expectation maximizations for Motif Elicitation software

along with the known R genes. Eleven and twelve motifs were

identified in the TIR and non-TIR groups, respectively. Six

conserved motifs—P-Loop, RNBS-A, kinase 2, kinase 3, RNBS-C,

and GLPLA—were found in all the RGAs. External motif, P-Loop,

and GLPLA and internal motif, kinase 2, kinase 3, and RNBS-C

were found conserved in both groups of RGAs. We further classified

RNBS-A to TIR with amino acid sequence [(YC)(AND)(RLK)I(SA)

(NQDH)QF(EVDH)(AGM)(CSL)C(FL)(ILV)(DH)(DN)(NI)

(SRG)] and the non-TIR [F(CVD)(YL)(RK)(GAR)(WK)(SFA)

(HTL)Y(SP)(KQE)(DVE)(YFL)(DC)(VA)(VRF)(TNA)(VI)] group

due to the difference in position and composition of the motif. The

presence of tryptophan (W) in the non-TIR group at the end of the

kinase 2 motif distinguishes it from the TIR group with aspartate

(D) amino acid. An extra motif with signature (KE)NYRLH and E-

value 0E-054 was found in LcRGA 1, 3, 6, 7, 8, 9, 12, 13, and 15 and

LnRGA10, all belonging to class LRGA3 of TIR-RGA (Figures 8, 9).
Prediction of active binding sites and their
putative ligands

All the RGAs showed the structural analogy to know the

resistance genes RPP1 and Roq1 with the molecular function of

ATP binding (Supplementary Table 5). I-TASSER software was

used to predict the active binding site of the RGAs and their

respective ligands. The identified active binding sites (ABS) were

present along the six conserved motifs of the nucleotide-binding site

(NBS) including P-loop, RNBS-A, kinase 2, kinase 3, RNBS-C, and

GLPLA. Active binding sites in the P-loop motif were largely found

in 35 RGAs (10 LcRGA, 14 LoRGA, and 11 LnRGA) followed by the

kinase 2 motif in 30 RGAs (5 LcRGA, 14 LoRGA, and 11 LnRGA).

The amino acids that were found to be corresponding to the active

binding site were glycine (G) and threonine (T) in the P-loop and

aspartic acid (D) and aspergine (N) in the kinase 2 motifs; these

were common in TIR and non-TIR RGAs but differed at the kinase

2 motif. It was observed that non-TIR had aspartic acid as ABS,

while TIR-RGA had aspartic acid and aspergine as ABS. P-loop,

kinase 2, and kinase 3 motifs were reported to have ATP/GTP
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binding sites in the nucleotide-binding site of the R gene.

Interestingly, the aspartic acid (D) found in TIR-RNBS motif was

found to be an active binding site in 17 TIR-RGAs largely isolated

from Lens culinaris subsp. odemensis. LoRGA3, LnRGA8, and

LnRGA14 had leucine (L) in RNBS-C, and LnRGA9 and

LnRGA13 had glycine (G) in the GLPLA motif as active binding

sites. ADP/ATP was found to be a potential ligand of RGAs, with

the molecular function of ATP binding and ATPase activity

(Supplementary Table 6). Previously, the involvement of RNBS-A,

RNBSC, and the GLPLA motif in ATP binding and hydrolysis had

not been reported. Based on amino acids corresponding to ABS, the

RGAs were classified into thirteen groups (Table 4). Eighteen RGAs

with the active binding site at 4th, 6th, 27th, and 82nd/83rd

positions corresponding to G, T, D, and N amino acids were

grouped in the GTDN class. Seven classes of ABS had a single

lentil RGA, describing the diversity of ABS within the genus. Seven

RGAs had no ABS and were considered inactive due to point

mutation. Little correlation was found between ABS of RGAs and

the previously constructed phylogenetic tree. The RGAs belonging

to the non-TIR group had different ABS from the TIR group. The

phylogenetic tree was constructed by maximum likelihood in

MEGAX, aligning all the active binding sites of the RGAs with a

bootstrap of 1000 replication. The tree grouped all RGAs with

GTDN active binding sites together. The RGAs LnRGA9, LnRGA13

(GTDT), and LnRGA2 (GTDG) were grouped along with the GTD

group, probably due to the change in single amino acids (Figure 10).

