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As the most suitable potential clean energy power generation technology,

biophotovoltaics (BPV) not only inherits the advantages of traditional

photovoltaics, such as safety, reliability and no noise, but also solves the

disadvantages of high pollution and high energy consumption in the

manufacturing process, providing new functions of self-repair and natural

degradation. The basic idea of BPV is to collect light energy and generate

electric energy by using photosynthetic autotrophs or their parts, and the core

is how these biological materials can quickly and low-loss transfer electrons to

the anode through mediators after absorbing light energy and generating

electrons. In this mini-review, we summarized the biological materials widely

used in BPV at present, mainly cyanobacteria, green algae, biological

combinations (using multiple microorganisms in the same BPV system) and

isolated products (purified thylakoids, chloroplasts, photosystem I, photosystem

II), introduced how researchers overcome the shortcomings of low photocurrent

output of BPV, pointed out the limitations that affected the development of BPV’

biological materials, and put forward reasonable assumptions accordingly.
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1 Introduction

With the progress of technology and the expansion of population, the demand for

energy is increasing (Martiskainen, 2007; Geels et al., 2018; Rahman, 2020; Berrill et al.,

2021; Khan et al., 2021). However, the traditional way of obtaining energy, especially

thermal power generation, consumes a large amount of fossil fuels with low conversion

efficiency, emits greenhouse gases and harmful gases, and produces a lot of pollution

(Penghao et al., 2019), which is undoubtedly contrary to the contemporary green

development (Hayat et al., 2019; Lin and Xu, 2020). On the other hand, the limited

traditional technology can’t meet the huge energy demand (Kalair et al., 2021). As a new

energy acquisition system, photovoltaic power generation can directly convert solar

radiation energy into electric energy without mechanical wear (Zhang et al., 2020; Ang

et al., 2022). Because photovoltaic panels are easy to assemble, can supply energy on

demand (Liu et al., 2019) and are environmentally friendly (Narasipuram et al., 2018; Abid
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et al., 2019; Firat, 2019), it is a potential mainstream green

renewable energy technology, which has attracted more and more

researchers’ attention.

As the energy source of photovoltaic power generation, solar

energy is widely distributed and almost unlimited. However, the

distribution of solar energy is uneven. Therefore, how to capture

and utilize solar energy efficiently and apply photovoltaic power

generation to places with insufficient direct sunlight is the direction

that international scholars have been striving for (Qinghui and Jun,

2009; Cotfas and Cotfas, 2019; Venkateswari and Sreejith, 2019; Al-

Shahri et al., 2021). At present, the common methods include

installing solar automatic tracking device (Sidek et al., 2017;

Mamodiya and Tiwari, 2021; Wu et al., 2022), optimizing

photovoltaic energy storage technology (Ibrahim et al., 2021;

Symeonidou et al., 2021; Fagiolari et al., 2022; Jiang, 2022),

changing the material composition of solar panels (Rong et al.,

2018; Lin et al., 2020), introducing concentrators (Indrasari and

Fahdiran, 2020; Obaid et al., 2021), and introducing photosynthesis

mechanism (Jawre and Center, 2018; Yadav and Nair, 2021).

Among them, as a relatively new field, the research frequency of

BPV technology has increased significantly in recent years. BPV is a

new technology that applies natural photosynthesis to solar power

generation, that is, photosynthetic autotrophs or their parts are used

to collect light energy and generate electricity (Tian et al., 2021).

Compared with silicon-based solar panels, bio-based solar panels

are easier to capture light and produce less pollution in the
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manufacturing process. Similar to microbial fuel cells, BPV has

the advantages of self-assembly, self-repair and natural degradation

because photosynthetic organisms can reproduce themselves

(Kornienko et al., 2018; Milano et al., 2019). Compared with

microbial fuel cells, BPV doesn’t need to continuously provide

organic compounds as substrates to start and operate (Rosenbaum

et al., 2010; Xiao and He, 2014).

Cyclic voltammetry (measuring the current-voltage curve at the

fixed electrode by symmetrical triangle potential scanning),

chronoamperometry (measuring the current-time curve at a

constant voltage) and power curve are commonly used to

evaluate the power output of the system (Tschörtner et al., 2019).

