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bacterial phytase gene
expression in Chlamydomonas
reinhardtii via Cas9 RNP-
mediated HDR
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Hamideh Ofoghi2* and Saeid Kadkhodaei3

1Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan,
Bandar Abbas, Iran, 2Department of Biotechnology, Iranian Research Organization for Science and
Technology (IROST), Tehran, Iran, 3Agricultural Biotechnology Research Institute of Iran (ABRII),
Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
In the present study, we applied the HDR (homology-directed DNA repair)

CRISPR-Cas9-mediated knock-in system to accurately insert an optimized

foreign bacterial phytase gene at a specific site of the nitrate reductase (NR)

gene (exon 2) to achieve homologous recombination with the stability of the

transgene and reduce insertion site effects or gene silencing. To this end, we

successfully knocked-in the targeted NR gene of Chlamydomonas reinhardtii

using the bacterial phytase gene cassette through direct delivery of the CRISPR/

Cas9 system as the ribonucleoprotein (RNP) complex consisting of Cas9 protein

and the specific single guide RNAs (sgRNAs). The NR insertion site editing was

confirmed by PCR and sequencing of the transgene positive clones. Moreover,

24 clones with correct editing were obtained, where the phytase gene cassette

was located in exon 2 of the NR gene, and the editing efficiency was determined

to be 14.81%. Additionally, site-specific gene expression was analyzed and

confirmed using RT-qPCR. Cultivation of the positive knocked-in colonies on

the selective media during 10 generations indicated the stability of the correct

editing without gene silencing or negative insertion site effects. Our results

demonstrated that CRISPR-Cas9-mediated knock-in could be applied for

nuclear expression of the heterologous gene of interest, and also confirmed its

efficacy as an effective tool for site-specific gene knock-in, avoiding nuclear

positional effects and gene silencing in C. reinhardtii. These findings could also

provide a new perspective on the advantageous application of RNP-CRISPR/

Cas9 gene-editing to accelerate the commercial production of complex

recombinant proteins in the food-grade organism “C. reinhardtii”.
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Introduction

Microalgae encompass a large number of organisms with both

prokaryotic and eukaryotic nature, making them an archetypal

platform for recombinant technology (Malla et al., 2021). The

nutraceutical significance of microalgae is characterized by their

rich natural biomolecules and high amount of protein, vitamins,

and lipid substances (Potvin and Zhang, 2010; Barrera and

Mayfield, 2013; Yan et al., 2016; Bañuelos-Hernández et al., 2017;

Ortega-Berlanga et al., 2018; Schmidt et al., 2019; Fayyaz et al., 2020;

Sproles et al., 2021). Because of their ability to generate many

compounds, microalgae have gained commercial and

biotechnological interest, and some species are “generally

regarded as safe” (GRAS) for their use as dietary supplements for

human and animal food (Rosenberg et al., 2008). Microalgae have

many properties that are favorable as a commercial recombinant

protein expression system, including fast growth and simple

cultivation, with the capability to make post-transcriptional and

post-translational modifications (Surzycki et al., 2009). Microalgae

also display superior photosynthetic efficiency, being almost three

times more efficient in using light than higher plants (Shimizu,

1996). These specifications make these systems an attractive

approach for the production of recombinant proteins (Mayfield

and Franklin, 2005; Mayfield et al., 2007). Chlamydomonas

reinhardtii is a green alga, generally recognized as safe by the

FDA with many benefits compared to traditional systems for the

molecular farming of recombinant proteins (Rosales-Mendoza

et al., 2012). These comprise low production price, rapid

scalability at the pilot level, lack of human pathogens, and the

capability to fold and assemble complex proteins accurately

(Rosales-Mendoza et al., 2012). Furthermore, C. reinhardtii

remains haploid during vegetative growth, and therefore,

mutations are almost immediately expressed and specific mutant

phenotypes can be easily observed (Shrager et al., 2003).

To date, only three techniques, namely, Zinc Finger Nuclease

(ZFN), Transcription-Activator Like Effector Nucleases (TALEN),

and Clustered Regularly Interspaced Short Palindromic Repeats

(CRISPR), are accessible for efficient genome editing in a specific

location (Gupta et al., 2019). In comparison with CRISPR, TALEN

and ZFN are more costly and time-consuming (Zhang et al., 2016)

and have high off-target mutation tendency and low possibility

(Gupta et al., 2014). Eventually, the CRISPR-Cas9 technology offers

a simple, easy-to-design, effective, and less expensive method (Li

et al., 2013; Walsh and Hochedlinger, 2013; Wang et al., 2013) and

can result in a “non-GMO” plant or microalgae (Perez-Pinera et al.,

2013). CRISPR, as well as its related protein “CRISPR-associated

protein 9” (Cas9), is a method of adaptive immunity in prokaryotes

to defend themselves against viruses or bacteriophages (Hille and

Charpentier, 2016). Plant genetic engineering has been

revolutionized by the prompt development of CRISPR-derived

biotechnologies due to their easy, inexpensive, and efficient usage

in many plant species (Li et al., 2013; Nekrasov et al., 2013; Shan

et al., 2013; Zhang et al., 2019). CRISPR relies on the nuclease

activity of CRISPR-associated proteins (Cas) and their particular

binding to the genome directed by guide RNAs (gRNAs). CRISPR-

Cas creates DNA double-strand breaks and begins endogenous
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repair pathways (Zhang et al., 2021). CRISPR/Cas9 becomes the

most efficient, advantageous, and accurate method of genome

editing tool in all living cells and is employed in many applied

disciplines (Adli, 2018). Insertions and deletions (Indels) can be

presented through the nonhomologous end joining (NHEJ) repair

pathway, the dominant repair pathway in plant somatic tissues,

leading to random mutagenesis at the target location (Puchta, 2005;

Schmidt et al., 2019). Accurate genome editing can be attained

through the homology-directed repair (HDR) pathway by

introducing homologous repair templates (Zhang et al., 2021).

