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Grassland health assessment (GHA) is a bridge of study and management of

grassland ecosystem. However, there is no standardized quantitative indicators

and long-term monitor methods for GHA at a large scale, which may hinder

theoretical study and practical application of GHA. In this study, along with

previous concept and practices (i.e., CVOR, the integrated indexes of condition,

vigor, organization and resilience), we proposed an assessment system based on

the indicators monitored by unmanned aerial vehicles (UAVs)-UAVCVOR, and

tested the feasibility of UAVCVOR at typical household pastures on the Qinghai-

Tibetan Plateau, China. Our findings show that: (1) the key indicators of GHA

could be measured directly or represented by the relative counterpart indicators

that monitored by UAVs, (2) there was a significantly linear relationship between

CVOR estimated by field- and UAV-based data, and (3) the CVOR decreased

along with the increasing grazing intensity nonlinearly, and there are similar

tendencies of CVOR that estimated by the two methods. These findings suggest

that UAVs is suitable for GHA efficiently and correctly, which will be useful for the

protection and sustainable management of grasslands.

KEYWORDS

grassland ecosystem, grassland health monitor, biological index, FragMAP,
environmental condition
1 Introduction

Grassland covers about one third of the world’s land area, it plays an irreplaceable role

in maintaining ecological functions (e.g., carbon storage and water conservation), suppling

forage for livestock and wild animals (O’Mara, 2012; Wang et al., 2019). However,

grasslands are degraded or degrading continually because of anthropogenic activities
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(especially grazing) and climate changes (Wang et al., 2019; Wei

et al., 2022a). Therefore, it is urgent to estimate grassland health

status accurately and efficiently, and furthermore, adapt

reclamation activities to make sure the sustainability of the

grassland ecosystem.

Grassland ecosystem is a complex system, and it is necessary to

establish an integrated grassland health assessment system (GHA,

Xu and Guo, 2015). Generally, GHA patterns could be categorized

as qualitative or quantitative in nature (Lepak et al., 2022).

Qualitative methods estimate or judge grassland conditions based

on systematic observations. To date, the most widely adopted

qualitative assessment approach is “Interpreting Indicators of

Rangeland Health” (IIRH) (Pyke et al., 2002). It estimates three

ecosystem attributes, i.e., soil/site stability, biotic integrity, and

hydrologic function, and a suite of qualitative indicators collected

by interdisciplinary specialists. Despite it was increasing used in

USA and Australia, few researchers have applied the IIRH to assess

grassland ecosystems health status across large spatial extents (de

Soyza et al., 2000a), and a lack of specialists and comparability

resulting in inconsistent standards is the major cause limiting the

use of IIRH. Quantitative methods were established on numerical

indicators, and scientists are always wrestled with how to

characterize and keep track of grassland changes using

quantitative monitor (Hou et al., 2004; Lepak et al., 2022). The

widely adopted quantitative assessment approach is mainly derived

from the concept of ecosystem health, e.g., the CVOR integrated

index (i.e., condition, vigor, organization and resilience, hereafter

COVR) which is proposed based on the VOR index (Hou et al.,

2004). CVOR was widely used to assess GHA of various types of

grassland in Inner Mongolia (Wang et al., 2008), Ningxia (Yu et al.,

2018), and Xijiang Province (Lu et al., 2017). Usually, the

quantitative assessing frameworks are developed by process-based

studies (Pyke et al., 2002), however, the available resources are often

limited and hard to support the work, except for a small number of

grassland ecological sites (Miller, 2008), and only focused on the

field-based indicators in majority of previous work, which featured

with inefficient and labor-intensive (Whitford et al., 1998; de Soyza

et al., 2000b; Pyke et al., 2002).