The secondary and tertiary structure of RGAs and lentil R gene

The secondary structure of the RGAs was predicted using

Phyre2 software and revealed the presence of alpha-helix (56%-

50%), beta strands (11%-9%), and disordered sequence (12%-14%).

Three RGAs, LcRGA5, LcRGA11, and LnRGA1, had the

transmembrane region in the helix depicting probable interaction

with the lipid bilayer (Table 5). The best tertiary structure of the

lentil RGAs was predicted based on the C-score, TM-score, and

RMSD using I-TASSER. The C-score of 45 lentil RGAs ranged from

0.31 (LcRGA14 and LoRGA2) to 0.68 (LnRGA9), and the TM-score

ranged from 0.70 ± 0.10 (LnRGA11) to 0.81 ± 0.09 (LnRGA9 and

LnRGA13) (Supplementary Table 7). The solubility of amino acids

in the active binding site ranged from 1 to 4, revealing the buried

nature of ABS (Supplementary Figure 4).

Twenty lentil R genes showed a structural analogy to the plant

NLR RPP1 tetramer in a complex with ATR1 (Supplementary

Table 8). The tertiary structure of the lentil R gene was predicted

using Phyre2 software, and the secondary structure revealed the

presence of alpha-helix (27-45%), beta strands (13-19%), disordered

sequence (18-23%), and transmembrane region (1-2%)

(Supplementary Figure 5).
Discussion

Fusarium oxysporum f. sp. lentis is a major pathogen of lentil,

constraining its yield and productivity in India and worldwide.

Identification of resistant germplasms through screening helps in

the development of resistant cultivars and the identification of the R

genes involved in the resistance mechanism. In the present study,
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lentil germplasms belonging to different species were screened in

artificially inoculated conditions against seven race representatives of

Fol isolates for two seasons to identify resistant germplasms and the

further isolation and characterization of potential RGAs. Since

Fusarium is a soil-borne pathogen, pot evaluation is considered

efficient and accurate, as it takes less space, provides a uniform
Frontiers in Plant Science 07
inoculum load and limits interaction with other soil-borne

pathogens that cause synergistic effects such as Rhizoctonia

bataticola and Sclerotium rolfsii (Chaudhary et al., 2010). The

germplasms were screened for two consecutive years, 2020 and

2021, to increase efficiency and reduce variation (Sharma et al.,

2019). The germplasms showed typical wilt symptoms, including
FIGURE 1

Box plot depicting disease incidence of each species of lentil against each race of Fusarium oxysporum f. sp. lentis screened during 2020-2021. Sp1:
Lens culinaris sub sp. culinaris; Sp2, L. c. subsp. tomentosus; Sp3, L. c sub sp. orientalis; Sp 4, L. c. sub sp. odemensis; Sp 5, L. lamottei; Sp 6, L.
nigricans; Sp 7, L. ervoides. Race 1: MP-2; race 2, UP-9; race 3, RJ-8; race 4, DL-1; race 5, CG-5; race 6, UP-12; race 7, BR-27.
FIGURE 2

Box plot depicting disease incidence of each species of lentil against each race of Fusarium oxysporum f. sp. lentis screened during 2021-2022. Sp1,
Lens culinaris sub sp. culinaris; Sp2, L. c. subsp. tomentosus; Sp 3, L. c sub sp. orientalis; Sp 4, L. c. sub sp. odemensis; Sp 5, L. lamottei; Sp 6, L.
nigricans; Sp 7, L. ervoides. Race 1, MP-2; race 2, UP-9; race 3, RJ-8; race 4, DL-1; race 5, CG-5; race 6, UP-12; race 7, BR-27.
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yellowing, drooping to wilting of the plant, followed by death. In two

seasons, the germplasms showed varying degrees of resistance

between the races. Wild accession belonging to Lens culinaris sub
Frontiers in Plant Science 08
sp. odemensis showed resistance to all the races of the pathogen.