Given the importance of algae in terms of products such as

biosequestration of CO2, biofuel, bioremediation, cosmetics,

aquaculture, agriculture, and recombinant protein production

(Mimouni et al., 2012; Markou and Nerantzis, 2013; Skjånes

et al., 2013; Cuellar-Bermudez et al., 2015; El Arroussi et al., 2015;

Maadane et al., 2015; Gomaa et al., 2016; Minhas et al., 2016), their

genomic engineering progress is critical to further gain the

microalgae production of high value-added products and bio-

energy (Slade and Bauen, 2013). Therefore, wisely used CRISPR/

Cas9 tools can help industries to resolve some issues and increase

the production yield of some valuable crops. In just a few years of its

finding, the CRISPR/Cas9 genome editing technique has already

been explored for a large number of uses and had a great impact on

the world in many fields including agriculture, medicine, and

biotechnology (Bilal et al., 2019).

Nowadays, although the scientific community manages to

transform microalgae chloroplast with some successes in order to

express desired proteins, nuclear transformation remains really

difficult, random, and labor-intensive (Bilal et al., 2019).

Homologous recombination can be used in order to insert

transgenes during chloroplast transformation, but nuclear

transformation remains a more random event (Zhang et al.,

2014). Moreover, transgene stability and silencing of the gene of

interest (Cerutti et al., 2011; Kim et al., 2015) could also occur, and

achievement of such transformation process except in a few cases is

difficult or almost impossible (Bilal et al., 2019).

Genomic positional effects, random insertion, and genomic

rearrangements are all restrictions that cause researchers to spend

a lot of time on screening “the correct transformants” (Bilal et al.,

2019). The CRISPR system using the RNA-guided engineered

nuclease (RGEN) Cas9 is capable of targeting a specific genomic

site thanks to single guide RNA (sgRNA) (Jinek et al., 2012; Cong

et al., 2013; Sizova et al., 2013). It appeared as a simpler, versatile,

and trustable technique to remove or insert and tune the gene(s) of

interest. It is a potent method to edit the nuclear genome knocking-

out or knocking-in genes by homology directed DNA repair (HDR)

(Mali et al., 2013; Sizova et al., 2013).

Direct delivery of ribonucleoprotein (RNP) complex

comprising Cas9 protein and guide RNA has emerged as a strong

and prevalent method in the field of CRISPR/Cas genome editing.

RNP delivery avoids many of the difficulties associated with mRNA,

DNA, or viral delivery, and minimizes off-target effects, insertional

mutagenesis, immune responses (Chandrasekaran et al., 2018;

Lattanzi et al., 2019), and cellular toxicity (Bloomer et al., 2021).

On the other hand, it leads to rapid genome editing due to the

elimination of need for intracellular transcription and translation
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especially for cells with low transcription and translation activity

and enhances genome editing efficiencies (DeWitt et al., 2017;

Zhang et al., 2021). Moreover, performing in vitro cleavage assay

with designed gRNAs will save a lot of time, cost, and labor upfront.

In the intestines of monogastric organisms such as humans, birds,

aquatic animals, pigs, and other monogastric organisms, there is little

or no phytase enzyme production (Turner et al., 2007; Dahiya, 2016).

In order to make phosphorus available in the plant diet, phytase

produced by microorganisms can be added to the diet (Dahiya and

Singh, 2014). The addition of phytase reduces the need to add

inorganic phosphorus, and on the other hand, it minimizes the

excretion of phosphorus in monogastric organisms (Bali and

Satyanarayana, 2001). Moreover, it has been well documented that

adding phytase to the diet reduces diet costs by preventing the

formation of phytate complexes with minerals (copper, zinc, iron,

manganese, etc.), amino acids, fatty acids, starch, and other important

components of the diet and subsequently lessens the need for these

mentioned factors in the diet (Dahiya, 2016).

Given the advantages of microalgae nuclear expression

including protein localization (cytoplasm, nucleus, chloroplast,

ER, mitochondria , and secret ion) and modificat ions

(phosphorylation, glycosylation, and disulfide bond), and the

limitations of expression in the nuclear system of microalgae

including genomic positional effects, random insertion, and

genomic rearrangements, in the present study, we investigated the

RNP-mediated HDR CRISPR system for accurate insertion of the

transgene (optimized foreign bacterial phytase gene) at a specific

site to achieve stable homologous recombination and consequently

reduce the positional effects and gene silencing.
Materials and methods

Microalgal strain and culture conditions

The UVM11 “C. reinhardtii cell wall deficient strain” was kindly

provided by Dr. Ralph Bock and cultured in tris–acetate-phosphate

(TAP) medium (Gorman and Levine, 1965; Andersen, 2005) with

continuous illumination (250 mmol photons m−2 s−1), on an orbital

shaker (120 rpm) at constant temperature (25°C).
Preparation of Cas9 protein

Streptococcus pyogenes SpCas9 protein expression and

purification were briefly performed as follows: SpCas9 expression

plasmid pET-28b-Cas9-His (Addgene plasmid, 47327) was

transformed into E. coli strain Rosetta2 (DE3) and then the

expressed protein (Cas9) was purified and concentrated by Nickel

NTA affinity chromatography and Amicon (Amicon, 100KMWCO),

respectively (Gagnon et al., 2014; Greiner et al., 2017; Yu et al., 2017).
Target gene and sgRNA design