The need for affordable and effective methods across expansive

grassland led to lots of efforts focused on the development of

indicators that could be reliably detected (de Soyza et al., 2000a;

Ludwig et al., 2007; Sun et al., 2018). To date, however, the widely

recognized assessment systems are lack, and how to select effective

evaluation indexes and establish appropriate evaluation methods

with new tools is still largely unknown (Wang et al., 2018). In the

last decade, along with unmanned aerial vehicles (UAVs) was

applied in studies of species composition (Sun et al., 2018; Sun

et al., 2022), vegetation coverage (Chen et al., 2016) and above-

ground biomass (Zhang et al., 2018), new opportunities are

emerging to enable novel GHA systems that are suitable for

multiple scale and featured with high comparability and efficiency.

The Qinghai-Tibetan Plateau (QTP) is the highest plateau in the

world, and is often referred to as the Third pole (Yao et al., 2022).

Alpine grassland is the most dominant vegetation type, and grazing

is the most extensive management mode on the QTP (Harris, 2010).

Reasonable grazing management is regarded as the most effective
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way to utilize and protect alpine grassland (Sun et al., 2020), and

GHA is the first step in practical application. Actually, GHA is

gradually recognized as a vital component for reasonable

management of grassland ecosystems (Herrick et al., 2006; Miller,

2008). In this study, along with previous concept and practices

(mainly the CVOR), we proposed an assessment method based on

the indicators collected by unmanned aerial vehicles (UAVs) -

UAVCVOR, and tested the feasibility of UAVCVOR at the typical

household pastures on the QTP. Our specific objectives were to: (1)

make sure whether UAVCVOR is suitable for GHA, especially for

alpine meadow, (2) compare the differences of CVOR that were

estimated by UAV- and field-based sampling methods, and (3)

reveal the GHA changes along with the gradients of grazing

intensity. Results of this study could have significant implications

on reasonable monitor and management of grassland and socio-

ecological sustainable development.
2 Materials and methods

2.1 Study sites

In 2017, This study was conducted at Azi Research Station in

Gansu Province, China (101°52′07.9″E, 33°24′24.1″N; 3547m a.s.l.)

(Figure 1). The study area is located in a humid region, mean annual

precipitation > 600 mm and mean annual air temperature is

approximately 1.1°C (Sun et al., 2015). The soil is alpine meadow

soil (Gao and Li, 1995). The plant community is dominated by

Poaceae and Cyperaceae, and meanwhile, various dicotyledonous

species are also common, e.g., the Polygonaceae, Saxifragaceae,

Ranunculaceae, Asteraceae (Ma et al., 2010).

Three typical household pastures (the aera is 48.53–113.64 ha)

that are primarily used for grazing in warm season were selected,

the pastures are gentle topography (slope< 5°) in case the slope and

aspect affect the plant and herbivores (Figure 1). As conventional

grazing pattern, yaks are free grazing during daytime and were

penned at night. The pastures we selected have been continually

grazed for more than 30 years in this way, and it generates a radial

gradient of grazing intensity from the campsites (Chillo et al., 2015;

Sun et al., 2018). Therefore, it provides suitable research areas to

study the relationships between GHA and grazing intensity, and

meanwhile, test the feasibility of the proposed UAVCVOR.

Nine sample points (the definition is the centers of Belt and

Quadrat routes in this study, Figure 2) were set up randomly between

campsites and the margin of the pastures. The distances of the

sample points from the corresponding campsite were measured

based on georeferenced orthomosaic of the pastures, which were

generated using overlapping aerial photographs acquired from the

Mosaic flight mode (e.g., Figures 2D, E). It was recognized that

grazing intensities are the proxy parameters of inverse distance from

the water point or campsite (Wesuls et al., 2013; Chillo et al., 2015;

Sun et al., 2018). Three fencing paddocks (used as control treatments

of multi-stocking rates and grazing system experiments) set up since

2010 were selected as the control plots (Sun et al., 2015; Sun et al.,

2018). All the monitor missions were conducted with permissions

from both the landowner and airspace authority.
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2.2 Sampling in the field and
collecting data

