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Insect monitoring has gained global public attention in recent years in the

context of insect decline and biodiversity loss. Monitoring methods that can

collect samples over a long period of time and independently of human

influences are of particular importance. While these passive collection

methods, e.g. suction traps, provide standardized and comparable data sets,

the time required to analyze the large number of samples and trapped specimens

is high. Another challenge is the necessary high level of taxonomic expertise

required for accurate specimen processing. These factors create a bottleneck in

specimen processing. In this context, machine learning, image recognition and

artificial intelligence have emerged as promising tools to address the

shortcomings of manual identification and quantification in the analysis of

such trap catches. Aphids are important agricultural pests that pose a

significant risk to several important crops and cause high economic losses

through feeding damage and transmission of plant viruses. It has been shown

that long-termmonitoring of migrating aphids using suction traps can be used to

make, adjust and improve predictions of their abundance so that the risk of plant

viruses spreading through aphids can be more accurately predicted. With the

increasing demand for alternatives to conventional pesticide use in crop

protection, the need for predictive models is growing, e.g. as a basis for

resistance development and as a measure for resistance management. In this

context, advancing climate change has a strong influence on the total

abundance of migrating aphids as well as on the peak occurrences of aphids

within a year. Using aphids as a model organism, we demonstrate the possibilities

of systematic monitoring of insect pests and the potential of future technical

developments in the subsequent automated identification of individuals through

to the use of case data for intelligent forecasting models. Using aphids as an

example, we show the potential for systematic monitoring of insect pests
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through technical developments in the automated identification of individuals

from static images (i.e. advances in image recognition software). We discuss the

potential applications with regard to the automatic processing of insect case data

and the development of intelligent prediction models.
KEYWORDS

deep learning, convolutional neural network, integrated pest management, decision
support systems, image based identification, applied entomology, transformer models
1 Introduction

Aphids (Hemiptera: Aphidoidea) are among the most

important insect pests of arable and horticultural crops. These

soft-bodied, phytophagous insects mostly feed on phloem sap of

plants using a piercing-sucking stylet (Dixon, 2012). There are more

than 5,500 aphid species worldwide with approximately 250 species

considered as economically relevant pest species (Blackman and

Eastop, 2006; Favret, 2018). On a local scale, only a limited number

of species are monitored regularly, whereas the composition and

number of species collected within a year varies significantly

between successive years with a trend of an increase in species

numbers, as demonstrated for Great Britain and France between

1978 and 2000 (Hullé et al., 2010).

Migrating aphids are of special interest for agriculture in spring

and fall, when they form initial infestation sites in fields, which can

lead to crop yield losses by direct feeding damage due to nutrient

withdrawal or through secretion of saliva as well accompanied by

the transmission of phytopathogenic viruses (Robert et al., 2000;

Girousse et al., 2005; Giordanengo et al., 2010). Direct feeding

damage has been shown for e.g. the Bird cherry-oat aphid,

Rhopalosiphum padi, in spring wheat with yield reduction of up

to 20% (Voss et al., 1997) and Black bean aphids Aphis fabae in

sugar beets can cause up to 50% reduction in root dry weight (Hurej

and van der Werf, 1993). Average percentage losses have been

estimated between 4% and 46% for potatoes and field beans,

respectively (Tatchell, 1989). However, estimations of economic

losses by direct feeding damage as a consequence of aphid

infestation in the field are scarce.

Furthermore, aphids transmit viruses that can cause serious

plant diseases (Stevens and Lacomme, 2017) . Many

phytopathogenic viruses use aphids as vectors, such as Barley

yellow dwarf virus (BYDV) in e.g. barley and wheat, Turnip

yellows virus in e.g. winter oilseed rape, Potato virus Y in potato

and Beet yellows virus in sugar beet. In total, approximately 275

different viruses are vectored by 192 different aphid species (Nault,

1997) not including the recently described group of nanoviruses,

which are transmitted by the pea aphid Acyrthosiphon pisum and

infect legumes (Gaafar and Ziebell, 2020; Lal et al., 2020). Although

many viruses have the potential to cause significant crop losses, a

high percentage of economic losses are most likely to be attributed

to individual fields or limited spatial areas. Regarding BYDV, a

more recent estimation by an expert assessment estimates the
02
economic losses of a BYDV infection for NW-Europe to be 3.26%

per year (Savary et al., 2019).

In 2013, the European Union (EU) decided on a ban of three

insecticides from the group of neonicotinoids for seed coating

(clothianidin, imidacloprid and thiamethoxam) which hitherto

was one of the most efficient and economic options to protect

seedlings and young plants against early infestation by

phytophagous insect pests, such as aphids, and insect-transmitted

viruses (Verheggen et al., 2022). While exemptions for seed and soil

treatment in certain cereals were possible between 2013 and 2018,

since then the use of the mentioned neonicotinods is restricted to

greenhouse uses only (European Union, 2018). In addition, the EU

decided not to renew the authorization of thiacloprid, a commonly

used insecticide of the same group, from the beginning of 2021

(Commission Implementing Regulation (EU) 2020/23, 2020). Due

to the lack of equivalent alternatives, the control of insect pests and

pest associated pathogens became more difficult. As a consequence,

the pressure on agricultural yield stability is increasing as resistance

to insecticides, e.g. pirimicarb belonging to the group of carbamates

and pyrethroids, has been observed for several years in Germany,

other European countries (Nauen and Elbert, 2003) as well as on a

worldwide scale (Edwards et al., 2008). Studies on the Green peach

aphid, Myzus persicae, in France indicate that the expansion of

monocultures and the intensification of insecticide use lead to the

selection for resistance against organophosphates and pyrethroids

in the field (Zamoum et al., 2005). Selection of individual biotypes

has also been observed in the English grain aphid Sitobion avenae in

Great Britain (Llewellyn et al., 2003). Occasional prophylactic,

large-scale or non-targeted insecticide applications are drivers of

emerging resistance in a number of different aphid species (Bhatia

et al., 2011), but also with the number of approved insecticidal

active substances decreasing the risk of resistance development

against the remaining substances increases (Després et al., 2007).

It becomes evident that this development, i.e. the reduction of

available active ingredients in plant protection products in

combination with increasing insect resistance against remaining

insecticides, increases the potential of aphid induced yield losses in

agricultural production systems. To counteract these losses,

continuous monitoring of aphids in agricultural landscapes will

become essential for yield stability, since aphid abundances and

diversity as well as viral load of aphids are factors that may affect

crop growth and plant virus transmission. A high temporal

resolution of the crops’ pest pressure is of great economic
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importance to farmers. Additionally, monitoring data will improve

the understanding of the impact of climate change on pest

development and migration, hence building a basis to improve

forecasting models. This kind of monitoring could be achieved by

comprehensive mass trapping using yellow pan traps at local and

suction traps at regional scales (e.g. Harrington et al., 2007;

Kirchner et al., 2013). The biggest constraints for the utilization

of such traps are, however, the limited availability of expert

knowledge for species identification and the time-consuming

manual identification process.

Recent advantages in artificial intelligence (AI) enabled the

development of automated solutions for insect identification and

classification. By efficiently processing large amounts of images

without human intervention, these methods offer a possible

solution in the context of time sensitive analysis and the shortage

of adequate expertise mentioned above. In this review, we use

aphids as a model organism to evaluate the potential of image

recognition and AI in agricultural pest monitoring. We give an

overview of the current methods of insect monitoring, possibilities

of species identification and demonstrate how image recognition

could support the identification process of high sample quantities

from mass trap catches. We conclude by showing how data

generated this way could be utilized for forecasting models.
2 Aphid monitoring

2.1 Aphid sampling

For targeted protection of agricultural field crops, it is

mandatory to assess the temporal and spatial occurrence of

harmful organisms (Barzman et al., 2015), i.e. insect monitoring

is fundamental for the development of control strategies following

the guidelines of integrated pest management. This way,

prophylactic applications of plant protection products can be

avoided, since beside ecological aspects, prophylactic applications

do not guarantee a reduction in pest pressure and can be

economically questionable, as aphid occurrence can vary greatly

from year to year, with seasonal and regional variations in

composition and abundance (e.g. Dixon, 2012; Luquet et al.,

2019; Bell et al., 2020). Recent data also indicate that regional

synchrony between aphid populations will decrease as a

consequence of climate change (Sheppard et al., 2016), making

small scale monitoring even more important for addressing regional

fluctuations in pest occurrence.