Target site was selected in the second exon of the NR gene

(Nit1) that encodes nitrate reductase. Designing of sgRNA sites for
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the target gene (Nit1) was done by using the CHOPCHOP v3 web

tool (http://chopchop.cbu.uib.no/), which enables us to predict the

frameshift rate of each gRNA and evaluate the on-target efficiency

along with genome-wide off-targets (Labun et al., 2019). The gene

annotation file of C. reinhardtii chromosome 9 was achieved from

NCBI (Genbank accession number: CM008970.1) and theNit1 gene

was extracted for submission to CHOPCHOP. Then, all possible

sgRNAs on the genomic sequence of Nit1 were analyzed by

CHOPCHOP in CRISPR Cas9 knock-in mode using Nit1

sequence as the query. Also, in order to confirm the presence of

suitably designed sgRNAs in C. reinhardtii uvm11 strain, Nit1 gene

was PCR amplified (795 bp PCR product) and partially sequenced

(Genbank accession number: OP566529) by primers T12-F and

T12R (1). One selected gRNA was 20 base pairs (bp) long, followed

by a protospacer adjacent motif (PAM)–NGG that is located in the

second exon; their detailed information is presented in

Supplementary Table 1.
In vitro guide RNA synthesis

The sgRNA DNA template , which had a T7 (5 ’-

TAATACGACTCACTATA-3’) promoter sequence, followed by

the 20-base target-specific gRNA sequence without the PAM and

a tracrRNA sequence, was assembled by overlapping primers

(Gagnon et al., 2014; Yu et al., 2017; Hu et al., 2019; Kang et al.,

2020). Two oligonucleotide primers F-gr2 and R-gr123

(Supplementary Table 2) having 18 nt overlap were synthesized

(GenScript) and then assembled with the following thermal cycling

program: 98°C for 1 min, 98°C for 20 s (denaturation), 54°C for 20 s

(renaturation), 68°C for 50 s (extension), and 68°C for 5 min (final

extension). PCR cycles were repeated 25 times (Supplementary

Table 3). The PCR products (gRNA DNA template) were gel

purified and 75 ng of the template DNA was used for in vitro

gRNA transcription, using the Hi Scribe T7 Quick High Yield RNA

Synthesis Kit (New England Biolabs) at 37°C overnight following

the manufacturer’s protocol (NEB #E2050).
Donor plasmid construction for CRISPR-
based gene knock-in

First, the gene of interest (bacterial phytase gene) sequence in

terms of critical parameters affecting the efficiency of gene

expression, including codon usage, GC content, CpG

dinucleotides content, mRNA secondary structure, cryptic

splicing sites, premature polyA sites, internal chi sites, ribosomal

binding sites, negative CpG islands, RNA instability motif (ARE),

repeat sequences (direct repeat, reverse repeat, and dyad repeat),

and restriction sites that may interfere with cloning, was optimized

for translation in C. reinhardtii and then synthesized by GeneScript

(Genbank accession number OP566532). Using the designed

specific overlapping primers “F-SE1, R1-SE1, and R2-SE1”, the

fragment Kpn1 restriction site, microalgae-specific signal peptide,

His-tag at the 5’ end (part 1 of the phytase gene), and specific

overlap primer R-SE2 (Supplementary Table 2) for Nde1 restriction
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site and KDEL at the 3’ end of the phytase gene sequence (part 2 of

phytase gene) were assembled through MOE-PCR (Kadkhodaei

et al., 2016) in two independent PCR reactions, respectively

(Supplementary Tables 4, 5; Figure 1A). The construct prepared

by PCR (Genbank accession number: OP566531) was then cloned

to the pChlamy3 expression vector (Supplementary Figure 1) using

Kpn1 and Nde1 restriction enzymes.

In the next step, specific primers F-INC2 and R-INC2

(Supplementary Table 2) were designed in a way to have

overlapping ends with homologous arms (left arm: HSP70A

inducible promoter; right arm: RBCS2 3’UTR regions) of the

phytase gene construct. The construct was amplified through

PCR, and the PCR product was named as the inner construct

(Genbank accession number: OP566530). The left and right

homologous arms (Genbank accession numbers: OP595611 and

OP595612) required for CRISPR/Cas9-mediated HDR were

selected according to both sides of the Cas9 cleavage site in a

length of approximately 1,000 nt. The homologous arms were PCR

amplified using the relevant overlapping primers F-HU2, F-HD2

and R-HU2, R-HD2 (Supplementary Table 2) with the inner

construct, as well as adding the gRNA and PAM sequences at the

beginning of both F-HU2 forward and R-HD2 reverse primers.

The p1ChlamyCK-I/O vector backbone including origin of

replication (ori) and the genes encoding ampicillin and

hygromycin resistance along with the regulatory elements were

amplified from pChlamy3 vector backbone (Supplementary

Figure 1) using primers F-pCh2 and R-pCh2 (Supplementary

Table 2) containing overlapping sequences with the left and right

homologous arms accordingly.

Finally, to generate the donor plasmid for the CRISPR knock-in

system (p1ChlamyCK-I/O), all amplified fragments, including the

inner construct, left and right homologous arms, and pChlamy3

backbone, were gel purified, assembled through MOE-PCR

(Supplementary Table 6), and subsequently transformed to E. coli

(DH5a) for future experiments (Supplementary Figure 2). In order to

confirm the accuracy and integrity of the assembled p1ChlamyCK-I/

O donor plasmid, both the restriction mapping (using one or two

restriction sites,HindIII, BamHI, XhoI, SapI, and EcoRv, embedded at
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the flanking regions of the fragments) and sequencing (through

primer walking) (Supplementary Table 7) were applied.
Preparation of RNP complex and in vitro
cleavage assay