Based on the empirical and experimental studies (Hou et al.,

2004; Shan et al., 2012; Yu et al., 2018), the VOR integrated index

was used to describe biological characteristics of grassland

ecosystems, which included vigor, organization and resilience and

were described by aboveground biomass, richness, and the ratio of

the species that indicate restoration and degraded degree (RRD)

(Shan et al., 2012; Yu et al., 2018). To describe the integrated

environmental factor, the soil organic carbon (SOC) was sampled to

establish a new practical integrated index - CVOR (Hou et al.,

2004). In this study, we followed the previous work and calculated

the CVOR using the same methods at each sample point (Hou et al.,

2004; Shan et al., 2012; Yu et al., 2018). To explore relationships

between the CVOR values that were estimated by field-and UAV-

based methods, three quadrats were sampled within the Quadrat

routes randomly (detailed as below). The aboveground biomass and
Frontiers in Plant Science 03
species composition were measured and average values were used in

statistical analyses.

UAV-based sampling was also conducted. At each sample

point, a Belt (the ground sampling distance was about 0.09 cm

and covered 2.6 m × 3.5 m on ground),Quadrat and Rectangle route

were set up using the FragMAP system (Yi, 2017) (Figure 2). Given

that fractional vegetation cover (FVC) is one of the key controlling

factors in transpiration, photosynthesis and other terrestrial

processes, and meanwhile, it is also an important variable that

could be used to describe vegetation quality and reflect changes of

ecosystem (Graetz et al., 1988; Hirano et al., 2004). In this study, we

selected FVC as the Condition index, and Rectangle routes were set

to collect the FVC of sampling points. In brief, 12 way points were

set within an area of 20,000 m2 (i.e., 100 m × 200 m), the height was

set at 20 m and the UAV took one aerial photograph vertically at

each way point (to avoiding disturbance factor, e.g., the aerial

photographs taken on the rooftop, road, campsite or river were

excluded from this study, and finally 3–5 aerial photographs around
FIGURE 1

Study area in the Eastern Qinghai-Tibetan Plateau (the triangle in the insert). Gray areas indicate sampling household pastures, lines indicate pasture
borders, black circles represent campsites and back square represent the control plot.
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each sampling point were selected to estimate the FVC (Figure S1).

The ground resolution was about 1 cm and the FVC could be

calculated by the threshold method, the flight mode and data

collection were introduced in Chen et al. (2016) and Yi (2017).

The biomass (regarded as Vigor index) was estimated by

Quadrat mode. Briefly, 28 aerial photographs were taken

vertically downward and 8 azimuth angles (2 m height), then the

aerial photographs were matched and extracted point cloud

information to estimate the biomass (Zhang et al., 2018). The

richness (regarded as the Organization index) and RRD (regarded

as the Resilience index) were estimated based on the aerial

photographs that were collected by Belt mode, i.e., all species

were identified visually and recorded within each aerial

photograph, and the indexes were then calculated for each sample

point (there are 74 plant species and 3 ones were not identified on

the aerial photographs, see Sun et al., 2018 for details). DJI Mavic

Pro UAV was used to take aerial photographs (DJI Innovation

Company, China), which equipped with a built-in 20-megapixel

RGB camera, and featured with terrain following function.
2.3 Calculation of CVOR

The integrated index CVOR (both field- and UAV-based

methods, field CVOR and UAVCVOR) were calculated followed the

previous studies (Hou et al., 2004; Shan et al., 2012; Yu et al., 2018):

CVOR = C� VOR,
Frontiers in Plant Science 04
where C is the integrated environmental index, C ∈ [0, 1] and it

will be valued as 1 if C > 1; VOR is the integrated biological index,

VOR = (WV × V +WO × O +WR × R), where WV, WO and WR are

the weighting coefficients that indicate the importance of each

single index, avoiding the errors that could be caused by spatial

heterogeneity and temporal variability. Given that the sampling

background was consistent in this study, the values were calculated

as WV = WO = WR= 1/3, VOR ∈ [0, 1] and it will be valued as 1 if

VOR > 1; CVOR ∈ [0, 1] and it will be valued as 1 if CVOR > 1.