Multi-race resistance has been previously identified in crops such as

tomato against F. oxysporum f. sp. lycopersici race 1, 2, and 3 (Reis

et al., 2004) and in melon against F. oxysporum f. sp. melonis race 0,

1, and 2 (Alvarez et al., 2005). We have observed that germplasms of

L. culinaris sub. sp. culinaris and L. culinaris sub sp. orientalis

showed a range of reactions, from highly resistant to susceptibility,

which might probably be due to the heterogeneity in the genome

structure of germplasms within single species and the differential

interaction of resistant genes towards particular races. Our results

were in accordance with the previous reports of Brick et al. (2006) on

differential resistance in the core set of the Phaseolus vulgaris

germplasm to races 1, 2, and 4 of Fusarium oxysporum f. sp.

phaseoli. The contrasting response showed by the accessions of L.

lamottei towards races 3, 5, and 7 emphasizes the probable

combinatorial interaction of multiple R genes in resistance

response. Few accessions showed variation in the resistance

response, as wilt is highly dependent on temperature (Ahmed

et al., 2002). Higher CV has been observed in wild species due to

diverse disease reactions and small sample sizes. Extensive screening

has explored the potentiality of all species and subspecies of lentil

against existing races of Fol, providing an excellent source for R gene

isolation. To the best of our knowledge, this is the first report on

multi-race resistance in lentil against Fusarium wilt.

In the last decade, the PCR-based approach for the isolation of

genes by using a degenerate primer has been identified as a valuable
FIGURE 3

Pot evaluation of lentil accessions, (A) IC201561 (L65); (B) EC714243 (L83), (C) EC718238 (L90); and (D) L-9-12 (Susceptible check) against seven
races of Fusarium oxysporum (f) sp. lentis. Pot in the left-hand corner is control followed by race 1 (MP-2), race 2 (UP-9), race 3 (RJ-8), race 4 (DL-
1), race 5 (CG-5), race 6 (UP-12), and race 7 (BR-7).
FIGURE 4

PCR amplification product generated using LRGAF and LRGAR
degenerate primer on genomic DNA of lentil resistant accession.
Lane 1 IC201561 (L65), Lane 2 EC714243 (L83), and Lane 3
EC718238 (L90). M represents 100 bp ladder.
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tool over the conventional technique, and they have been used in

crop plants to isolate resistant gene analogues that are closely

associated with the R gene. In our study, accessions showing

resistance responses to multiple races were used for RGA

isolation and characterization. Ninety clones were isolated, and

the heterogeneity within the isolated RGA amplicons was observed.

Similar results were also reported in radish (Yu et al., 2018). Forty-

five RGAs showed considerable sequence variation and similarity to

the RUN1 and RPP13 disease resistance genes of the legume model

plant, Medicago truncatula, and the TMV resistance gene, N of

Trifolium pratense, predicting their role in disease resistance. Our

results were in accordance with the RGA isolated from chickpea

(Huettel et al., 2002). Because of the presence of conserved domain

P-loop, RNBS-A, kinase 2, kinase 3, RNBS-C, and GLPLA, multiple

sequence alignment revealed them to be part of the NBS region of

the R gene. The amino-terminal of the typical R gene is linked to

TIR (Toll/interleukin-1-like receptor) or CC (coiled coil) and is

involved in defense signaling. They are differentiated based on the

presence of aspartate (D) or tryptophan (W) at end of the kinase 2

motif in TIR and CC, respectively (Pan et al., 2000). We observed

that forty-two isolated clones belonged to class TIR and the other

three to non-TIR, which had previously not been found in Spanish

lines (Yaish et al., 2004). The presence of both classes of RGAs and

enhanced expression of the TIR-NBS-LRR R gene have been

reported in dicots and evolved mainly through duplication and

diversification during evolution (Meyers et al., 2003; Joshi and
Frontiers in Plant Science 09
Nayak, 2013). In the present study, a significant difference in the

number of lentil TIR-RGA and non-TIR RGA clones was observed.

To visualize the relatedness of isolated RGAs with other known R

genes, a phylogenetic tree was constructed based on the amino acid

sequence. The tree differentiated the clones into two groups, TIR

and non-TIR, and further into six classes, LRGA1-6. The clustering

of all the RGAs isolated from L. culinaris subsp. odemensis to class

LRGA1 reveals a sequence homology among the clones and could

be due to tandem and segmental duplication within the sequence.

The clustering of RGAs from cultivated and wild sources into the

same classes reveals conserved nature of the R genes. RGAs isolated

from three species were grouped into six classes, revealing the

diversity of the RGAs present in the host. The diversity of RGAs

might be aided by recombination and sequence exchange, resulting

in haplotypic diversity (Joshi and Nayak, 2013). The grouping of the

LnRGA 13 along with the I2 Fusarium-resistant gene and the

sharing of 49% amino acid similarity predict the structural

similarity with Fusarium wilt resistance (Sun et al., 2010). All the

conserved motifs were identified in both classes of RGAs when

compared with the R gene. Positional and sequence variation of the

RNBS-TIR and RNBS non-TIR motif have been also observed in the

Allium RGA, which is resistant to Fusarium basal rot (Rout

et al., 2014).