The activities of the sgRNAs and the Cas9 protein were verified in

vitro prior to in vivo experiments. The p1ChlamyCK-I/O donor

plasmid assembled in the previous steps was targeted as DNA

template. In vitro cleavage assay was performed according to Hu

et al. (2021) with some minor modifications (Supplementary

Table 8): in the optimized condition to obtain the RNP complex,

1,300 ng of sgRNA and 130 ng of Cas9 protein (10:1 ratio) were pre-

mixed at 37°C for 15 min along with 3 µl of 10X Cas9 activity buffer

and nuclease-free water to a final volume of 15 µl. Then, for each

experiment, 400 ng of the p1ChlamyCK-I/O donor plasmid was

added in the above reaction, and the mixtures were incubated at 37°C

for 4 h. To inactivate the Cas9 nuclease, the reactions were incubated

at 65°C for 10 min. The final products to confirm the activity and

correctness of enzyme cleavage were separated by 0.8% agarose

gel electrophoresis.
Transformation of C. reinhardtii

Direct delivery of the RNP complex and the donor plasmid to

C. reinhardtii (strain UVM11) was carried out using the glass

bead method as described by Picariello et al. (2020) and Neupert

et al. (2012) with minor modifications. Glass beads, 425–600 µm

in diameter (Sigma-Aldrich), were washed using concentrated

sulfuric acid, then rinsed thoroughly with distilled water for

several times, dried, and sterilized by autoclaving. The glass

beads (300 mg), the donor plasmid linearized by Sca1 enzyme

(1µg), the RNP complex (1.3 µg of Cas9 plus 13 µg of gRNA

under in vivo conditions), and 300 µl of C. reinhardtii cells

(harvested at a density of 4×106 cells/ml and concentrated to

3×108 cells/ml) were added to the tube for knock-in experiments.
A

B

FIGURE 1

Assembly of phytase gene and gRNA DNA construct template. (A) The phytase gene construct comprising parts 1 and 2 (anchor, Kpn1 restriction
enzyme, Kozack, signal peptide, His tag, codon-optimized phytase gene, KDEL, Nde1 restriction enzyme, and anchor, respectively, from the upper
part to the lower part) assembled through MOE-PCR for expression in C. reinhardtii (Genbank accession number: OP566531). (B) gRNA DNA
template (gDNA) assembled sequence (125 bp) including T7 promoter (dashed format), gRNA target plus PAM (underlined format), and scaffold (two
underlined format).
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The tube was vortexed at a maximum speed for 20 s, rested for 10

s, then vortexed again at the top speed for 15 s. Also, two control

samples were considered in glass bead transformation

experiments, one containing the donor plasmid without the

RNP complex, and the other lacking both the donor plasmid

and the RNP complex.
Frontiers in Plant Science 05
Post-transformation cell recovery, plating,
and selection of the transgenic cells

Cell recovery and plating were carried out following the

method of Picariello et al. (2020) with minor optimization.

Transformed cells were placed on an orbital shaker (70 rpm)
B

A

FIGURE 2

Culture of the transformed and untransformed C. reinhardtii. (A) Spot culture of the transformed and untransformed C. reinhardtii on selective TAP
medium. (A1) Spot culture of the treated C. reinhardtii under glass bead transformation conditions but without using the donor plasmid and the RNP
complex. (A2) Spot culture of the treated C. reinhardtii under glass bead transformation conditions only using the donor plasmid “p1ChlamyCK-I/O”.
(A3) A2 repeat. (A4) Spot culture of the treated C. reinhardtii under glass bead transformation conditions using the donor plasmid “p1ChlamyCK-I/O”
and the RNP complex. (A5) A4 repeat. (B) The C. reinhardtii-positive colonies obtained using the glass bead transformation method on the selective
TAP medium supplemented with 10 µg/ml Hygromycin B. (B1) C. reinhardtii without any transformation. (B2) Treated C. reinhardtii under
transformation conditions but without using the donor plasmid and the RNP complex. (B3) Treated C. reinhardtii under transformation conditions
using the donor plasmid “p1ChlamyCK-I/O” and the RNP complex. (B4, B5) B3 repeat. (B6) Treated C. reinhardtii under transformation conditions
using only the donor plasmid “p1ChlamyCK-I/O”. (B7 and B8) B6 repeat.
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under dim lights for 24 h at 25°C. Finally, 75 µl (for spread

culture) or 25 µl (for spot culture) of the transformed cell culture

was harvested and plated on a solid TAP medium supplemented

with 10 µg/ml hygromycin. The plates were incubated at 25°C

under continuous light (250 mmol photons m−2 s−1) until visible

colonies appeared (approximately between 10 and 14 days).

Finally, positive cell lines (grown on 10 µg/ml hygromycin) were

picked for colony maintenance and genome editing verifications

including PCR, sequencing, and qPCR.
Algal mutant screening procedures

Verification of knocked-in mutant by PCR
amplification and sequencing analysis

Genomic DNA was extracted from positive colonies (0.5 mm in

size) using 500 µl of 2x CTAB (0.1 M Tris-HCl, 0.02 M EDTA, 1.4

M NaCl, 2% CTAB, pH 8.0, and 2% PVP). The target regions

including 1,332 bp (specific primer: F-SE1 and R-SE1) of the

inserted gene (phytase), a 3,047-bp (specific primer: T12-F and

T12-R) fragment comprising gRNA sequence (593 bp upstream of

the gRNA sequence, 2,252 bp inserted phytase gene along with the

regulatory elements, and 202 bp downstream of the gRNA

sequence) in the genome, and 3,753 bp (specific primer: 3327-F

and T12-R) of the donor plasmid (1,299 bp upstream of the gRNA

sequence along with the regulatory elements of plasmid, 2,252 bp

inserted phytase gene along with the regulatory elements, and 202

bp downstream of the gRNA sequence) were amplified by PCR

using the specific primers (Supplementary Table 2).