For field CVOR, the soil organic carbon concentration (SOC) was

detected by the K2Cr2O7-H2SO4 oxidation method (Nelson and

Sommers, 1996), and the Condition index (CSOC) for SOC was

calculated as:

CSOC = SOCx=SOCck

where SOCxand SOCck are the concentrations of soil sampled in

the sampling points and control plot, respectively.

The aboveground biomass was clipped from the quadrats and

oven-dried to constant weight at 65 °C, then the Vigor index (VfB)

for aboveground biomass was calculated as:

VfB =  Bx=Bck

where Bxand Bck are the aboveground biomass sampled in the

sampling points and control plot, respectively.

Different plant functional types’ relative abundance could be

regarded as an important factor that affects ecosystem responses to

herbivores grazing (de Soyza et al., 2000a; Lunt et al., 2007). The

richness was measured by counting all the species within the
FIGURE 2

Indicators of grassland health assessment sampling and monitor by unmanned aerial vehicle and field-based verification (Using the No.1 pasture as
an example). (A) the real-time control interface for Rectangle mode, (B) Belt mode, (C) Quadrat mode, (D) the georeferenced orthomosaic of the
studied pasture (dotted black line indicates borders of the pasture, and yellow circle represents campsite area), (E) Mosaic mode, (F) species
composition and biomass field-based verification, and (G) soil sampling.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1150859
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Luo et al. 10.3389/fpls.2023.1150859
quadrats, then the Organization index (OfR) for richness was

calculated as:

OfR =  Rx=Rck

where Rx and Rck are the richness within quadrats sampled in

the sampling points and control plot, respectively.

The RRD was measured by counting the functional groups

within the quadrats, then the Resilience index (RfD) for RRD was

calculated as:

RfD =  (Pg=Pgck)=(Pd=Pdck)

where Pg and Pd are the proportion of restored and degraded

species in the sampling points, and Pgck and Pdck are the proportion

of restoration and degraded species in control plot, respectively.

For UAVCVOR, the FVC was retrieved by a threshold method

which is conducted a Java-based software (Chen et al., 2016; Yi,

2017), and the Condition index (CFVC) for the FVC was calculated

as:

CFVC =  FVCx=FVCck

where FVCxand FVCck are the vegetation coverage in the

sampling points and control plot, respectively.

The biomass was measured based on the point cloud from the

aerial photographs, and the Vigor index (VUB) for the UAV-based

biomass was calculated as:

VUB =  Bx=Bck

where Bxand Bck are the aboveground biomass sampled in the

sampling points and control plot, respectively.

The richness was measured based on species frequencies

occurred in the aerial photographs collected along Belt routes,

and the Organization index (OUR) for the UAV-based richness

was calculated as:
Frontiers in Plant Science 05
OUR =  Rx=Rck

where Rxand Rck are the species frequencies occurred within

Belt routes sampled in the sampling points and control

plot, respectively.

The RRD was measured by counting the functional groups

within the Belt routes, and the Resilience index (RUD) for the UAV-

based richness was calculated as:

RUD =  (Pg=Pgck)=(Pd=Pdck)

where Pg and Pd are the proportion of restoration and degraded

species in sampling points, and Pgck and Pdck are the proportion of

restoration and degraded species in control plot, respectively.
2.4 Data analysis