This is usually regulated by many factors (Wey et al., 2019),

including two-electrode or three-electrode system (Saper et al.,

2018; Chouler et al., 2019), the choice of electrode materials and

morphology (Bombelli et al., 2012; Anam et al., 2021; Wang et al.,

2021), electron transfer path (Bradley et al., 2012; Cereda et al.,

2014; Park and Song, 2021), ambient temperature (Ciniciato, 2022)

and ambient light intensity (Thong et al., 2019; Morlock et al., 2021;

Torabi et al., 2021). Among them, the selection of photosynthetic

organisms is a major factor affecting the efficiency of BPV. In the

general BPV system, the electrons generated by photosynthesis are

transferred to the anode, and finally transferred to the cathode

through wires, forming a loop current. As shown in Figure 1, the

anode is used to drive water oxidation by light energy to generate

electrons and hydrogen ions, which requires the completion of
A

B C

FIGURE 1

Schematic representation of a biophotovoltaic system (A), Schematic diagram of anode coated with biological materials (B) and electron generation
model of biological photosynthesis (C).
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biological materials, including prokaryotes (mainly cyanobacteria),

eukaryotes (green algae, diatoms, etc.), biological combinations

(algae and other bacteria), isolated products (purified thylakoids,

chloroplasts, photosystem I, photosystem II), which will be

described in detail in the second section. Part of the generated

electrons will be transferred to the extracellular environment to

reduce the anode. For the cathode, the higher electrode potential

will drive the current through the external circuit, so that the

diffused hydrogen ions and oxygen get electrons to generate water

again, or reduce to hydrogen (Saper et al., 2018). It is worth noting

that there are various strategies for the transfer of electrons from

biological materials to anodes in BPV, which are mainly divided

into two categories (Bühler et al., 2021; Syed et al., 2021; Thapa

et al., 2021): indirect extracellular electron transfer (IEET) through

electron mediator and direct extracellular electron transfer (DEET)

through various conductive current-carrying substances (Figure 2).

Compared with IEET, DEET is faster and not limited by diffusion

rate, but requires close and effective contact between organism and

electrode (McCormick et al., 2015; Thirumurthy et al., 2020).

In this mini-review, the principle and advantages of BPV are

reviewed, and the evaluation methods and related parameters of

BPV efficiency are listed. In particular, this paper focuses on how

different biological materials and their separated products enhance

and effectively guarantee BPV power generation technology

(Section 2). At the end of the review, the future direction of

biological materials reinforced photovoltaic system technology

is prospected.
2 Biological materials used in BPV

2.1 Cyanobacteria

At present, cyanobacteria is the most commonly used material

in the research of BPV. As a single-celled prokaryote, cyanobacteria

have relatively simple cell membrane arrangement, which is

conducive to electron output, and contains chlorophyll a, lutein,

carotene, phycobilirubicin and other pigments, which has a good

light adaptation mechanism (Komárek, 2018; Hirose et al., 2019). In
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addition, its nutritional requirements are simple, and only light,

water, carbon dioxide and inorganic salts are needed to realize

photoautotrophy (Zheng et al., 2022). Among cyanobacteria,

Synechocystis sp. PCC6803 is the most commonly used for BPV

research, which may be due to the early completion of the whole

genome sequencing, and it is an important model widely used for

photosynthesis and cyanobacteria biology research at present

(Kaneko and Tabata, 1997; Liu and Pakrasi, 2018; Mills et al.,

2020; Schneider et al., 2022). In addition to autotrophic growth,

Synechocystis sp. can also use glucose for heterotrophic growth, that

is, light activated heterotrophic growth (LAHG) (Huokko et al.,

2019; Solymosi et al., 2020), in the absence of light, which ensures

the service life and self-healing characteristics of BPV, making it

reliable and stable to use BPV for long-term power generation.

According to the research results of Hasan et al. (2017a), the

photocurrent density produced by cyanobacteria is higher than

that of eukaryotic algae. This may be due to different positions of

photosynthesis in cells, different arrangement of cell inner

membrane and different difficulty of electron transfer. That is to

say, the photosynthetic apparatus of eukaryotic algae is located in

the chloroplast, and the chloroplast membrane blocks the transfer

of electronic media to some extent. All the above reasons explain

why most researchers are keen to choose cyanobacteria as the main

research object of BPV.

Researchers have been working on the metabolism and genetic

manipulation of cyanobacteria for a long time (Clerico et al., 2007).