The presence of active binding sites determines the functionality

of RGAs in resistance. In silico characterization has identified six

conserved motifs of NBS to harbor ABS, and grouping based on ABS
FIGURE 5

Multiple sequence alignment between P-loop and GLPLA of 45 lentil RGAs with NBS region of known R gene Gpa2, I2, N, L6, and M. The conserved
motifs are indicated above the alignment. The number of amino acids is indicated above the alignment. The gaps to optimize the alignment are
designated by dash (-). The alignment was constructed using CLUSTA W of Bioedit.
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FIGURE 6

Neighbor-joining phylogenetic tree constructed based on isolated Lentil RGAs and known NBS region of R gene, N (U15605), L6 (U27081), M
(U73916), RPP5 (AAFO8790.1), RPP4 (AAM18462.1), RPP1 (AT3444670), RPS4 (CAB50708.1), Mla (AAG37356), Pi-ta (ACY24970.1), Pi36 (ADF29629.1),
Pib (BAA76282.2), I2 (AF004878), RPP13 (AAF42831), RPM1 (AQ39214), Prf (U65391), Gpa2 (AF195939), RPP8 (AAC78631.1.), FOM-2 (AY583855.1) at
bootstrap values (10000 replicates). Numbers on the branches indicate the percentage of bootstrap replications. Green represents LRGA 1, blue
represents LRGA 2, yellow represents LRGA 3, red represents LRGA 4, purple represents LRGA 5, and orange represents LRGA 6.
FIGURE 7

Neighbor-joining phylogenetic tree constructed based on isolated lentil RGAs, lentil R gene, and known NBS region of R genes N (U15605), L6
(U27081), M (U73916), RPP5 (AAFO8790.1), RPP4 (AAM18462.1), RPP1 (AT3444670), RPS4 (CAB50708.1), Mla (AAG37356), Pi-ta (ACY24970.1), Pi36
(ADF29629.1), Pib (BAA76282.2), I2 (AF004878), RPP13 (AAF42831), RPM1 (AQ39214), Prf (U65391), Gpa2 (AF195939), RPP8 (AAC78631.1.), and FOM-2
(AY583855.1) at bootstrap values (1000 replicates). Numbers on the branches indicate the percentage of bootstrap replications. Green represents
LRGA 1, blue represents LRGA 2, yellow represents LRGA 3, red represents LRGA 4, purple represents LRGA 5, and orange represents LRGA 6.
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determines the diversity of RGAs and probably the different modes of

action. The nucleotide-binding site (NBS)/NB-ARC region of the R

gene belongs to STAND (signal transduction ATPase with numerous

domains) superfamily protein, which is involved in immunity and

apoptosis (Danot et al., 2009). The biological function of all the

isolated LRGAs determined using I-TASSER inferred their
Frontiers in Plant Science 11
involvement in immunity and the involvement of LoRGA7 in

intrinsic apoptotic signaling. TIR/CC-NBS-LRR requires

maturation for the recognition of effector molecules and is

mediated by Hsp90, an ATP-dependent chaperone, and other co-

chaperones. In the closed and autoinhibited state, TIR/CC and LRR

are present in close proximity and are folded back to the NBS-ARC
TABLE 3 Homology matrix obtained between representative lentil RGAs and known R gene using DNAMAN 8.0.

LoRGA6 100

LcRGA2 83.35 100

LcRGA10 55.29 57.65 100

LcRGA15 61.18 62.72 63.31 100

LcRGA11 53.53 57.75 57.65 62.95 100

LnRGA1 39.76 38.46 40.12 37.95 37.95 100

LcRGA5 42.33 41.32 42.52 40.24 41.67 86.98 100

LnRGA2 30.77 27.85 29.68 30.26 28.77 36.88 31.97 100

LnRGA13 31.56 32.69 30.38 31.16 30.52 32.86 34.75 36.20 100

I2 30.38 31.61 30.82 32.28 29.03 30.92 32.03 44.71 49.41 100

L6 34.32 35.53 34.71 30.54 35.12 37.42 38.03 34.44 26.83 34.18 100

M 34.91 37.95 36.59 33.54 34.12 38.79 40.37 34.44 26.99 36.48 81.98 100

Gpa2 27.81 32.69 28.13 31.29 30.41 32.86 34.75 36.20 42.14 37.87 33.33 32.03 100
frontiersi
FIGURE 8