For agricultural monitoring purposes, a wide range of active or

passive sampling techniques enables aphid monitoring either on the

crop or via aerial sampling (Harrington and Hullé, 2017). In order

to assess the potential benefits of AI on samples from these

methods, knowledge of the common methods used to monitor

aphids is essential and is provided below:

Crop sampling is best suited to determine aphid infestation

rates and aphid abundance at a field scale. Although this sampling

method is outside the focus of this review, we give a brief summary

for the sake of completeness. In everyday agricultural practice,

visual aphid observation or in-situ aphid counts on plants or plant
Frontiers in Plant Science 03
parts are carried out by an on-site human observer and allow

farmers, advisors and growers to directly assess local, economic

relevant thresholds and apply control strategies according to them.

These strategies can, however, only be adequately applied on fields

where the aphid pest pressure has been assessed, since crop

sampling is limited by poor spatial and temporal resolution (Preti

et al., 2021). General conclusion on aphid infestation on a wider,

regional scale cannot be drawn from individual fields, since aphid

infestation levels can vary considerably between fields within a

region (Holland et al., 2021).

Aerial sampling, in contrast, relies on flying aphids. These

sampling methods can disclose information about the (first) flight

activity, the immigration of aphids into and emigration out of the

crops as well as the duration of the flight period not only on the

local, but also on regional scale (Bell et al., 2015; Harrington and

Hullé, 2017). Thus, aphid monitoring by aerial sampling is crucial

for monitoring aphid vectors of plant viruses and managing plant

virus spread (Krüger and van der Waals, 2020). Here, yellow pan

traps and suction traps are the most commonly used autonomous

and technically standardized trapping devices to assess aphids in

arable crops by farmers, agronomists and scientists.

Pan traps, are (colored) trays filled with liquid that attract and

trap flying insects by inducing their landing behavior (Moericke,

1951). An overview for insect monitoring using pan traps has

recently been provided by Montgomery et al. (2021). In brief, pan

traps are typically placed in open areas, e.g. directly into the crop,

with a respective distance to the field margins with the trapping

height adjusted to the vegetation level, i.e. initially on the soil

between crop plants and later elevated above the crop canopy.

Depending on the intended species or group to be monitored, traps

of different colors can be utilized. For monitoring aphids, yellow

pan traps have shown the greatest trapping efficiency, especially

when placed on a high contrast background, e.g. on dark soil

(Döring and Chittka, 2007; Döring, 2014). Although selective for

certain aphid species (Karl, 1991), over 90 aphid species have been

described to be frequently caught in yellow pan traps in Central

Europe, among them around 35 species with agricultural relevance

(Müller, 1975; Dubnik, 1991; Basky, 1993). Due to their good

trapping ability, pan traps are used in a wide range of arable

crops, including e.g. sugar beet, legumes and cereals, to assess the

initial flight activity and generally monitor migrating aphids on a

local scale. Here, vector monitoring in seed potatoes is of particular

importance worldwide (Boiteau and Parry, 1985; Harrington et al.,

2009; Vučetić et al., 2013; Kim and Kwon, 2019). As an alternative

to pan traps, also colored sticky traps can be used to obtain relative

measurements of insect populations (Heinz et al., 1992). Instead of

being caught in a liquid, here, individuals stick to an adhesive,

colored surface of variable size. While catch rates differ depending

on traps size and vertical or horizontal orientation (Heathcote,

1957), for some aphid species sticky traps possess better catch rates

than pan traps (O’Loughlin, 1963). Since the animals are trapped on

the sticky surface, regular visual checks are mandatory to avoid

overfull traps where animals overlap. Only this way, an evaluation

and identification of the catches is possible.

Suction traps are suitable for regional monitoring, which can be

extended to a national and multi-national level (Cavalloro, 1987;
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Bell et al., 2015; Lagos-Kutz et al., 2020; Ziesche et al., 2020). There

are different types of suction traps, with varying technical

specifications such as differences in heights, ranging from 1.6 to

12.2 m, leading to a different spatial operating capability (cf. Teulon

and Scott, 2006). Even though most of the suction traps present

today were installed several decades ago (Macaulay et al., 1988; e.g.

Shortall et al., 2009) this approach to monitoring insect pests is far

from outdated. In 2001 a dense network of suction traps was

established in the Midwest of the USA (Lagos-Kutz et al., 2020)

shortly after a first report of the Soybean aphid, Aphis glycines, in

the year 2000 (Hartman et al., 2001). The suction trap network

enabled researchers to observe the rapid spread of A. glycines during

subsequent years (Ragsdale et al., 2011; Lagos-Kutz et al., 2020).

Suction traps have also been used to monitor the spread of the aphid

species Diuraphis noxia across the USA (Pike et al., 2012).

In Europe, the Rothamsted type suction trap, with a height of

12.2 m, represents the standard trap type for large scale monitoring

of migrating aphids in agricultural landscapes, but also collects

other flying or drifting arthropod species. Independent of subjective

factors, the Rothamsted suction trap can provide technically

standardized daily records during the main aphid migration

season between April and December (Ziesche et al., 2020). It

provides the capability for an absolute population measurement

for which insect abundances can be sampled more precisely in

comparison to all other methods of aerial catches (Bell et al., 2015).

In temperate regions, the life cycle of several aphid species involves

host alternation, e.g. between a weed or tree species in winter and an

annual crop during summer. Consequently, in these periods,

increased numbers of migrating winged aphids can be recorded

in suction traps. Additionally, these traps have been proven to

provide representative results for monitoring certain aphid

populations up to a 30 km perimeter (Starý and Lukásǒvá, 2000).

Suction traps conduct sampling with a high degree of temporal

resolution over many years and demonstrate their value for

arthropod monitoring over large areas (Shortall et al., 2009).

Despite the high potential for agriculture and, for example, the

study of climate change effects on species composition, abundance

and flight activity of aphids, the operation of a suction trap network

requires a lot of work, which is also accompanied by a considerable

financial outlay. As a result, networks with a high number of suction

traps had to be reduced in size with regard to the number of traps or

completely shut down after a few years, as shown for the Soybean

Aphid Suction Trap Network in the USA (Lagos-Kutz et al., 2020)

and the EURAPHID trap network of the European Community

(Cavalloro, 1987). This poses a risk to the collection of long-term

data, which is important not only for the study of ecological aspects,

but also for the validation, improvement and maintenance of

forecasting models.
2.2 Identification methods

The disadvantage of all aerial sampling devices mentioned

above is their limited selectivity. Besides aphids, a variety of other

winged or wind-borne arthropods can be found in such aerial

samples. In order to draw any conclusions from the trap catches for
Frontiers in Plant Science 04
a specific target species or group, the taxa of interest must be

identified and distinguished from unwanted bycatch.

Traditionally, taxonomic identification of insects is based on

different morphological traits. Currently, this is still the method of

choice for identifying insects in field monitoring, e.g. when

surveying agricultural pest insects. Specimens are identified by eye

either directly on the plant, from traps or collected and brought to

the laboratory for closer examination. Based on the target taxa, this

method of species identification can be very complex, requires a

high degree of taxonomic expertise and well-trained personnel. For

many insect groups, there are only a few experts worldwide, and the

number of well-trained expert taxonomists is constantly decreasing

(Engel et al., 2021). Despite the restrictions of this traditional

identification method, it still represents a foundation for

biodiversity research and integrated pest management programs.

When alternative identification methods are developed, the

accuracy of these methods should be compared with manual

taxonomic identification. These alternative methods should be

comparable with, or exceed, the accuracy of standard taxonomic

methods. Here, we give a short overview of emerging and promising

technologies with focus on the identification of arable pest insects,

but not for standardized monitoring, although the listed methods

may possess the ability to provide both.

Environmental metabarcoding enables rapid, accurate and cost-

effective identification of known species. Taxonomic species

identification is performed by means of a species-specific

sequence on the mitochondrial cytochrome-c-oxidase I subunit

gene (Hebert et al., 2003) and comparing the sequence to a

reference database in private or public archives, such as BOLD

(Ratnasingham and Hebert, 2007) or GenBank (Benson et al.,

2013). Sequences of about eight million insects worldwide have

been deposited in BOLD, including nearly 2000 aphid species.

Unfortunately, this standardized method only provides presence/

absence data or, as recent studies for quantitative barcoding

demonstrate, promising results for estimating relative species

abundance for (mixed) bulk samples (Liu et al., 2020). Still,

metabarcoding does not allow conclusions to be drawn about the

exact number of individuals. This is, however, of great interest when

assessing insect abundance, including the presence of virus

transmitting aphid species, and the severity of immigration flights

for pest management actions.