At present, using natural mutation or genetic engineering of

cyanobacteria to achieve better electron transfer or light

absorption is one of the hot research directions (Hitchcock et al.,

2020; Sinha, 2021). Synechocystis sp. PCC6803, as an excellent

genetic tool, can construct a mature scheme of mutants with

multiple chromosome deletions and insertions, as well as more

precise operations, such as introducing single point mutations into

specific genes (Lea-Smith et al., 2014). Kusama et al. (2022) used

Synechocystis sp. PCC6803 mutant, slr0688i, with outer membrane

deletion, found that outer membrane deletion enhanced EET effect,

and compared with wild strains, its photocurrent increased by an

order of magnitude. Sekar et al. (2016) genetically modified

Synechococcus elongatus PCC 7942 to express the unnatural redox
A B D E FC

FIGURE 2

Mechanism of microbial electron transfer in BPV. (A) IEET involving recyclable electronic media; (B) IEET involving non-recyclable electronic media,
such as H2; (C) IEET of the interaction between electronic media and conductive nanowires (nanonets); (D) DEET mediated by biological membrane
proteins; (E) DEET mediated by conductive nanowires (nanonets)/fimbriae; (F) Extracellular polymer-mediated DEET.
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protein outer membrane cytochrome S (OmcS), which improved

the EET ability and increased the photocurrent by 9 times

compared with the wild type. In addition, the ability to convert

carbon dioxide, NADPH and ATP into products during dark

reaction can be regulated by codon optimization, so as to

minimize the loss of free energy in large-scale photobioreactor

(Angermayr and Hellingwerf, 2013).

Some researchers also focus on the influence of environment on

the efficiency of algae photocurrent generation, including external

environment and culture environment. As NADPH is one of the

mediators of EET effect of cyanobacteria, it is undoubtedly feasible to

add exogenous NADP+ to cyanobacteria (Sandmann and Malkin,

1983; Shlosberg et al., 2021a; Yang et al., 2022). Park et al. (2019)

developed a simpler external environment-assisted electron transfer

method, which directly added carbon nanotubes (CNTs) to

cyanobacteria suspension containing 2,5-dimethyl-1,4-

benzoquinone mediator. With this method, electrons can be

quickly transferred to the anode along the CNTs network.

However, due to the extremely strong absorbance of CNTs,

excessive addition of CNTs will lead to a sharp drop in

photosynthetic efficiency, so it is necessary to control the trace

amount of CNTs. By applying slight pressure to Synechococcus

elongatus PCC7942, Okedi et al. (2020) think that increasing the

surface area of cyanobacteria can increase the EET rate, and for rod-

shaped cells, the increase of cell area caused by cell elongation is

enough to compensate for the decrease ofmass transfer coefficient. In

addition, the mediators used by researchers include 1,4-

benzoquinone (Lee et al., 2020), 2,6-dichlorobenzoquinone

(Longatte et al., 2016; Longatte et al., 2017), p-phenylbenzoquinone

(Longatte et al., 2015), p-benzoquinone (Cevik et al., 2021), etc. In

terms of growth and culture environment, Synechococcus elongatus

PCC7942 cultured by Gonzalez-Aravena et al. (2018) under the

condition of iron limitation showed stronger discharge activity and

stronger mediator-free interaction between cyanobacteria and

electrodes compared with the condition of sufficient iron. In

addition, iron-limited treatment can significantly reduce

ferricyanide in the dark, which is 6 times of that under the

condition of sufficient iron culture. Liu et al (Liu and Choi, 2021).

used intracellular in-situ biosynthesis technology. By culturing

Synechocystis sp. PCC 6803 in BG-11 medium with a small amount

of chloroauric acid (HAuCl4) solution for 16 h, the random

distribution of Au-NPs on the cell membrane was completed. The

appearance of Au-NPs promoted the generation of photoinduced

electrons and EET at the cell electrode interface. The maximum

power density of BPV reached 18.8 mW cm-2, which was 33.6 times

that of the case without nanoparticles. After about 120 h of culture,

only < 8% of cyanobacteria died, which indicated the feasibility and

stability of environmental modification of biological materials in

BPV. In addition, Synechocystis sp. PCC6803 strain can also be

directly grown on a transparent and conductive anode (indium tin

oxide coated polyethylene terephthalate), themaximum 10.3mWm-

2 total power output recorded under 10 W m-2 white light can be

obtained, and the need for external media can be avoided

(McCormick et al., 2011). The environmental changes of
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cyanobacteria in the above experiments have no obvious influence