Diagrammatic representation of conserved motif of TIR RGAs within NBS domain along with R genes N, L6, and M. The solid black line represents
each RGA, and their lengths with motifs are represented in colored boxes. The sequence logo of six conserved motifs along with their E value is
presented on the right-hand side.
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core along with ADP. Upon recognition of the effector,

conformational changes allow the exchange of ADP to ATP,

resulting in an open structure and the activation of downstream

defense (Takken and Goverse, 2012).

Phosphorylation of ADP has been reported as a key process in

pathogen recognition (Suraby et al., 2020). The involvement of the
Frontiers in Plant Science 12
NBS region of the I2 gene in binding to ATP at the ATP-binding

sites of P-loop, kinase 2, and kinase 3, and the subsequent

hydrolysis of ATP, confirmed the relatedness of NBS to the

ATPase super family (Tameling et al., 2002). In the present study,

ADP/ATP was found to be the potential ligand of the lentil RGAs

with ATP binding and ATPase as molecular functions, and this
FIGURE 9

Diagrammatic representation of conserved motif of non-TIR RGAs within NBS domain along with R genes Gpa2 and I2. The solid black line
represents each RGA, and their lengths with motifs are represented in colored boxes. Sequence logo of six conserved motifs along with their E value
is given below.
TABLE 4 Lentil RGAs grouped based on amino acid corresponding to predicted active binding sites (ABS).

GTS SN GTNS GTD GTDN S GT GTDL G L GTDT GTDG No ABS

LcRGA1 LcRGA2 LcRGA3 LcRGA6 LcRGA8 LcRGA10 LcRGA14 LoRGA3 LoRGA7 LnRGA1 LnRGA2 LnRGA9 LcRGA4

LcRGA9 LcRGA7 LcRGA12 LnRGA8 LnRGA13 LcRGA5

LcRGA13 LcRGA15 LnRGA14 LcRGA11

LoRGA2 LoRGA1 LoRGA12

LoRGA8 LoRGA4 LnRGA5

LnRGA4 LoRGA5 LnRGA7

LoRGA6 LnRGA15

LoRGA9

LoRGA10

LoRGA11

LoRGA13

LoRGA14

LoRGA15

LnRGA3

LnRGA6

LnRGA10

LnRGA11

LnRGA12
fron
*Each group is named based on amino acid corresponding to ABS.
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infers its functional role in defense response. The potential

solubility of ABS determined the hydrophobic nature of amino

acids. We predicted the RGAs’ secondary and tertiary structure

using Phyre 2 and I-TASSER. The composition of alpha-helix, beta

strands, and disordered region varied between RGAs, and similar

results were found in RGA isolates from watermelon resistant to

Fusarium wilt (Reddy et al., 2019). The presence of a

transmembrane helix deduced the role in lipid bilayer interaction

(Zviling et al., 2007). The best tertiary structure of RGAs predicted

with the C-score between 0.31 and 0.69 and TM-score between

0.70 ± 0.10 and 0.81 ± 0.09 was found in accordance with the
Frontiers in Plant Science 13
previous report of Barka et al. (2020). The information generated in

the present findings will be utilized for understanding the

molecular-based mechanism of host–pathogen interaction.
Conclusion

In the present study, cultivated and wild lentil species resistant

to multiple races of Folwere identified by extensive screening. RGAs

were isolated from resistant accessions that belonged to three

different species using a degenerate primer. The phylogenetic

analysis grouped the RGAs into six classes, determining the

diversity of the RGAs present in the host. Clustering of cultivated

and wild species of RGAs together revealed the conserved nature of

the R gene. The molecular and biological functions revealed the

ATP binding and ATP-hydrolyzing activity of the lentil RGAs,

confirming their relatedness to the functional R gene. The isolated

RGAs can be a useful marker associated with the R gene, and the

leads obtained in the present study will be useful for expression

analysis to determine its activity during pathogen interaction and

will decipher the molecular mechanism involved in resistance.

Multiple race-resistant genotypes can be utilized in the

breeding program.
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