Entomological radar is a remote sensing method that has

recently been reviewed by Noskov et al. (2021): With radar,

insects can be identified down to species level based on wing beat

frequency or size. The identification of larger insects has already

been demonstrated a few decades ago (Moore et al., 1986) and mass

occurrences of smaller insects including biomass can be detected

(Leskinen et al., 2011) but new technologies furthermore show

promising results for the differentiation of smaller insects (Wang

et al., 2017). Thus, there is a perspective for species and individual

identification using entomological radar (Hu et al., 2020). While

entomological radar provides the opportunity for a standardized

identification and monitoring of flying insects at broad spatial and

temporal scales, the identification of many animals in short time

intervals, comparable to the catch rate of suction traps, is currently

not possible using classical radar technologies. In contrast,
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entomological laser radar, such as light detection and ranging

(LIDAR), enables high sample rates, even for small insects, but

currently possess limited identification capabilities (Brydegaard

et al., 2021).

Infrared sensors (IR) are capable of detecting flying insect

activity by using near-infrared LED lights and high-speed

photodetectors (Rydhmer et al., 2022): Different parameters such

as the wing beat frequency, melanization and wing to body ratio can

be recorded in the field, automatically uploaded to a cloud database,

and processed via machine learning (ML) and AI. So, the

characteristic morphology of different insect groups can be

specified, allowing a remote classification of insects to different

taxonomic levels.

Image recognition can be utilized by a wide range of

applications related to optic detection of insects enabling remote

and non-destructive environmental monitoring (Preti et al., 2021).

Previous studies on image recognition of insect pests have been

limited to feasibility studies (Wäldchen and Mäder, 2018), and

image analysis on natural backgrounds (Cheng et al., 2017; Xia

et al., 2018; Patel and Bhatt, 2019). Only a few studies addressed

insect identification from mass catches (e.g. Valan et al., 2019). First

applications for identifying pests in arable crops using image

recognition are close to marketability, e.g. yellow pan trap

analysis by Xarvio field manager (BASF Digital Farming GmbH)

or MagicScout/MagicTrap (Bayer AG). These apps, however, are

often tailored to end users and do not allow species identification at

a scientific level with the necessary scientific accuracy. Nevertheless,

the fast technological process in the field of image recognition,

especially in combination with AI (as explained below), and the

possibility of a non-destructive identification makes this method

one of the most promising tools of species identification and

biodiversity research.
3 Image recognition based upon
artificial intelligence

3.1 Artificial Intelligence methods

In recent years, AI methods have found applications in various

fields of science and engineering (Sarker, 2021). The technical

possibilities due to increasing computing capacity allow efficient

automated evaluations of very large, high-dimensional data such as

images and videos. Foremost, deep learning (DL) methods have led

to a significant improvement in the quality of results, compared to

traditional ML methods (LeCun et al., 2015). In contrast to a

manual evaluation of repetitive tasks, such as object recognition

and classification, automated solutions offer numerous advantages:

they are inexpensive, very efficient, scale well with increasing

amounts of data and deliver precise and reproducible decisions.

Additionally, various open source implementations allow for a

quick empirical data evaluation and comparisons between

alternative technical approaches. Programming libraries such as

TensorFlow, Keras and PyTorch provide a large number of different

models and implementations of various methods (some of which
Frontiers in Plant Science 05
are already pre-trained) from DL with a programming environment

for an adaption of tools to the specific application at hand.

As a result, automated DL solutions are widely used in various

application areas in biology, agricultural sciences, and ecology

(Kamilaris and Prenafeta-Boldú, 2018). Due to the repetitive

nature of insect identification, these methods appear to be a

suitable tool for the sample analysis of insect mass catches from

pan and suction traps (see above).
3.2 Machine learning/Image recognition

Many authors, reporting success stories in their disciplines

employing AI, use the terms artificial intelligence, machine

learning and deep learning almost interchangeably. However, in

technical literature, these terms refer to slightly different subject

matters (Goodfellow et al., 2016).

AI is the umbrella term for any computer program that can

learn from its environment and make decisions based on what it has

learned. Specifically, AI encompasses the fields of ML as well as DL,

but also includes approaches such as symbolic AI, which relies on a

set of given symbolic rules in order to execute its tasks.

ML on the other hand refers to a subset of AI that uses

algorithms to learn from data, rather than relying on explicit

programming. Based on a set of data, an underlying model is

being trained such that the relevant rules for predicting and

explaining new data are automatically learned instead of given

a priori.

One specific sub-field of ML is DL, which uses a cascade of

multiple layers in order to learn increasingly complex

representations in the data. The complexity of a representation is

defined by the non-linearity and intricacy of the function it can

produce given its parameters. DL is based on neural networks,

which use a biologically inspired network of interconnected nodes

for learning. Each node in the network is connected to other nodes,

and the connections between nodes are weighted to represent the

strength of the relationship between them. The nodes in the

network are organized into layers, with each layer representing a

different level of abstraction. The depth of the model is denoted by

its number of layers, where in practice, DL networks with up to

hundreds of layers are being used.

In ML and DL, model evaluation is typically achieved by

dividing the data into a training set and a test set. The model is

trained on the training set and its performance is evaluated on the

test set. Sometimes, an additional evaluation dataset, known as a

validation set, is used during the model development and

hyperparameter tuning process in order to assess the model’s

performance, while the test dataset is only applied in the final

evaluation of the learned model. Here, the idea is to allow for a

better estimate of the generalization error of the model by avoiding

overfitting to the test set during the learning process.

As evaluation metrics, accuracy, i.e. the proportion of correct

predictions to total predictions, precision, i.e. the proportion of true

positive predictions to all positive predictions, and recall, i.e. the

proportion of true positive predictions to all actual positive
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instances, are commonly used. These metrics measure the model’s

ability to generalize to new data and make accurate predictions.

For image recognition applications DL methods are the most

common. The most popular type of DL algorithms are

Convolutional neural networks (CNNs). CNNs use a combination

of convolutional layers, pooling layers, and fully connected layers to

identify and classify objects in an image (O’Shea and Nash, 2015).

The convolutional layers extract features from an image, such as

edges, shapes, and textures, while the pooling layers reduce the size

of the feature maps image, while maintaining the relevant

information. Fully connected layers, i.e. types of layers that

connect every neuron in one layer to every neuron in another

layer, are then used to make predictions based on the extracted

features. The successive layers start by capturing small scale

patterns and progressively move to representations of larger

image sections (Figure 1).

Recently, so called Vision Transformers (ViTs) have gained

popularity in the computer vision community due to their

competitive performance to the current state-of-the art CNNs in

a number of image classification tasks (Dosovitskiy et al., 2020).

While both, CNNs and ViTs, belong to the class of DL methods,

they exhibit distinct architectural differences. CNNs process image

data in a hierarchical manner, extracting local features that

gradually combine to form global representations. In contrast,

ViTs divide images into patches, on which a method called self-

attention is being applied in order to capture both, local and long-

range dependencies, within the patches. By attending to all patches

and considering their relationships, ViTs can capture contextual

information and understand the global structure of an image.

Capturing long-ranging dependencies leads to better contextual

understanding and the spatial nature of the self-attention

mechanism of ViTs to a better interpretability of results.These

abilities offer an advantage of ViTs over CNN models. ViTs are,

however, challenging regarding their application as they require a

high demand of computational and memory resources as well as
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larger training sets in order to adequately generalize and overcome

sensitivity to variations in input data.

In contrast to DL methods, there are the classic approaches of

ML, which employ a data representation by means of only one or

two layers. This class of methods such as kernel learning or Bayesian

methods (sometimes called shallow learning in the literature in

contrast to DL) were the dominant approaches before the

breakthrough of DL in recent years (Bishop, 2009).

Usually, when using classical ML methods, the data

representation is not learned, but manually annotated instead.

Ideally, handcrafted feature selection should transform the

original data into a much lower dimensional space while retaining

the information necessary for identification. In practice this process

turns out to be time consuming and requires deep understanding of

the data and the specific task at hand. Hence, the ease of

automatically learning data representation in tandem with their

good scalability and performance on big data sets have made DL a

much more attractive alternative to the classical approaches

especially in image recognition tasks.

One way to gain better interpretability and intuitive insight into

the learned DL model is by creating synthetic data with the help of

Generative Adversarial Networks (GANs) and subsequently

comparing the generated images with real world input

(Goodfellow et al., 2014). Also, Grad-CAM (Gradient-weighted

Class Activation Mapping) is a technique used to provide

interpretability in neural networks by visualizing which regions of

an image are most important for a given identification or

classification task (Selvaraju et al., 2020).