To test the normality of data, a goodness-of-fit test (based on

Shapiro-Wilk test and univariate procedure) was used firstly for all

the collected data. For the regression analysis, the R2 and P values

were used to compare the performance of sampling methods (i.e.,

UAVCVOR vs. field CVOR). To select the final regression models

which indicated the effects of grazing intensity on GHA, the

likelihood ratio tests were used to compare the regression models

(n = 27), and select the optimal regression models to reveal the

relationships between grazing intensity and GHA. The statistical

analyses were performed with R version 4.1.3.
3 Results

3.1 The characteristics of UAVCVOR

The SOC increased significantly with the increase of FVC, but

the rate of increase was significantly faster when FVC≥ 0.98
A B C

FIGURE 3

Relationships among indicators that estimated by field- and UAV-based methods. (A) relationship between vegetation coverage (FVC) and soil
organic carbon concentration (SOC) (SOC = 228.29 FVC -137.71, R2 = 0.612, P< 0.001 when FVC< 0.980, and SOC = 3938.6 FVC - 3786.9, R2 =

0.725, P< 0.001 when FVC ≥ 0.980); (B) relationship between the transitional indicator (FVCSOC) and actual measured FVC, (C) relationship between
ratio of the species that indicate restoration and degraded degree (RDD) that estimated by field- and UAV-based methods (RRDfield = 1.87 RRDUAV -
0.84, R2 = 0.713, P< 0.001).
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compared to that when FVC< 0.98, showing a segmented function

between the SOC and FVC (Figure 3A). After transformation based

on the segmented function, the FVC was positively corelated to the

transitional indicator (FVCSOC, Figure 3B), reflecting the condition

of the sample points. RRD could be extracted from aerial

photographs that were collected by FragMAP system and

analyzed easily and efficiently, and it was significant corelated to

the field-based RRD (Figure 3C).

Compare to the nearest sample sites from campsites, the

farthest sample sites exhibited higher estimated values for

aboveground biomass, richness and RDD (Figure 4, P< 0.05). The

UAV-based method estimated higher values of the richness both at

the nearest and farthest sample points, and the difference was

greater at the nearest sample points (Figure 4B).
3.2 Comparation of the CVORs that were
assessed by field- and UAV-based methods

There were significant linear relationships between CVOR

estimated by the field- and UAV-based methods (P< 0.001,

Figure 5). The variation range (0.44 – 0.98) of values estimated by

UAV-based method was smaller than that (0.15 – 0.93) estimated

by the field-based method, especially around areas with higher

grazing intensities.
3.3 Relationships between GHA and
grazing intensity

CVOR index was initially decreased nonlinearly, and then kept

stable with increasing grazing intensity (Figure 6). Although the

tendency was same, the UAVCVOR exhibited higher values than that

estimated by the field-based method for the same sampling point,

and furthermore, the differences increased with the increasing

grazing intensity (Figure 6).
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4 Discussion

4.1 UAVCVOR establishment for GHA

It is challenged for grassland managers to make management

decisions across large landscapes based on limited time and

financial resource (Lepak et al., 2022). GHA is a bridge of

grassland study and management (Xu and Guo, 2015). Followed

the methodology of Hou et al. (2004); Yu et al. (2018) and etc., we

established the integrated index-CVOR based on the indicators

represent the environmental conditions and biological

characteristics (i.e., C + VOR). Similar to the SOC concentration,

the vegetation coverage is regarded as a sensitive indicator of land

degradation and desertification (Hirano et al., 2004; Jiapaer and

Bao, 2011). In this study, the relationship between FVC and SOC

was a segmented function (Figure 5), but the normalized

transformation made it possible to indicate the SOC level by

FVCSOC. In addition, in this study, the vegetation and soil type

were similar, thus the FVC could be an appropriate indicator for the

Condition index.