on the service life and stability of BPV.
2.2 Eukaryotic algae

Eukaryotic algae have also been studied, among which green

algae is the most typical example. In the aspect of mediator

environment, Anderson et al. (2016) tested the single-celled green

algaeChlamydomonas reinhardtii strains cw15 (cc-1883), cw92 (CC-

503), sta6rbo1 (CC-4348), sta6rbo1 (STA6)-c2 (CC-4565) and

sta6rbo1 (STA6)-c4 (CC-4566) respectively, showed that plasma

membrane NADPH oxidase is an important component of

Chlamydomonas reinhardtii light-dependent power generation,

and the expression of NADPH oxidase can help electrons to cross

the plasma membrane and form superoxide anion from oxygen.

Shlosberg et al. (2021b) also studied the electron transfer mechanism

ofDunalliela salina, thought that NADPH was its main endogenous

medium, and there was a synergistic effect with FeCN. The synergy

of two mediators could significantly enhance the photocurrent

(beyond the sum of the photocurrent enhancement values of

adding media separately). Similar to the research of Liu et al (Liu

and Choi, 2021). above, Kuruvinashetti et al. (2022) successfully

internalized Au-NPs into Chlamydomonas reinhardtii (CC-

125Wild-type MT+[137C]) by dropping chloroauric acid

(HAuCl4) at the middle logarithmic stage. On the one hand, it

increased the light absorption in a wider visible spectrum range, on

the other hand, it was more efficient. In-situ biosynthesis of Au-NPs

to most algae is feasible, because nano-sized Au particles have good

biocompatibility (Chellapandian et al., 2019; Kang et al., 2020; Nejati

et al., 2022). In addition, the fluo-electrochemical setup designed by

Beauzamy et al. (2020) can monitor the behaviors of photosynthetic

chains and redox mediators when they are exposed to each other,

creating technical conditions for finding redox mediators with less

toxicity and quenching characteristics in the future. Other studies

think that the study of photoprotection mechanism should be the

focus of improving photosynthetic productivity of algae in the

future, including alternative electron transport (AET) and

nonphotochemical quenching (NPQ) (Andersson et al., 2019;

Nawrocki et al., 2019; Ware et al., 2020).

There are relatively many researches on cyanobacteria and

green algae in BPV, but there are also a few researches on other

algaes. Laohavisit et al. (2015) have studied the electron transfer of

Phaeodactylum trichonutum (strain 1055/1) and Thalassiosira

pseudonana (strain 1085/12), and found that the high expression

of NADPH oxidase is also the key to make marine diatoms produce

extracellular superoxide anion and increase BPV electron outflow.

In addition, the superoxide anion and output power can also be

adjusted by changing the lighting conditions. Through the in-depth

exploration of marine diatom Thalassiosira oceanica CCMP1005,

Diaz et al. (2019) thought that extracellular superoxide is a by-

product in the process of electron transfer, and the oxidation of

NADPH completes the redox dynamic balance of cells. Shlosberg

et al. (2022) studied six complete macroalgae individuals (green
frontiersin.org
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alga: Ulva, Cladophora; red alga: Gracilaria, Jania; Brown alga:

Padina, Stypopodium) has made a comprehensive study, and it is

found that macroalgae can generate a current of >50 mA cm-2 at

most, and NADPH, Fe(CN)6 and hydroxyl particles may be

potential regulatory media for electron transfer.
2.3 Biological combination

Considering that BPV composed of pure photosynthetic

autotrophic microorganisms has high photosynthetic efficiency,

compared with microbial fuel cells, its electricity-generating activity

is weak and its electricity collection efficiency is low (Elshobary et al.,

2021). Therefore, BPV can be combined with microbial fuel cell to

enhance the output power. It is generally composed of an autotrophic

microorganism and a heterotrophic microorganism: autotrophic

microorganisms produce organic substrates through photosynthesis,

while heterotrophic microorganisms consume substrates through

respiration to produce photoresponse electric energy (Laureanti and

Jones, 2016; Pankratova et al., 2022). Because of the combination of

microbial fuel cells, the biological combination BPV can also input

foreign organic substrates, which makes the BPV still be able to

continuously output current when there is no light (Sun et al., 2019).