The need for large data sets to train DL models successfully is a

well-known problem, especially in applications where additional

data is unavailable or can only be gathered with significant costs and

efforts. This is frequently the case in challenging image recognition

tasks, such as insect identification, which often require hundreds of

examples for each species but where specimens of rare species are

hard to come by (Borowiec et al., 2022). Fortunately, the use of
FIGURE 1

Example of image recognition, here digit identification (range 0 to 9), by convolutional neural networks based on the MNIST database. Starting from
left to right, the input image (“4”), the image features are first extracted (red box) and then the image representation based on this feature vector is
used for classification (green box). The underlying CNN consists of - six layers, where the first two pairs of convolutional and pooling layers are used
for extracting relevant feature information from the image for digit identification and the remaining two layers for classifying the image into one of
the ten digit classes. Here, the digit “4” is correctly classified to its true label.
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transfer learning techniques in cases of sparse data availability have

achieved surprisingly good results in a number of different

applications in practice, even in cases of highly specific image

recognition tasks. Instead of learning a new model from scratch,

transfer learning is a technique that allows a trained model to

leverage the features learned from the original task and use them to

improve performance on the new task. This technique is useful

when the new task has a similar data distribution to the original

task. The weights of the pre-trained model are used as the starting

point for the new task and the model is then fine-tuned on the new

data to improve its accuracy. In addition to reducing the amount of

training data needed for successful training the time required in

order to train the model can often be reduced by using transfer

learning (Tan et al., 2018; Wang and Deng, 2018; Zhuang

et al., 2021).

Image recognition tasks commonly use a number of different

transfer learning architectures, with ResNet, Inception, VGG and

YOLO being the most popular. Transfer learning models are pre-

trained on large datasets such as ImageNet and COCO (Common

Objects in Context). COCO is an image recognition dataset

designed for object detection, segmentation, and captioning with

330,000 images and 80 object categories, while ImageNet refers to a

dataset containing over 14 million images and 1,000 object

categories, which include common objects and concepts such as

animals, vehicles, and everyday items. The YOLO architecture

(Bochkovskiy et al., 2020) was pre-trained on the COCO data,

while ResNet (He et al., 2016), Inception (Szegedy et al., 2015) and

VGG (Simonyan and Zisserman, 2015) used ImageNet for

pre-training.
3.3 Segmentation, classification and
instance segmentation

Most applications in image recognition involve segmentation or

classification tasks. Image segmentation refers to the subdivision of

an image into multiple segments or regions. This includes both a

delimitation of the objects from non-relevant image areas

(‘background’) as well as the differentiation of relevant objects

from each other (‘instances’). Image classification describes the

assignment of an entire image to one of the possible

specified classes.

However, in many practical classification scenarios like insect or

plant identification, the images to be analyzed frequently contain a

number of different instances, each of which must first be identified

and isolated in the image before the classification of each individual

instance can take place. This combination of image segmentation

and classification, which is referred to as instance segmentation in

the literature, poses a challenge in many entomological applications:

Images from mass trap catches, for instance, usually contain a great

number of individuals, comprised not only of different target

species but also non relevant by-catch and impurities (Cesaro

Júnior et al., 2022), and can possess a high sample density, where

individual animals and/or impurities may touch or overlap each

other (Borowiec et al., 2022).
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There are a number of different approaches to solve the instance

segmentation problem- the most popular is Mask R-CNN, a two-

stage CNN that first detects and subsequently segments objects in

an image (He et al., 2017). The first stage uses a fully convolutional

network to generate object proposals and classify those proposals.

The second stage generates masks for each object proposal,

indicating the area in an image where a relevant object could be

located. The masks are then merged, and the resulting segmentation

is used to generate the final output.

Several methods are described for the task of classification

(Bishop, 2009; Goodfellow et al., 2016). In the context of DL, a

softmax classifier, consisting of a fully connected layer followed by a

softmax activation function is typically used as the output layer for

CNNs as well as ViTs. The softmax function produces a probability

distribution over the predefined classes, and the class with the

highest probability is considered as the prediction for that input.

Further popular choices, used in ML as well as in DL, are support

vector machines classifiers, decision trees and random forests,

where the latter are an ensemble method of decision trees,

combining the results of multiple trees for the final prediction

(Wilf et al., 2016; Segev et al., 2017; Wei et al., 2017; Zhang and

Zhu, 2018).
3.4 Overview: Image classification
in entomology

In recent years, there has been a growing interest in applying

segmentation and classification techniques to automated insect

identification (Martineau et al., 2017; Xia et al., 2018; Zhong

et al., 2018). Due to the many challenging tasks of image based

expert level identification, fully automatic solutions without the

need for manually designed features used in ML only became

feasible recently, following the development of DL algorithms.

Here, expert level identification means a taxonomic identification

of morphologically similar specimen with a high level of accuracy.

In many cases, these identification tasks can be challenging even for

a human with expert knowledge, e.g. when a species determination

is based on small morphological features as in many aphids (cf.

Thieme, 1989).

Up to now, publications in the field of insect identification on a

species level with a high degree of morphological similarity using AI

methods are scarce. In practice, the bottleneck is often the lack of

available high quality training data labeled by a human expert,

which is, in turn, required for solving complex classification

problems. Here, the application of transfer learning methods

offers a convenient approach, with good to great performance for

a number of different image based classification problems

(Borowiec et al., 2022). Next, we will provide a short literature

overview of DL based insect identification on data with a high

degree of morphological similarity. We note that the approaches

discussed below are supervised methods which are unable to detect

species that are not included in the training data set. In the field of

entomology, very few publications discussing unsupervised

techniques for identifying insect instances of an undescribed
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species exist at the moment. Hitherto, the approaches discussed

mainly demonstrate the viability of unsupervised insect

identification and are not applicable to real world scenarios,

especially with respect to more challenging tasks involving

morphological similarity (Badirli et al., 2021).

One recent study was done by Valan et al. (2019), who examined

two data sets with a limited number of training data. The first analysis

concerns the identification of three closely related species of the

Coleoptera genus Oxythyrea (339 images), the second example

involved nine species of Plecoptera larvae (3,845 images). For both

tasks DL based classification achieved better results than manual

identification with 97% accuracy on theOxythyrea data set and 98.6%

on the Plecoptera data. The images of both datasets were not recorded

within a natural setting, but rather possess a monochrome

background with slight variations in lighting conditions.

For both experiments, a transfer learning based on the CNN

architecture VGG16, a convolutional neural network with 16 layers

pre-trained on the ImageNet dataset, in conjunction with a linear

support vector machine (SVM) classifier was used.

Transfer learning has also been successfully used in challenging

identification problems for non-biting midges (Milosěvić et al.,

2020) and adult mosquitos (Motta et al., 2020). Milosěvić et al.

(2020) used a dataset of 1,846 specimens from 10 morphologically

very similar species, achieving over 98% accuracy on test data with a

CNN architecture ResNet-50, a 50 layered network and therefore

significantly deeper than the 16 layer of the VGG16 model used by

Valan et al. (2019). Although more complex than VGG16, this

model could be reliably trained with under 200 examples per class

on average. One reason for the high accuracy is the lab based image

acquisition protocol used, which ensured a fixed object position,

camera view and angle for each midge from the test data. By closely

limiting the variability of the images being used the task complexity

implied by the learned feature representation can be significantly

reduced, therefore requiring only a modest amount of data. In many

applied applications such an intense preprocessing of data for

instance in the case of mass trap images is impractical. Instead,

one would rather try to learn variable orientations of animals by

including relevant images in the training data or alternatively by

using preprocessing tools such as automatic rotation and

positioning to a reference position (Figure 2).

In an additional example, presented byMotta et al. (2020), different

transfer learning models were trained to separate mosquitoes from

other insects, as well as to classify mosquitoes of genus Aedes in

comparison to Culex. Using a training set of 7,561 mosquito and 1,187

images of beetles, spiders and bees labeled as “other”, identification

accuracies of 93% and 97% were achieved. The images used are

captured in different resolutions and show the specimens in various

positions to the camera together with differing background structure

and color distribution. Still, the transfer learning models used in

conjunction with an optimization of learning parameters are able to

reliably identify the relevant specimens.

The work by Hansen et al. (2020) represents an example of

insect identification with a large number of species. Here, an image

library of 65,841 museum specimens containing 361 carabid beetle

species was used. All images were scanned according to an imaging

protocol that defined light intensity, exposure time and orientation
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of the specimens. By using a pre-trained Inception-v-3 CNN

transfer learning approach, accuracies of 51.9% and 74.9% were

achieved for species and genus level, respectively, for the test data.

Here, the underlying complexity of the problem due to a large

variability of many different species together with subtle

morphological differences for some cases leads to a significant

amount of misclassifications.