All in all, the 1,332-bp fragment was used to confirm the

presence of the phytase gene in the positive colonies. The 3,047-

bp and 3,753-bp fragments were used to validate the editing that

occurred in exon 2 of the nitrate reductase gene (correct editing/

knock-in) and the absence of donor plasmid residues (incorrect

editing or false-positive results due to the presence of plasmid

residues), respectively. The 3,047-bp PCR product was gel purified

and sequenced using Sanger sequencing by Gene Fanavaran Co.

(Tehran, Iran). The multiple sequencing contigs were then aligned

and assembled using Geneious software (2020.2.5) to verify the

integrity of the inserted constructs in the correct position (accurate

knock-in editing) as well as the possible mutations.

Phytase expression analysis by RT-PCR
and qRT-PCR

Total RNA was extracted fromWT andNR knocked-in mutants

using the TRIzol (YTA Co., Iran Cat No: YT9066) reagent and

cDNA was synthesized according to the manufacturer’s (YTA Co.,

Iran Cat No: YT4500) instructions.

The RT-PCR assay was performed by the Bio-Rad PCR cycler

system as follows: 4 min at 98°C; 30 cycles of 30 s at 98°C, 20 s at

60°C, 30 s at 68°C, and 5 min at 68°C for final extension.

The qPCR assays were performed using YTA SYBR Green

qPCR MasterMix 2X (YTA Co. Iran Cat No: YT2551) by a Mic
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qPCR Cycler system. The thermal profile used for qPCR was as

follows: 3 min at 95°C; 25 cycles of 10 s at 95°C, 10 s at 60°C, and

20 s at 72°C. Each reaction contained 1 µl of the undiluted cDNA

and a reaction master mix containing 2x SYBR Green qPCR Mix

with ROX dye and 0.2 µM of each primer. All qPCR assays were run

with appropriate controls including the Non-Template

Control (NTC).

For RT-PCR and qRT-PCR, one set of GOI primers (Fq-

Phytase and Rq-Phytase) (Supplementary Table 2) was used to

amplify and quantify a region of approximately 221 bp in the

inserted phytase gene. For the control, CBLP gene was used as the

housekeeping gene (Moseley et al., 2006; Allen et al., 2007; Zhao

et al., 2009), and the primers F-CBLP and R-CBLP (Supplementary

Table 2) were used to amplify a region of approximately 221 bp

in size.
Growth analysis

In order to evaluate whether the knock-in strategy has no

negative effect on the cell growth, both WT and knocked-in C.

reinhardtii cells were grown in 100 ml of TAP media illuminated

with continuous light (250 mmol photons m−2 s−1) on an orbital

shaker (120 rpm) at 25 °C. The initial cell concentration for each

culture was 1× 105 cells/ml. The comparative analysis of growth

parameters was performed according to cell count (sampling of 1 ml

culture each day) by using a hemocytometer and light microscopy

for a period of 7 days.
Results

RNP complex preparation and in vitro
cleavage assay optimization

The presence of expressed and purified Cas9 nuclease was

evaluated by SDS-PAGE in the eluted and concentrated fractions,

which showed a high degree of purity and correct size. Based on

measurement using the Bradford method and the open-source image

processing program “Image J” (National Institutes of Health,

Bethesda, MD), approximately 215 µg/ml Cas9 endonuclease was

yielded from the bacterial culture medium containing the Cas9-

expressing plasmid (pET-28b-Cas9-His) (https://www.addgene.org/

47327/sequences/).

The DNA template of gRNA was assembled using two synthesized

oligonucleotides (Supplementary Table 2) by overlapping PCR

(Figure 1B) and the correct assembly was confirmed on 1.5% agarose

gel. The results showed successful fusion of the two fragments with 120

bp amplicon size. Subsequently, in vitro gRNA synthesis using the

relevant DNA template resulted in the production of 100 mg/ml

gRNA, and overall qualitative (1.5% agarose gel and nanodrop data)

and quantitative (nanodrop data) results verified the correct

gRNA synthesis.
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Donor DNA fragment containing two flanking gRNA target

sequences (Supplementary Figure 2) was used to evaluate the

efficiency and activity of the Cas9/gRNA complex through in

vitro cleavage assay. In order to optimize RNP complex

preparation and cleavage assay, various amounts of Cas9 and

gRNA were tested. The optimal concentration of gRNA and Cas9

for complete cleavage of the target was determined as 1,300 ng and

130 ng, respectively. The in vitro cleavage assay clearly showed the

expected size of the amplicons (4,000 and 3,500 bp), while there was

no cleavage seen when only gRNA was added to the target template.
Donor plasmid assembly for the CRISPR-
based knock-in

We designed a modular donor plasmid “p1ChlamyCK-I/O”

(Genbank accession number: OP236418) (Supplementary Figure 2)

for CRISPR-based knock-in that uses the HDR pathway to target

NR Gene (Exon2) in C. reinhardtii. Briefly in this system, 12 primer

pairs (Supplementary Table 2) were designed through in silico

screening by Oligo Analyzer software. The MOE PCR assembly

method was used to join all fragments, respectively, including vector

backbone (hygromycin, ampicillin, and ori sequence), upstream

gRNA target sequence and the PAM site, left homologous arm, GOI

cassette (inducer-promoter-intron-signal peptide-His tag-phytase

gene-KDEL-terminator), right homologous arm, and downstream

gRNA target sequence containing the relevant PAM site

(Supplementary Figure 2).