Regarding the biological indexes, it has been found that the

UAV-based method could estimate the aboveground biomass and

richness of alpine grassland efficiently and correctly (Sun et al.,

2018; Zhang et al., 2018). Similarly, the UAV-based method could

also be used to estimate the RRD (the significant linear relationship

between the values that measured by UAV- and field-based

methods, Figure 3C). Therefore, the CVOR estimated by UAV-

based method is reliable and efficient.
4.2 Changes of GHA along
grazing intensities

Quantitative data describing condition gradients of specific

ecosystem will be of utility in assessment, monitoring, and

sustainable management of grassland ecosystems (Bosch and
A B C

FIGURE 4

Comparation of the biological index of the nearest and farthest sample points of the tree household pastures that estimated by field- and UAV-
based method. (A) aboveground biomass, (B) richness, (C) ratio of the species that indicate restoration and degraded degree (RRD).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1150859
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Luo et al. 10.3389/fpls.2023.1150859
Kellner, 1991; Wei et al., 2022b), meanwhile, it is also an efficient

study method to the scientists engaging in grassland ecosystem

related research activities (Herrick et al., 2006). Specifically,

resource inhomogeneous distribution or management mode

could result in phenomena of radial gradient of grazing

intensity in specific areas such as household pastures, which is

regarded as a useful way to understand and predict the

relationships between grasslands and herbivores (Chillo et al.,

2015; Sun et al., 2018). The superior advantage is that it includes

multi-grazing intensities, rather than the only grazing & enclosure
Frontiers in Plant Science 07
or several specific grazing intensities treatments (Lunt et al., 2007),

which is helpful to reveal the potential relationships between

grazing intensity and the response indictors (Sun et al., 2018;

Teague and Kreuter, 2020). In this study, we demonstrate

a nonlinear relationship between the CVOR (estimated by field-

and UAV-based methods) and grazing intensities (Figure 6).

Meanwhile, compared to traditional field-based method,

the UAV-based method could sample within larger ranges

both for single monitor unit and total monitor areas, which

meaning the higher representativeness and lower errors for the
FIGURE 6

The grassland health assessment integrated indicator (COVR) along the grazing intensity (fieldCVOR = 0.0000268 GI -1.45 + 0.176, R2 = 0.866, P<
0.001; UAVCVOR = 0.0000926 GI -1.22 + 0.474, R2 = 0.884, P< 0.001).
UAVCVOR

fi
e
ld
CV
O
R

FIGURE 5

Relationships between grassland health assessment integrated index that were estimated by the traditional field- and UAV-based methods (fieldCVOR

= 1.87 UAVCVOR - 0.84, R2 = 0.713, P< 0.001).
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specific monitor area (Sun et al., 2018), especially for the species

richness (Figure 4B). Furthermore, the higher representativeness

improves estimation accuracy (Fuhlendorf and Engle, 2001),

especial ly for the grass land ecosystem featured with

heterogeneity. In this study, the CVOR values estimated by

the UAV-based method were higher than those measured by the

field-based method could be resulted from the higher

representativeness (Figures 5 and 6, Sun et al., 2018). Hence,

we conclude that the UAV-based method is appropriate for

GHA, and it could be an optional way for scientific research and

practical guidance, such as provides dynamic optimum grazing

intensities at various scales according to the GHA, and fills the gap

between botanical characteristics that were studied in plot

experimental and natural communities (Genung et al., 2020;

Sun et al., 2022).
4.3 Advantages of UAV-based GHA

In general, different biophysical parameters of grasslands

require scale-matched monitoring method prior to capture their

spatial or temporal variation (Bradley and Millington, 2006; He

et al., 2006; He et al., 2007). Thus, it is better if the methodology of

GHA could include analyses at multiple spatio-temporal scales.