A challenging identification task at a genera level was discussed

by Marques et al. (2018), where 44,806 ant specimens from the

online database AntWeb comprising 57 different ant genera were

used for identification. For each specimen, on average 3.35 images

in different orientations were available, in particular head, profile

and dorsal views, depicting relevant morphological structures for

identification. For identification, two different CNN models were

trained: one CNN over all images and views and one ensemble of

three CNNs with one neural network for each of the three

orientations together with a classifier combining the three

answers. In the experiments, the ensemble model (accuracy >

90%) significantly outperforms the standard model (accuracy >

80%), showing that separation into distinct sub-models helps to

better preserve morphological information relevant for

identification, which in turn leads to better classification.

Nanni et al. (2022) presented an empirical comparison using

different transfer learning architectures on three benchmark pest

data sets Deng, D0 and IP102. The data sets range from 563 images

divided into ten insect classes (Deng) over 4,508 images divided in

40 insect classes (D0) and 75,222 images divided into 102 classes of

pests categorized into a hierarchical taxonomy (IP102).

Classification of pest data is usually complex, since images

collected in the field contain not only the relevant pest objects but

also the surrounding environment. Here, the object often

constitutes only a small portion of the image. Therefore, fine

grained analysis is necessary to differentiate the insect classes,

while variability in the images is often high due to variable

environmental conditions. As CNNs in this study, six different

models (ResNet50, GoogleNet, ShuffleNet, MobileNetv2,

DenseNet201, and EfficientNetB0) are being used, where these

nets are being evaluated as combinations of models in an

ensemble. For the optimization, the authors apply different

versions of Adam, a variant of stochastic gradient descent

methods. The results show that ensemble methods increase the

accuracy in comparison to stand-alone CNNs, with 95.52%

accuracy compared to 94.64% (ResNet50) on Deng and 74.11%

compared to 73.12% (EfficientNetB0) on IP102. For the D0, an

accuracy for the ensemble method of 99.81% is reported. For the

Deng dataset a study of six human experts shows accuracy rates

between 82% and 96%, so the model exhibits comparable accuracy

rates to the most accomplished human experts.

The potential of ViT models in pest classification have been

evaluated by Xia et al. (2022). The authors use ResNet50,

MMAINet, DNVT and an ensemble learner combining the

predictions of these three models in a final classification vote.

MMAINet uses an at tent ion mechanism ident i fy ing

discriminatory image regions, on which fine grained CNN based

classification models in different resolutions are being trained.

DNVT is a hybrid architecture that combines a DenseNet CNN
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with the self-attention mechanisms of ViTs, which enables effective

feature extraction together global context modeling. The empirical

part reports results from the two pest datasets D0 and IP102. On

both data sets, the best accuracy is achieved by the ensemble

method (99.89% on D0 and 74.20% on IP102). However, a

comparison of the accuracy for the individual models ResNet50,

MMAINet and DNVT shows that the ResNet50 model performs

best for both data sets (99.37% on DO and 71.71% on IP102). Here,

the decision between the ensemble method and the ResNet50 for

the user is one of accuracy versus computational efficiency, since the

latter is computationally significantly less costly than the

ensemble method.

Also Liu H. et al. (2022) propose a ViT classification model,

which uses two preprocessing techniques for performance

improvement. Since ViT models require a substantial amount of

training data which cannot be provided by pest data sets, the

authors employ a pre-training method to generate suitable

training data and subsequently learn discriminative features.

Specifically, a FRCF algorithm filters from the ImageNet dataset

commonly used in transfer learning techniques a relevant subset,

which is similar to the pest data to be classified. Then a ViT based

LSMAE model is trained, which extracts a discriminatory feature

representation from the semantic information in the image patches.

The pest datasets are then used to fine tune the classifier. The

evaluation is based on pest data sets IP102, CPB and PlantVillage,

where CPB contains 10,816 images of six different mite species and

a class of non-mite, while PlantVillage is a plant dataset containing

54,305 images from 14 plant species. The results report state-of-the-

art accuracy on all three datasets 74.69% on IP102, 76.99% on CPB

and 99.93% on PlantVillage.

In all cases of expert level classification models, deep transfer

learning performs superior in terms of prediction accuracy

compared to reference study models, indicating that this is the

current state of the art approach for image classification in

entomology, including aphid identification. The choice of the best

model for a certain problem depends on several factors, in

particular the number of images of individuals and the image
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quality of the training dataset, as well as the complexity of the

underlying identification problem. The availability of a large

number of transfer learning models as open-source software

implementations allows for a relatively simple empirical

comparison of different approaches.
3.5 Overview: Applications towards
aphid identification

Several studies address the identification and classification of

aphids. For each of these, the complexity of the respective task

varies considerably and depends on factors such as image quality,

sample purity and complexity of the samples. The challenges are

determined by various factors:
1. Image capturing conditions: Is it possible to create a

training set under standardized settings (exposure, image

quality, background, body orientation) or does variability

have to be created? This requires information from the

sample and the future imaging conditions of the samples to

be analyzed.

2. Image composition: What sample density is expected for

the test set? Animals in dense samples may touch or even

overlap each other. When arthropods other than aphids

appear in a sample, as is the case for pan and suction trap

catches, other taxonomic groups must be considered for

classification.

3. Classification: Should aphids only be counted or should a

distinction be made into species or species “types”,

respectively? How many species should be distinguished,

how big are the morphological differences and furthermore,

are specimens present in different morphs and

developmental stages (nymphs, wingless, winged) and

states of conservation? In case that samples from pan and

suction traps are analyzed, only winged adult aphids are

expected.
FIGURE 2

Example for variable orientations of winged morphs (alatae) of the Green peach aphid, Myzus persicae, in a sample basin filled with ethanol (70%).
The image contains five aphids in different orientation, ventral (A), dorsal (B–D) and lateral view (E). Automatic image segmentation and subsequent
rotation of the specimens can be used as a first step to simplify further data analysis (right a-e). Pictures are captured with a Leica Emspira 3 digital
microscope.
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3.6 Classical machine learning

Xuesong et al. (2017) used data from sticky boards as a basis for

identifying and counting aphids. Statistical methods of classical ML

were used as recognition algorithms. Here accuracies of over 90%

are reported for both, in the greenhouse and outdoors, where the

accuracy in the field experiments turned out to be slightly lower due

to differences in diurnal lighting conditions. A distinction between

aphids and other insect taxa was based on a simple size

measurement, which, however, will not enable a robust

differentiation in many practical applications, since several

Hymenopteran and Dipteran species possess a comparable body

size to aphids.
3.7 Deep learning

A method to analyze and classify populations of R. padi, using

DL methods was developed by Lins et al. (2020). By segmenting

30,000 individual specimens, the model is capable to distinguish

three different developmental stages (nymphs, winged adults,

unwinged adults) as well as a differentiation of impurities.

Standard image recognition methods were used for segmentation

from the sample images, while the classification of the segmented

specimens was carried out using CNN Inception-V3. A comparison

with a manually performed classification shows a better recognition

rate for all three aphid classes, which is quantified by the number of

specimens found. The solution of a relatively simple classification

problem based on large data processed in the laboratory can thus be

readily solved using already available DL procedures.

Another approach is discussed by Hayashi et al. (2019), where

the neural architecture search (NAS) tool of Google AutoML Vision

is used to identify three aphid species (Aphis craccivora, A. pisum,

Megoura crassicauda) from plant images. In order to evaluate the

influence of the size of the training dataset, different models with a

fixed number of training images per species, ranging from 20 to 400

images, were trained. One hundred training images per species were

required for an accuracy of over 90% and with 400 images per

species an accuracy of over 96% was achieved. However, since the

species used in this study are easy to distinguish by the non expert in

terms of size and color, the model does not capture the complexities

of identifying morphologically similar aphid species.

The presence of aphids on images taken from lemon tree plants

in the field, which feature natural background variability and changes

in lighting conditions, was solved by Parraga-Alava et al. (2021).To

do so, 150 images of plants were taken as training data (70 images of

healthy plants, 80 images of plants infested with aphids) and a

transfer learning approach with a VGG-16 network architecture

was used. The authors report a classification of infested and

uninfested plants with rates between 81% and 97% on lemon tree

plant images of the test data set. While the objective in this

experiment only involved detection of aphids, the variability

induced by images taken under changing conditions in conjunction

with a small sized training data set made the task more challenging.