The restriction mapping (by using HindIII, EcoRv, Sap1, Xho1,

and BamH1 enzymes), in vitro cleavage assay (by using RNP

complex), and sequencing by primer walking (Genbank accession

number: OP236418) confirmed the precise assembly of the donor

plasmid (p1ChlamyCK-I/O), which ensures accuracy of the knock-

in process in C. reinhardtii.
Direct delivery of knock-in RNP complex
to microalgal cell (C. reinhardtii
UVM11 strain)

In this research, three independent transformations with two

repeats (Supplementary Table 9 and Figures 2A, B) were performed

and putative positive colonies were screened on the TAP agar

medium supplemented with 10 µg/ml hygromycin B. Overall, 162

positive transformants were selected by the glass beads

transformation method with the transformation efficiency of

2,070 cfu/mg of the knocked-in C. reinhardtii-positive colonies

using the donor plasmid “p1ChlamyCK-I/O” and the RNP

complex compared to the control (without RNP complex and

only using the donor plasmid “p1ChlamyCK-I/O”) with 1,511

cfu/mg. The concentrations of the cell working solution was

standardized to 330 million cells ml−1 and 300 µl of this working

solution was used in a single transformation resulting in 2,070 cells
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comparison of the cfu between the transformation reactions carried

out using 100 × 106 cells together with 1 µg of the donor DNA and

determined concentrations of RNP complexes (1.3 µg:13 µg or 10-

fold of optimized in vitro Cas9:gRNA ratio) for the knock-in.

Three specific primer pairs were used to verify the positive

colonies (Supplementary Table 2) including FSE1 and RSE2 to

confirm the presence of the phytase gene (Genbank accession

number: OP566531) (Figure 3A), FT12 and RT12 to validate the

correct edit in exon 2 of the nitrate reductase gene (Genbank

accession number: OP236417) (Figure 3B), and F3327 and RT12

to confirm the absence of primary p1ChlamyCK-I/O residues with a

false-positive result.

PCR-based verifications revealed that more than 65% of

colonies (106 out of 162 selected colonies showed resistance to

hygromycin) contained the complete phytase gene cassette (Signal

peptide, His6 tag, Goi, KDEL) (1,332 bp) (Genbank accession

number: OP566531) and 52 colonies contained a 3,047-bp

fragment gRNA target sequence among which 28 and 24 colonies

showed incorrect (presence of the p1ChlamyCK-I/O residues) and

correct (insertion of the phytase gene cassette at the NR target site)

editing, respectively (Supplementary Table 9). In the present study,

24 colonies containing the correct editing included sample numbers

4, 10, 56, 58, 65, 78, 80, 81, 82, 83, 116, 117, 131, 138, 148, 150, 152,

153, 191, 215, 224, 238, 265, and 277, and colony number 332 was

considered as control sample (transformation without using the

RNP complex and only using the donor plasmid “p1ChlamyCK-I/

O”). In general, the editing efficiency of ~15% was observed in the

present study. The PCR products obtained from the representative

correct edited colonies were further analyzed and confirmed by

sequencing (Genbank accession number: OP236417). Sequencing

of the target fragment clearly demonstrated integrity and correct

insertion of the gene cassette (2,252-bp fragment containing Hsp70-

Rbcs2 promoter, Rbcs2 intron1, Signal peptide, His6 tag, Goi,

KDEL, and 3UTR Rbcs2) into the exon 2 of the NR gene in

C. reinhardtii.
RT-PCR and qRT-PCR analysis of the
foreign gene expression

Phytase transcription was confirmed by RT-PCR (Figures 3C,

D) and Ct values of qRT-PCR to verify the inserted foreign gene

expression at the RNA level (Supplementary Figure 3,

Supplementary Table 10). As shown in Figures 3C, D;

Supplementary Figure 2, and Supplementary Table 10, the

inserted foreign gene was successfully transcribed. The resulting

candidates were then verified by Sanger sequencing and phenotypic

analysis. Finally, results of the present study showed that the

phytase gene was successfully transcribed at the desired target site

with constant expression level in correct editing samples (sample

numbers 215, 153, and 81) and transient expression for two

generations in control sample (sample number 332).
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FIGURE 3

Gel electrophoresis to validate transformation, correct editing, and transcription of phytase gene. (A) TAE agarose gel (1%) showing confirmation of the
presence of phytase gene (1,332 bp/Genbank accession number: OP566531) in the positive colonies using FSE1 and RSE2 primers. The lane numbers 1, 2, 3,
4, 6, 9, 10, and 12 are representative of the positive colonies (existence of phytase gene: 1,332 bp); (M) DNA size marker [GeneRuler 1 kb DNA Ladder, ready-
to-use (Catalog Number SM0313)]; (MM) Marker Map of GeneRuler 1 kb DNA Ladder, ready-to-use (Catalog Number SM0313). (B) TAE Agarose gel (1%)
showing knocked-in phytase gene at the desired position (NR gene–Exon2) by PCR using FT12 and RT12 primers. (M) DNA size marker [GeneRuler 1 kb
DNA Ladder, ready-to-use (Catalog Number SM0313)]; (MM) Marker Map of GeneRuler 1 kb DNA Ladder, ready-to-use (Catalog Number SM0313). (C) TBE
Agarose gel (1%) showing RT-PCR products including the following: Colonies 1–11 containing the correct editing using Fq-Phytase and Rq-Phytase primer
(insertion of the phytase gene cassette at the NR target site); (M) DNA size marker [GeneRuler 1 kb DNA Ladder, ready-to-use (Catalog Number SM0313)];
(MM) Marker Map of GeneRuler 1 kb DNA Ladder, ready-to-use (Catalog Number SM0313). (D) TBE Agarose gel (1%) showing RT-PCR products including
the following: (1) wild-type colony using Fq-Phytase and Rq-Phytase primers to confirm phytase gene expression; (2) wild-type colony using F-CBLP and R-
CBLP primers to confirm reference gene expression; (3) colony 215 [correct edited sample (transformation using RNP complex and the donor plasmid
“p1ChlamyCK-I/O”)] using Fq-Phytase and Rq-Phytase primers to confirm phytase gene expression; (4) colony 153 [correct edited sample (transformation
using the RNP complex and the donor plasmid)] using Fq-Phytase and Rq-Phytase primers to confirm phytase gene expression; (5) colony 215 using F-
CBLP and R-CBLP primers to confirm reference gene expression; (6) colony 153 using F-CBLP and R-CBLP primers to confirm reference gene expression;
(M) DNA size marker [GeneRuler 1 kb DNA Ladder, ready-to-use (Catalog Number SM0313)]; (MM) Marker Map of GeneRuler 1 kb DNA Ladder, ready-to-use
(Catalog Number SM0313).
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Growth analysis