The most selected biological combinations are cyanobacteria

(generally Synechocystis sp. PCC6803, autotrophic organism) and

Shewanella oneidensis (heterotrophs) (Tsujimura et al., 2001; Liu

and Choi, 2017; Mekuto et al., 2020). Liu et al. (2018) closely

attached the cyanobacteria species most commonly used in BPV

research to Shewanella. By inoculating Synechocystis sp. PCC6803

on Shewanella oneidensis MR-1 biofilm, a BPV with a current of 8

mA cm-2 for up to 13 days was prepared without the input of

exogenous organic substances. In addition, they also improved the

chamber structure and improved the adhesion of microorganisms.

Liu et al (Zhu et al., 2019). used additive manufacturing technology,

by 3D printing a hydrogel bio-layer containing Synechocystis sp.

PCC6803 on Shewanella oneidensis MR-1, the power of about 13

mW cm-2 was obtained. Zhu et al (Mohammadifar et al., 2020).

developed a double-strain BPV with an average power density of

135 mW m-2, which can run stably for more than 40 days in

continuous fed-batch culture. Two bacteria in BPV are

Synechococcus elongatus UTEX 2973 and Shewanella oneidensis

MR-1. The d- lactic acid is used as the carrier to complete the

energy conversion between microorganisms. Cyanobacteria absorb

light energy to synthesize energy carrier d- lactic acid, while

Shewanella oxidizes d- lactic acid to generate electricity, thus

completing the process of energy conversion from light energy to

chemical energy and then to electric energy.

In the field of system structure of BPV, Shewanella oneidensis

MR-1 and Synechocystis sp. PCC6803 are also used, while

Mohammadifar et al (Sun et al., 2020). designed a BPV using

solid-phase equipment components, with solid anolyte, catholyte

and salt bridge. In the anode, agar is used to separate two microbial

communities, allowing only the exchange of nutrients and gases,

thus reducing the competition among microorganisms. This kind of

solid-phase equipment reduces the environmental occupancy rate
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and improves the feasibility of BPV in practical application. Sun

et al (Liu and Choi, 2019). made a three-electrode BPV with

Chlorella vulgaris and Rhodopseudomonas palustris as biological

materials, and found that the potential required to extract electrons

from the latter was lower, and had lower dependence on external

electron mediator. Besides biological combination, BPV can also be

combined with other electrical devices to improve current output

efficiency, such as self-charging supercapacitors (Das et al., 2018;

Liu and Choi, 2020a; Liu and Choi, 2020b; Powell et al., 2021;

Alajmi et al., 2022; Pankratova et al., 2022) or more complex boost

converters (Hill and Bendall, 1960; Singh and Pandit, 2013;

Oseyemi et al., 2022).
2.4 Separated products

In most cyanobacteria, the main light-dependent electrification

reaction takes place in photosystem (PS), which is the functional

unit responsible for light absorption distributed on the thylakoid

membrane (Perez-Boerema et al., 2020). It is a compound

composed of chlorophyll, carotenoids, lipids and protein. The

particles of photosystem I (PS I) (Qin et al., 2019; Sheng et al.,

2019; Naschberger et al., 2022) are small and mainly distributed in

the non-stacked part of thylakoid membrane. Photosystem II (PS

II) (Pinhassi et al., 2016; Kosourov et al., 2020) is an enzyme that

catalyzes light-induced water oxidation, with large particles, mainly

distributed in the stacking part of thylakoid membrane. Other

subcellular parts isolated and purified by photosynthetic

organisms, such as chloroplasts, can also be used for BPV, and

Spinacia oleracea (Magnuson, 2019; Pankratov et al., 2020) is widely

used in experiments. This is due to the high chlorophyll content in

the leaves of Spinacia oleracea, which is easy to obtain and grind. It

should be noted that BPV based on isolated products has a relatively

short lifetime due to the lack of other cell components necessary for

cell repair.