Regarding network architecture, an almost comparable approach

was used for segmentation and counting ofM. persicae nymphs and a
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classification of nymphs and adults on leaves using a transfer learning

system with a VGG-13 architecture (Chen et al., 2018). Here, 68

images of different plant leaves, with up to a hundred nymphs per

leaf, were used for model training. In the evaluation of the aphid

count on the corresponding test images, the model achieved a

precision of 95.6% - and a recall of 96.5% respectively. The sample

complexity can be considered as low, with no by-catches and only one

aphid species and just a distinction into nymphs and adult aphids.

These studies can be regarded as interesting applications for

aphid detection adapted either to a specific type of application or to

a simplified modeling environment. Hence, their direct applicability

in more complex practical scenarios of a wider scope involving

many different aphid species of high morphological similarity seems

rather limited.
3.8 Deep learning on images from mass
trap catches

Cesaro Júnior et al. (2022) introduced a system for insect

detection from actual field trap images (yellow pan traps), and

studied the performance of an AI approach for samples of different

insect density with the aim to develop an online AI tool for

integrated pest management. Sample images were complex,

containing hundreds of winged insects, including aphids,

parasitoids, flies and thrips, all in different orientations and/or

partly overlapping. Additional segmentation and identification

challenges included the occurrence of contamination (dust and

other small particles) as well as specimens in various states of

conservation. The latter in particular seems to be of great

importance for the analysis of images: While training sets often

consist of intact and freshly prepared animals to perform initial

learning under optimal conditions, samples from field collections

may contain a considerable amount of insect fragments and

contaminants. Additionally, trapping aphids in conservation

liquid under field conditions can also lead to color change, and

with regard to gray-scale images as used by Cesaro Júnior et al.

(2022) to changing gray values, but also to a change of body shape

due to inflation. The authors used a dataset of 17,908 labeled insects,

comprising 9,783 aphids and 8,125 parasitoids. The automated

identification and counting of the aphid and parasitoid

populations was carried out with a Mask R-CNN algorithm.

To evaluate the method, the computed numbers of aphids and

parasitoids were compared with the manual counts of a human expert.

Here, equivalent values for precision (85%) and recall (41%) were

determined for the examined test images for parasitoids and aphids.

Thus, on average, significantly less than half of the relevant specimens

(determined by manual counting) could be identified. This shows that

the proportion of discovered specimens decreases noticeably with

increasing density of animals in the image. As reasons, the authors

state the high degree of contamination, the morphological similarity of

the bycatch and the target aphids for identification as well as the pose

variations. In practice this means that a dilution of the sample could be

necessary in samples comprising a high insect density.

Although state-of-the-art methods are used here, the performance

is significantly lower than that of comparable entomological studies
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dealing with insect counting. The authors attribute this to the

complications of pollution, (partial) overlapping of insect bodies and

the presence of by-catch as listed above. These interfering factors did

not occur in the data sets of the other studies described. This once again

illustrates the challenges that have to be taken into account, especially

with regard to the acquisition and processing of the images to be

examined in an adequate manner in order to facilitate good

identification results. The work of Cesaro Júnior et al. (2022)

illustrates, that a system that aims to perfectly assign the segmented

images to the respective species falls short of a manual evaluation at the

current time if a significant proportion of the aphids are not separated

from the by-catch beforehand as part of sample processing.

A table with all publicly available datasets discussed in sections

3.4 - 3.8 is provided (Table 1).
3.9 Difference in testing protocols

The papers discussed vary significantly in terms of test setup

and data type. Theoretical studies typically assess methods using

benchmark datasets, while applied studies address the challenges of

practical implementation. These challenges encompass diverse

aspects, such as integrating different data sources, like cloud-

based solutions, accounting for variable weather conditions

affecting field recordings, and managing bycatch and

contamination in large-scale captures. Consequently, the test

protocols in these experiments are tailored to address specific

questions. For instance, they may involve preselecting training

and test images or adjusting recording conditions, which

distinguishes them from the typically randomized test protocols

used in theoretical investigations. Consequently, despite sharing

common target values, such as accuracy, the direct comparability of

results is often limited in practice.
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3.10 Towards expert level identification of
aphid species by AI as basis for an
automated agricultural pest monitoring
(limitations and constraints)

Based on previous studies, the most promising tools for expert

level identification of agricultural relevant aphid species by image

recognition can be found in the field of DL with the use of CNNs.

However, the development of an automated system to record,

segment and classify aphids from mass trap catches faces a

number of different challenges:
• The sampling method must be suitable for image

recognition. Sticky traps, for instance, can have the

disadvantage that specimen are partly covered by glue

remnants, bycatch or other airborne particles. It is

important that the sampling method or sample

preparation are adjusted to the needs of ideal image

recording and subsequent AI analysis.

• The recorded sample images must be segmented into

individual specimens; individuals other than aphids as

well as any contamination has to be detected and filtered

out during AI analysis.

• Individual specimen are recorded in different orientations

to the camera (caudal, lateral, dorsal, ventral, cranial) and

may be in contact or overlapping with other insect bodies.

• Depending on the sampling intervals (emptying trap

containers) and temperature conditions, aphid individuals

may occur in different conservation stages, i.e. the longer

aphids stay in the trapping solution the higher the degree of

color change and the change of body shape (bloating) in

contrast to freshly caught aphids. Furthermore, wax deposits
TABLE 1 Publicly available datasets from different publications that have been discussed in sections 3.4 - 3.8.

Authors Year Title Link

Valan, M., Makonyi, K., Maki, A., Vondráček, D., and
Ronquist, F. (Valan et al., 2019)

2019 Automated taxonomic identification of insects with expert-level
accuracy using effective feature transfer from convolutional
networks

https://datadryad.org/stash/
dataset/doi:10.5061/dryad.
20ch6p5

Hansen, O. L. P., Svenning, J.-C., Olsen, K., Dupont, S.,
Garner, B. H., Iosifidis, A., et al. (Hansen et al., 2020)

2020 Species-level image classification with convolutional neural
network enables insect identification from habitus images

https://zenodo.org/record/
3549369

Marques, A. C. R., M Raimundo, M., B Cavalheiro, E. M., F
P Salles, L., Lyra, C., and J Von Zuben, F. (Marques et al.,
2018)

2018 Ant genera identification using an ensemble of convolutional
neural networks

https://zenodo.org/record/
1134690
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Fron
on the cuticule, e.g. typical for different aphid species, may

disappear. Regarding the described effects, significant

intraspecific differences may appear, with strong effects for

some species while for others only slight morphological

changes are expected depending e.g. on the color of a

species and the melanization of cuticular components. On

a more abstract level, this corresponds to the challenging

class of classification problems with a high intra-class

variance and small inter-class variance. Consequently, these

kind of problems require classification methods that are able

to model a high degree of complexity, which in turn require a

larger number of relevant training examples for reliable and

robust classification results.

• Potential morphological difference in-between aphid

species must be ruled out or accounted for, when

collecting training data.

• Aphid species abundance and species composition can

show strong regional variation, possibly also leading to

the presence of aphid species with exotic host plants

depending upon the location of a trap and the

surrounding plant community (Bell et al., 2015). In

addition, a spatio-temporal morphological variability has

to be taken into account in the training data, as shown for

seasonal variation inM. persicae (Taylor and Robert, 1984).

• To avoid overfitting of strongly represented classes, it is

mandatory to homogenize the training datasets of the

classifier for each species.

• High-quality sample data validated by human experts is

essential for a precise training of the algorithm. A focus on

economically important pest species may help to reduce the

complexity of a training data set as rearing of animals in the

greenhouse may improve its quality due to a high number

of images of the training data set.
Hitherto, to the best of our knowledge, no study presented an

adequate solution for AI based expert level aphid identification

from mass catches. However, promising models in the broader field

of insect identification, demonstrating remarkable results for a

variety of different insect species, could be applicable to this

specific context.
4 Modeling and forecasting

4.1 State of aphid forecasting

In agriculture, monitoring of, and forecasting models for pest

insects, are by their nature related, as forecasting models almost

always rely, at least partly, on data derived from monitoring

activities. Monitoring and forecasting are conducted and

developed, respectively, with the aim to ensure crop protection by

continuous improvement of cultivation methods. Measures may

include the adjustment of the sowing time to minimize aphid

infestation at early crop stages, to plan crop rotation to control

pest emergence or diseases spread, and finding the right timing for

plant protection measures such as the application of insecticides
tiers in Plant Science 12
(Dedryver et al., 2010) in the sense of integrated pest management.

This makes it even more important to time the use of crop

protection products according to pest infestation. Here,

forecasting models can aid the decision making process.

To establish a forecasting model for an insect pest, knowledge

about the biology and life history traits of the pest species is

mandatory. Additionally, a basic understanding of the

development of insect pests in context with environmental

conditions, such as weather or climate, is vitally important for the

development and improvement of such models. Here long-term

monitoring networks, such as the suction trap networks (e.g.