To examine whether the knock-in process negatively affects C.

reinhardtii cells’ growth, the genome-edited samples were analyzed

for growth curves. The growth of knocked-in C. reinhardtii was

similar to that of the wild type and the cell growth of both WT and

knocked-in samples was limited to approximately 15 × 106 cells ml−1.
Discussion

Microalgae have lately been getting attention as a potential low-

cost bio-factory for the production and development of a wide

range of commercial products including nutraceuticals, animal

feeds, therapeutics, industrial biochemicals, and biofuels (Olaizola,

2003; Pulz and Gross, 2004; Spolaore et al., 2006; Chisti, 2008;

Christaki et al., 2011; Jones and Mayfield, 2012). Genetic

engineering could facilitate and ensure sustainable and higher

yields of the targeted algae-based value-added products (Walker

et al., 2005; Raja et al., 2008; Radakovits et al., 2010; Specht et al.,

2010; Gong et al., 2011; Georgianna and Mayfield, 2012; Gimpel

et al., 2013). Therefore, microalgae are able to revolutionize various

industries such as nutrition (food and feed), health, energy, and

biochemicals in particular. However, the main barriers in the

production of beneficial compounds from algae strains are either

the necessity of efficient molecular tools or the low expression level

of heterologous genes. Transgene silencing, genomic positional

effects, random insertion, transient expression, and genomic

rearrangements are among the major challenges and limitations

in genome engineering of C. reinhardtii (Cerutti et al., 1997;

Fuhrmann et al., 1999; Rasala et al., 2012). These obstacles can be

resolved by the recently developed gene-editing techniques. The

new molecular genetic tools such as the CRISPR/Cas systems could

be efficiently used for the remarkable development of the

microalgae current state in terms of genetic, metabolic, and

pathway engineering (Behler et al., 2018; Jagadevan et al., 2018;

Naduthodi et al., 2019; Patel et al., 2019; Sreenikethanam et al.,

2022; Jeong et al., 2023) and finally impact the improvement of

transgenic algae as a cell bio-factory.

Here, for the first time in microalgae, we reported insertion of the

codon-optimized prokaryotic phytase gene from bacterium

Buttiauxella sp. by the Cas9 RNP-mediated knock-in through the

homology-directed repair (HDR) in the Nit1 gene of the eukaryotic

microalgae C. reinhardtii. We targeted exon 2 from theNit1 gene that

encodes the nitrate reductase, which catalyzes the reduction of nitrate

to nitrite (Plecenikova et al., 2013), to knock-in microalgae optimized

bacterial phytase gene in this insertion site in C. reinhardtii using the

HDR CRISPR-Cas9 system. As a result, after knock-in GOI in this

insertion site, microalgae are not able to consume nitrate, but they

have the ability to absorb and consume nitrite and ammonium

without any problems to continue the growth and life (Fernandez

and Galvan, 2008; Sanz-Luque et al., 2015; Wang et al., 2016; Bellido-
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Pedraza et al., 2020; Krishnan et al., 2020; Kumar and Bera, 2020;

Salbitani and Carfagna, 2021).

In the present study, in vivo assays were optimized to utilize very

smaller amounts of gRNA and Cas9 (1.3 mg:13 mg) in comparison with

the quantities already reported for gene knock-out in C. reinhardtii

(Baek et al., 2016). Baek et al. (2016) utilized 200 mg of Cas9 protein and
140 mg of in vitro transcribed gRNA for direct delivery into C.

reinhardtii, which seems to be very high concentrations and the

production of such quantities is difficult and costly.

In this study, several gRNAs were designed (Supplementary

Table 1) to target Nit1 coding sequence among which the ones

targeting preferably 5’-end exons showed the highest efficiency

while the lowest off-targets were screened in silico. The designed

gRNA targeting exon 2 was assessed in vitro to verify its cleavage

efficiency of the target sequence. For in vitro cleavage assay, we used

various concentration ratios of Cas9:gRNA (Supplementary

Table 8) in which 130:1300 ng was indicated as the optimized

ratio, which succeeded in cutting both targeting sites embedded in

the synthesized p1ChlamyCK-I/O donor plasmid (400 ng) with

high accuracy and efficiency. In other studies, the range of Cas9 and

gRNA used for in vitro cleavage assays has been reported as 150–

600 ng and 100–500 ng for Cas9 and gRNA, respectively, using

approximately 100 ng of target DNA (Shin et al., 2016; Dhokane

et al., 2020; Kang et al., 2020). In the present study, a lower amount

of Cas9 protein was used to cut a larger amount of target DNA with

two cutting sites, while the amount of gRNA was higher.

Considering four times more target DNA amount used and also

the presence of double cutting sites, it indicates that a smaller

amount of gRNA has been used. The results of the in vitro assay

demonstrated the efficient quality of the synthesized gRNA, purified

Cas9, and the assembled RNP complex on one hand and the high

efficiency of the designed gRNA in identifying the target DNA for

CRISPR knock-in operations, on the other hand.

The bacterial phytase gene sequence was first optimized and

synthesized (Genbank accession number: OP566532) (GenScript).