However, up to now, it is still a challenge to find suitable scale (both

temporal and spatial scales) thresholds for GHA modeling (Xu and

Guo, 2015). In recent years, the UAVs had been used to fill the

spatial gap between the field-based sampling and satellite

images (Chen et al., 2016; Zhang et al., 2023), which overcomes

the scale issue for ecological studies. Similarly, the UAVs controlled

by FragMAP system could be used for GHA estimate within a

similar phenological period at a large scale. The results would

be more precise because of the larger sampling area and

higher representativeness, and which could reduce sampling bias

in the heterogeneous landscapes (Sun et al., 2018). Besides, the

UAVs can reach the areas where are difficult for human walking

(e.g., wetland), and data are collected efficiently (Floreano and

Wood, 2015). Therefore, the UAV-based method makes it

possible to carry out GHA in situ at a large scale, which is

especially useful on the QTP featured with high elevation and low

oxygen (Sun et al., 2022).

Generally, GHA requires long-term repeated monitoring to

realize comparability (Arif et al., 2016; Lepak et al., 2022). The

UAV-based method (controlled by FragMAP system) proposed in

this study realized flights repeatedly and efficiently at different times

with fixed height (Yi, 2017; Sun et al., 2018). Meanwhile, the large

numbers of sampling locations that represent general patterns of

GHA among ecological sites (de Soyza et al., 2000a). Moreover, the

UAV-based noninvasive sample method could keep the sample

sites at ideal state which makes sure that the results are more

believable and comparable, and it is crucial for the control or

reference sites that could be destroyed by sampling repeatedly

(Lepak et al., 2022).
Frontiers in Plant Science 08
4.4 Limitations of UAVCVOR and
suggestions to improve UAV-based GHA

We proposed and tested the UAV-based GHA method at

typical household pastures on the QTP. The method exhibited

more efficiency and representativeness of larger sample aeras (e.g.,

Sun et al., 2018). However, we do acknowledge the limitations of

UAV-based GHAmethod. First, some species such as the creeping

or low-growing plants in UAV photographs could not be

identified (Sun et al., 2018). Fortunately, higher resolution of

UAVs could allow us to identify detail information, meanwhile,

taking additional aerial photographs manually at close distance

(e.g., 0.5 m) will make it possible to find detail under the canopy as

the airflow made by the UAVs’ propellors (Sun et al., 2018).

Second, to date, the visual identification process requires

substantial time and professional knowledge, the target

identification automatically by increasing the machine learning

algorithm could further promote the efficiency of UAV-based

method (Lu and He, 2017; Menshchikov et al., 2021).

Though we demonstrated the feasibility of UAVCVOR at the

household pastures in this study, the feasibility of the UAV-based

integrated indexes to different types of grassland at multiple scales is

still necessary. Meanwhile, the specific indicators included in CVOR

could make adjustments according to study need, e.g., taking the

bioclimatic dataset (download from www.worldclim.org/current or

other datasets) as Condition index at regional scale. In addition,

with filling special gap between the traditional field-based samples

and satellite images by UAV technology, the standardized space-

air-ground integrated observation system for GHA could be

established, and it will be easier to select the control or reference

sites scientifically around the large areas. Finally, we may integrate

the single monitor points and thus improve the datasets, which will

be beneficial to vertical and horizontal comparison and applied in

site-specific management strategies and environmental protection

(Miller, 2008; Ye et al., 2011).

It is usually hard to separate the effects caused by grazing and

succession in ecosystems featured with the dynamic succession

processes. Thus, the long-term fixed points monitor system is

urgent to develop to solve the confusing issues. The UAV-based

sampling processes of GHA was separated into two parts:

cooperative UAV-field sampling and net-cooperation data

extraction (Sun et al., 2022). UAV-based sampling is more

efficiency which could reduce the field work time, and net-

cooperation data analysis could be carried out synergistically in

laboratories, which overcome the temporal and spatial limitations

of data analysis of GHA (e.g., the species composition, Sun et al.,

2018); and more important is that the datasets dased on aerial

photographs could be the critical point in integrating the qualitative

or quantitative protocols (Lepak et al., 2022). Therefore, the

UAVCVOR will contribute to study real-world conditions at a large

scale, which could be helpful to separate the effects caused by

disturbance and succession, and will contribute to the sustainable

development of grassland ecosystem.
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