Tilman et al., 2006) are designed to study the impact of climatic

or environmental changes on population dynamics and effects on

the diversity of species on a spatio-temporal scale (Bell et al., 2015).

In the last forty to fifty years, several aphid forecasting models

have been developed using a wide variety of modelling approaches,

with the aim being to predict the occurrence and population

dynamics of different aphid species in arable crops. A table listing

the most important studies and aphid models for different crops is

included in the Supplementary Material (SM1). A number of the

existing models focus on the phenology of a herbivore and its host

in relation to abiotic factors, which has proven to achieve significant

prediction at a regional level by using monitoring data (Harrington

and Hullé, 2017). In addition, models that can predict the migratory

behavior of aphids, including arrival time, are of significant interest

as these models will identify periods with high migration risk where

in-field monitoring efforts could be targeted. Furthermore, as soon

as certain aphid pest species occur in e.g. suction or pan traps,

subsequent field observations might be necessary to assess aphid

abundance on the plant level.

For the holistic evaluation of cropping systems and the further

development of alternative crop production strategies, generally

model-based methods are used. For aphid pests, these are generally

invasion warnings when winged aphids start flying from their

overwintering hosts into crops or, with warming winters, when

they increasingly survive in the field. Modeling approaches have

been developed for numerous important crops and pests such as the

simulation model “GTLAUS01”, which modes the population

dynamics of three important aphid species in cereals (Gosselke

et al., 2001), or “SIMLAUS”, which allows predictions either for a

specific crop or for a specific region and aims at forecasting possible

outbreaks of BYDV by calculating the probabilities of reproduction

and survival of three cereal aphid species (Klueken et al., 2009).

As a practice applied prediction method, near real-time pest

incidence data coupled with remote sensing data and GIS tools

facilitate early warning of impending pest build-up in space-time

resolution, whereat the measure of weather data from pest-affected

areas is still an essential input for models (Prasad and Prabhakar,

2012). As insect development is mainly influenced by weather

factors, temperature and precipitation data are directly tied to the

success of predicting population dynamics in a particular region

(Dent and Binks, 2020).

Forecast models are available for potatoes predicting the spread

of a Potato virus Y in the current season using trap data of aphid

flights (Steinger et al., 2015) to optimize virus control in seed potato

production. Qi et al. (2004) review the procedure and decision
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making process for controllingM. persicae and predicting outbreaks

of virus yellows disease in sugar beet in the UK. While surveys

began in 1946 and a first virus yellows spray warning scheme was

introduced in 1959, the forecasting model has been continuously

developed since.

Models often simulate one or a few species and rely on the most

complete information possible on the auto-ecological demands of

the developmental stages which respond to the prevailing

environmental conditions. Still, successful forecasting techniques

are those that are as simple as possible and that are based on very

precise knowledge of the biology and ecology of the pests concerned

(Prasad and Prabhakar, 2012), such as the first flight activity or the

survival rate of overwintering aphids in temperate regions.

Thus, forecast models are used as decision-making aids to

optimize the temporal and spatial planning of infestation surveys,

to estimate the need for control and the scheduling of control

measures (Dedryver et al., 2010). Effective decision support tools are

required in order to provide agricultural practitioners with advice

regarding appropriate and economic pest management strategies

(Duffy et al., 2017) and to complement recent changes regarding

pesticide regulations in the European Union aimed at a general

reduction of pesticide applications (Lechenet et al., 2017).

In practice, however, successful decision making depends upon

the availability of integrated, high quality information (Harrington

and Hullé, 2017) and the information-base should be ensured

continuously and in high resolution by extensive monitoring.

Generally and with changing conditions during climate change in

particular, forecast models of aphids need to be compared and

validated regularly for a wide-scale use in crop protection (Klueken

et al., 2009; Zeng et al., 2020).
4.2 Utilization of AI in aphid forecasting

AI could be utilized to assist and enhance aphid pest forecasting

in several ways, by 1) automated identification of insects, whether

from suction/pan traps or camera-equipped traps, based on image

recognition and DL, 2) development of new forecasting models

based on ML or neural networks (e.g. Jarosǒvá et al., 2019), and 3)

optimizing the monitoring infrastructure to improve predictive

models (Bourhis et al., 2021). Due to the objective of this review,

we take a closer look at the potential of AI based, automated

identification based on image recognition.

Almost all current models use different aspects of the

occurrence or abundance of aphid pests in correlation with

weather data (SM1). While abiotic factors, such as temperature or

precipitation, can be assessed easily over a large spatial scale, and are

often provided by meteorological services, the spatial resolution of

monitoring locations is often limited. Monitoring networks, with a

representative number of monitoring locations (e.g. traps), are often

missing, although highly desirable, because to gain robustness in

forecasting accuracy, it is mandatory to capture significant spatio-

temporal variations in pest insect abundance in suitable numbers

over multiple seasons, so subsequent generalized predictions by

forecasting models are meaningful (Bourhis et al., 2021). In turn,

operating a monitoring network requires at least some sort of pest
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insect identification, as explained before. This is often the limiting

factor for spatially explicit monitoring.

Here, an AI-based automated identification of aphid pests from

mass trap catches, but also other traps that require an image based

identification, such as camera-equipped traps using image

recognition, has a high potential to overcome the current

limitations in monitoring insect pests. Benefits are: 1) the handling

time (sorting, identification) of catches could be reduced, allowing

large catch volumes to be processed in relatively short time and data

to be available on a daily basis, 2) the identification is independent of

a human expert, with standardized results, as individual person error

is eliminated, 3) an AI based identification application can be used at

multiple sites or as a cloud application, thus enabling standardized

monitoring of aphids within a large monitoring network with high

spatio-temporal resolution, 4) thanks to prompt sample processing,

invasive insect pests and associated plant diseases can be detected

more quickly with a higher success rate.

This way, future forecasting models could be set on a profound

basis. Monitoring data, such as aphid flight data, collected over a

wide area enables the creation and verification of more accurate

models (Bell et al., 2019). This facilitates complex analyses including

the interaction of climate change, land use, cultivation methods,

and the occurrence of insect pests, but also allows for the

optimization of cultivation systems with regard to pest infestation

and virus transmission or the influence of global warming on the

abundance and distribution of insect pests. In the long term, this

would allow for a continuous assessment of the pest potential of

individual species.

That these goals are already within reach is shown by a recent

study concerning insect pests in cotton fields in China. Liu C. et al.

(2022) developed an autonomous pest monitoring and forecasting

device that is capable of capturing and transmitting images of

phototactic insects caught in a modified light trap. The insect

images are subsequently identified on a local server by methods

of DL algorithms. Unfortunately, details on species identification

were not yet addressed by the authors, since their main focus was to

compare different DL methods for background removal to optimize

the image for classification. Nevertheless, it clearly demonstrates the

potential of automated, AI-based monitoring and outlines the

current state of the art.
5 Conclusion and prospects

Information on insect occurrence serves a number of purposes,

including research on current scientific questions about changes in

biodiversity and species abundance. But also the implementation of

important and more applied agricultural tasks such as monitoring

the spread of (new) vector-transmitted plant diseases, reducing the

use of chemical pesticides as part of the European Green Deal, and

the early development of resistant crops in case of the emergence of

new pest insects, relies on a profound understanding of the

distribution and abundance of insects. This knowledge, however,

requires a great amount of insect related data with an adequate

temporal and spatial resolution, as was planned to acquire, for

example, within the EURAPHIS network.
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An automated identification of insect pests, supported by AI as

outlined above, could be a promising tool to enable a timely processing

of a large number of samples from mass trap catches, which

subsequently can lead to timely and highly specific insect pest

warnings. The decoupling of the identification process from a human

expert and the associated relatively low costs for operation and data

analysis could form the basis for comprehensive long-term monitoring

activities, not only in Europe, but also in other regions. This form of

monitoring is already used at a regional level for biodiversity research.

At least for biodiversity research, the importance of such has already

been clearly demonstrated at regional level (e.g. Seibold et al., 2019).

The provision of data from mass trap catches in cloud-based

databases would allow a large number of research groups to utilize

and evaluate the data for various research questions, such as the

adaptation of forecast models in connection with climate data and

data on regional crop production by AI-based models.