In the second step, the p1ChlamyCK-I/O donor plasmid (Genbank

accession number: OP236418) segments were successfully

assembled (Supplementary Figure 2) by MOE-PCR (Kadkhodaei

et al., 2016), and then different amounts of Cas9 and gRNA along

with a fixed amount of the p1ChlamyCK-I/O donor plasmid were

transferred to the algal cell. In three independent transformations

carried out with two replicates, we obtained 162 positive

transformants on TAP agar medium containing 10 µg/ml

hygromycin B. Considering the amount of plasmid used (1 µg),

the cell density loaded on the selective TAP medium (13 × 106 cells/

ml), and the ratio of in vivo Cas9:gRNA (1.3 µg:13 µg or 10-fold of

optimized in vitro Cas9:gRNA ratio), the transformation efficiency

of 2,070 cells was obtained per reaction (Supplementary Table 9). In

the study conducted by Kindle (1989) using the same glass bead

method (Kindle, 1990), the efficiency of the transfer was 1,000 cells,

but in the present study, it is more than twofold. In another study

conducted by Yamano et al. (2013) using the electroporation
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method on different C. reinhardtii strains, the transformation

efficiency was reported to be between 150 and 7,614 cells; our

results fall within this range. In general, and according to the

obtained results, the glass bead method is a widely used

alternative for the delivery of macromolecules into C. reinhardtii

cells (Kindle, 1990) and is highly economical compared to the

electroporation method, which is not readily available.

In order to score the efficiency of the gene knock-in through

Cas9 RNP-mediated HDR and targeting Nit1, PCR analysis of all

selected positive colonies (162 colonies) were isolated from selective

medium-screened 106 (65.5%) samples containing phytase gene.

Finally, after further molecular investigations through PCR and

sequencing, 24 clones with correct editing were obtained, wherein

the phytase gene cassette was located in exon 2 of the Nit1 gene,

showing an editing efficiency of approximately 14.81%. The

efficiency of correct editing in the present study was higher than

the previous studies published by Baek et al. (2016); Shin et al.

(2016), and Ferenczi et al. (2017) with efficiencies of 0.5%, 1.4%, and

10%, respectively (Baek et al., 2016; Shin et al., 2016; Ferenczi et al.,

2017), and almost equal to Greiner et al. (2017) findings (14.8%)

(Greiner et al., 2017). This indicated the reasonable values obtained

in our study compared to previous studies conducted through

CRISPR/Cas9-mediated HDR. In a study conducted by Kim et al.

(2020), the editing efficiencies were reported to be between 16.5%

and 36.8% (Kim et al., 2020), which could be attributed to the

location of the insert, the nature of the transgene sequence, the size

and sequence of the homologous arms, etc. Also, in the study

conducted by Movahedi et al. (2022), using gene silencing of

XRCC4 [inhibitor of non-homologous end joining (NHEJ)

recombination cofactor] with a combination of CtIP (HDR

enhancer factor) and MRE11 (HDR enhancer factor)

overexpression, an efficiency of 48% was obtained (Movahedi

et al., 2022). In general and according to the objective of the

present study, obtaining smaller number of clones with correct

editing and with stable and continuous expression of the target

recombinant protein (phytase) would be reasonable.

Furthermore, in our work on phytase gene knock-in and genome

editing in C. reinhardtii, cultivation and selection operations on

correct positive edited colonies (24 colonies) were carried out

during 10 generations in a period of 100 days, and the results

showed correct and stable editing, while the samples transformed

by the traditional method (without using RNP complex or CRISPR

method) lost the phytase gene after two generations.

To confirm the efficiency of the knock-in of interest, RT and

qRT-PCR analysis showed the presence of the knocked-in external

phytase gene and proved the gene transcription in the edited colons

(Figures 3C, D and Supplementary Figure 3). Also, the Ct values

(Supplementary Table 10) obtained from the qPCR results for the

internal reference gene and the external phytase gene were almost

the same. Since the reference genes usually have continuous and
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high expression level, it could be concluded that the phytase gene

has relatively reasonable expression at the RNA level. On the other

hand, continuity of the expression even in the 10th generation of the

knocked-in clones could prove the phytase expression stability in

the NR (nitrate reductase) site and also the suitability of the NR site

for the insertion of foreign genes of interest without being affected

by gene silencing.
Conclusion

To our knowledge, this is the first successful report of CRISPR/

Cas9 RNP-mediated knock-in of the bacterial phytase gene in the

NR gene of C. reinhardtii with approximately 15% editing efficiency.

Furthermore, cultivation and selection were carried out on all 24

positively edited colonies in 10 generations during a 100-day period

and results indicated correct and stable knock-in editing without

being affected by gene silencing or negative insertion site effect.

Generally, in the future, these results could provide a new

perspective on the use of CRISPR/Cas-based RNP-mediated

knock-in for the development of microalgal strains producing

synthetic novel biomolecules and complex recombinant proteins

and accelerate the commercialization of the food-grade

microorganism C. reinhardtii.
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and Rosales-Mendoza, S. (2017). Algevir: an expression system for microalgae based on
viral vectors. Front. Microbiol. 8, 1100. doi: 10.3389/fmicb.2017.01100

Barrera, D. J., and Mayfield, S. P. (2013). “High-value recombinant protein
production in microalgae,” in Handbook of microalgal culture: Applied phycology and
biotechnology, 2nd edition. Eds. R. A. Emeritus and Q. Hu (Hoboken: John Wiley \&
Sons, Ltd), 532–544.

Behler, J., Vijay, D., Hess, W. R., and Akhtar, M. K. (2018). CRISPR-based
technologies for metabolic engineering in cyanobacteria. Trends Biotechnol. 36 (10),
996–1010. doi: 10.1016/j.tibtech.2018.05.011

Bellido-Pedraza, C. M., Calatrava, V., Sanz-Luque, E., Tejada-Jiménez, M., Llamas,
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