Research activities in image based identification, but also other

identification disciplines, will be essential for future biodiversity,

and consequently pest insect monitoring.
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et al. (2021). The taxonomic impediment: a shortage of taxonomists, not the lack of
technical approaches. Zool. J. Linn. Soc 193, 381–387. doi: 10.1093/zoolinnean/
zlab072

European Union (2018). Consolidated text: commission implementing regulation
(EU) no 485/2013 of 24 May 2013 amending implementing regulation (EU) no 540/
2011, as regards the conditions of approval of the active substances clothianidin,
thiamethoxam and imidacloprid, and prohibiting the use and sale of seeds treated with
plant protection products containing those active substances (Text with EEA
relevance). ELI. Available at: http://data.europa.eu/eli/r.

Favret, C. (2018) Aphid species file. Available at: http://Aphid.SpeciesFile.org
(Accessed 5 December 2022).

Gaafar, Y. Z. A., and Ziebell, H. (2020). Aphid transmission of nanoviruses. Arch.
Insect. Biochem. Physiol. 104, e21668. doi: 10.1002/arch.21668

Giordanengo, P., Brunissen, L., Rusterucci, C., Vincent, C., van Bel, A., Dinant, S.,
et al. (2010). Compatible plant-aphid interactions: how aphids manipulate plant
responses. C. R. Biol. 333, 516–523. doi: 10.1016/j.crvi.2010.03.007

Girousse, C., Moulia, B., Silk, W., and Bonnemain, J.-L. (2005). Aphid infestation
causes different changes in carbon and nitrogen allocation in alfalfa stems as well as
different inhibitions of longitudinal and radial expansion. Plant Physiol. 137, 1474–
1484. doi: 10.1104/pp.104.057430

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning (Cambridge,
Massachusetts, London, England: MIT Press).

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al.
(2014). Generative adversarial networks. arXiv 2661. doi: 10.48550/arXiv.1406.2661
Frontiers in Plant Science 15
Gosselke, U., Triltsch, H., Roßberg, D., and Freier, B. (2001). GETLAUS01–the latest
version of a model for simulating aphid population dynamics in dependence on
antagonists in wheat. Ecol. Modell. 145, 143–157. doi: 10.1016/S0304-3800(01)00386-6

Hansen, O. L. P., Svenning, J.-C., Olsen, K., Dupont, S., Garner, B. H., Iosifidis, A.,
et al. (2020). Species-level image classification with convolutional neural network
enables insect identification from habitus images. Ecol. Evol. 10, 737–747. doi: 10.1002/
ece3.5921

Harrington, R., Clark, S. J., Welham, S. J., Verrier, P. J., DENHOLM, C. H., Hullé,
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Motta, D., Santos, A. Á. B., Machado, B. A. S., Ribeiro-Filho, O. G. V., Camargo, L.
O. A., Valdenegro-Toro, M. A., et al. (2020). Optimization of convolutional neural
network hyperparameters for automatic classification of adult mosquitoes. PloS One 15,
e0234959. doi: 10.1371/journal.pone.0234959

Müller, F. P. (1975). Bestimmungsschlüssel für geflügelte blattläuse in gelbschalen.
Arch. Phytopathol. Plant Prot. 11, 49–77. doi: 10.1080/03235407509431157

Nanni, L., Manfe, A., Maguolo, G., Lumini, A., and Brahnam, S. (2022). High
performing ensemble of convolutional neural networks for insect pest image detection.
Ecol. Inform. 67, 101515. doi: 10.1016/j.ecoinf.2021.101515

Nauen, R., and Elbert, A. (2003). European Monitoring of resistance to insecticides
in Myzus persicae and Aphis gossypii (Hemiptera: aphididae) with special reference to
imidacloprid. Bull. Entomol. Res. 93, 47–54. doi: 10.1079/BER2002215

Nault, L. R. (1997). Arthropod transmission of plant viruses: a new synthesis. Ann.
Entom. Soc Amer. 90, 521–541. doi: 10.1093/aesa/90.5.521

Noskov, A., Bendix, J., and Friess, N. (2021). A review of insect monitoring
approaches with special reference to radar techniques. Sensors 21. doi: 10.3390/
s21041474

O’Loughlin, G. T. (1963). Aphid trapping in Victoria. I. The seasonal occurrence of
aphids in three localities and a comparision of two trapping methods. Aust. J. Agric.
Res. 14, 61. doi: 10.1071/AR9630061

O’Shea, K., and Nash, R. (2015). An introduction to convolutional neural networks,
arXiv. arXiv .08458. doi: 10.48550/arXiv.1511.08458

Parraga-Alava, J., Alcivar-Cevallos, R., Riascos, J. A., and Becerra, M. A. (2021).
“Aphids detection on lemons leaf image using convolutional neural networks,” in
Systems and information sciences: proceedings of ICCIS 2020. Ed. M. Botto-Tobar
(Cham: Springer International Publishing AG), 16–27.

Patel, D. J., and Bhatt, N. (2019). Insect identification among deep learning’s meta-
architectures using TensorFlow. Int. J. Eng. Adv. Technol. 9, 1910–1914. doi: 10.35940/
ijeat.A1031.109119
Frontiers in Plant Science 16
Pike, K. S., Allison, D., Boydston, L., Qualset, C. O., Vogt, H. E., and Summers, C. G.
(2012). Suction trap reveals 60 wheat aphid species, including Russian wheat aphid.
Calif. Agric. 43, 22–24.

Prasad, Y. G., and Prabhakar, M. (2012). “Pest monitoring and forecasting,” in
Integrated pest management: principles and practice. Ed. D. P. Abrol (Wallingford:
CABI), 41–57.

Preti, M., Verheggen, F., and Angeli, S. (2021). Insect pest monitoring with camera-
equipped traps: strengths and limitations. J. Pest Sci. 94, 203–217. doi: 10.1007/s10340-
020-01309-4

Qi, A., Dewar, A. M., and Harrington, R. (2004). Decision making in controlling
virus yellows of sugar beet in the UK. Pest Manage. Sci. 60, 727–732. doi: 10.1002/
ps.871

Ragsdale, D. W., Landis, D. A., Brodeur, J., Heimpel, G. E., and Desneux, N. (2011).
Ecology and management of the soybean aphid in north America. Annu. Rev. Entomol.
56, 375–399. doi: 10.1146/annurev-ento-120709-144755

Ratnasingham, S., and Hebert, P. D. N. (2007). Bold: the barcode of life data system
(http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364. doi: 10.1111/j.1471-
8286.2007.01678.x

Robert, Y., Woodford, J. A., and Ducray-Bourdin, D. G. (2000). Some
epidemiological approaches to the control of aphid-borne virus diseases in seed
potato crops in northern Europe. Virus Res. 71, 33–47. doi: 10.1016/S0168-1702(00)
00186-6

Rydhmer, K., Bick, E., Still, L., Strand, A., Luciano, R., Helmreich, S., et al. (2022).
Automating insect monitoring using unsupervised near-infrared sensors. Sci. Rep. 12,
2603. doi: 10.1038/s41598-022-06439-6

Sarker, I. H. (2021). Machine learning: algorithms, real-world applications and
research directions. SN Comput. Sci. 2, 160. doi: 10.1007/s42979-021-00592-x

Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A.
(2019). The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol.
3, 430–439. doi: 10.1038/s41559-018-0793-y

Segev, N., Harel, M., Mannor, S., Crammer, K., and El-Yaniv, R. (2017). Learn on
source, refine on target: a model transfer learning framework with random forests. IEEE
Trans. Pattern Anal. Mach. Intell. 39, 1811–1824. doi: 10.1109/TPAMI.2016.2618118

Seibold, S., Gossner, M. M., Simons, N. K., Blüthgen, N., Müller, J., Ambarlı, D., et al.
(2019). Arthropod decline in grasslands and forests is associated with landscape-level
drivers. Nature 574, 671–674. doi: 10.1038/s41586-019-1684-3

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D.
(2020). Grad-CAM: visual explanations from deep networks via gradient-based
localization. Int. J. Comput. Vis. 128, 336–359. doi: 10.1007/s11263-019-01228-7

Sheppard, L. W., Bell, J. R., Harrington, R., and Reuman, D. C. (2016). Changes in
large-scale climate alter spatial synchrony of aphid pests.Nat. Clim. Change 6, 610–613.
doi: 10.1038/nclimate2881

Shortall, C. R., Moore, A., Smith, E., Hall, M. J., Woiwod, I. P., and Harrington, R.
(2009). Long-term changes in the abundance of flying insects. Insect Conserv. Divers. 2,
251–260. doi: 10.1111/j.1752-4598.2009.00062.x

Simonyan, K., and Zisserman, A. (2015). Very deep convolutional networks for
Large-scale image recognition. arXiv [Preprint], 1409.1556v6. doi: 10.48550/
arXiv.1409.1556
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