The change of thylakoid membrane caused by gene mutation is

one of the research focuses (Lea-Smith et al., 2013; Larom et al.,

2015; Yildiz et al., 2019;Wey et al., 2021). The research of Larom et al

(Viola et al., 2021). showed that the mutation of Photosystem II D1-

K238E in Synechocystis sp. PCC6803 was sensitive to the increase of

photocurrent (other mutations of K238 or other residues in the same

vicinity were not significant in the decrease of cytochrome C). Viola

et al (Hartmann et al., 2020). used kanamycin resistance cassette to

partially replace endogenous petE gene to obtain Synechocystis DPC
mutant, and a series of comparative experiments showed that the

distribution of electron transfer between respiration and

photosynthesis did not depend on the existence of one of the two

intracavity electron carriers (plastocyanin, cytochrome c6) alone. In

addition, Hartmann et al (Pankratov et al., 2020). modified the

purified PS II by externally adding phycobilisome, which broadened

the total absorbance in the visible range. We think it is also possible

to edit related genomes to achieve the same effect.

Besides gene level, reasonable BPV’ design (including electrode

selection, mediator types, etc.) is also the key to improve
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photocurrent (Lea-Smith et al., 2016; Antonacci and Scognamiglio,

2019; Morlock et al., 2021). Morlock et al (Pankratova et al., 2018).

firstly extracted and purified PS I from Thermosynechococcus

elongatus to obtain PS I trimer, and then the three-dimensional

rGO electrode structure is constructed by spin coating technology,

which has the advantage that the electrode thickness can be

controlled by controlling the number of spin coating. Pankratova

et al (Calkins et al., 2013). fixed thylakoid films on graphene surface

by electro-reduction, electro-deposition and amino aryl

functionalization, and obtained a photocurrent density of 5.24 ±

0.50 mA cm–2 without mediator, which has the advantages of simple

design, sustainability and low cost. Carbon nanotubes with similar

properties to GO are also common suitable materials (Takeuchi et al.,

2018; Adachi et al., 2019; Pankratov et al., 2019; Yun et al., 2022).

Adachi et al (Bunea et al., 2018). designed a BPV composed of

thylakoid membrane (anode biological material) -[Ru(NH3)6]
3+/2+

(mediator) -bilirubin oxidase (cathode), which showed an open

circuit voltage of 0.61 V and a maximum power density of 50 mw
cm-2. Bunea et al (Cevik et al., 2018). also compared the photocurrent

generated by the anode BPV of thylakoid membrane with [Ru(NH3)

6]
3+ or [Os(2,2’-bipyridine)2-poly(N-vinyl imidazole)10Cl]

+/2+ as

mediator, and also confirmed [Ru(NH3)6]
3+. Cevik et al (Hasan

et al., 2017b). comprehensively considered the choice of mediator

and electrode. Cytochrome C was first crosslinked to the gold

electrode coated with P(DTP-Ph-NH2) conductive polymer, then

the thylakoid membrane was attached, and bilirubin oxidase was

immobilized on the cathode. At the current density of 15 mAm-2, the

maximum power generation is 4.9 mW m-2.

As another commonly used anode biological material,

chloroplast can be easily separated and fixed on the electrode, and

can independently perform energy conversion and electron transfer

under light (Grattieri et al., 2020; Howe and Bombelli, 2020; Okedi

and Fisher, 2021; Chin et al., 2022). Because it is simple and

economical to separate and purify chloroplasts, the method of

changing biological materials regularly can make up for the

disadvantage of BPV caused by the inability of chloroplasts to

reproduce themselves. However, the low electron transfer efficiency

of chloroplasts has become an urgent problem to be solved.

Grattieri et al (Weliwatte et al., 2021). used ethylene glycol

diglycidyl ether (EGDGE) as a cross-linking agent to deposit

chloroplasts on anode in one step to enhance the collection of

photoinduced electrons, and obtained 5 times of biological

photocurrent. In Weliwatte et al.’ s experiment (Lv et al., 2022),

poly (dihydroxyaniline) (PDHA), as the external redox mediator

and the fixed matrix of the interface, was mixed with ethylene glycol

diglycidyl ether (EGDGE) and chloroplast to prepare the anode,

which increased the photocurrent density by 2.4 times. When the

mixture of PDHA and EGDGE was first dripped, and then the

chloroplast was dripped after drying, the increment reached 4.2

times. In addition, similar to the above, anode materials with

excellent conductivity are also relatively mature research fields

(Poddar et al., 2020; Shiyani and Bagchi, 2020; Christwardana

et al., 2021). By studying the electron transfer ability of

chlorophyll in Chlorella vulgaris, Christwardana et al. (158)

designed CNTs/chlorophyll anode by coating technology, and

achieved 6 times photocurrent.
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3 Summary and outlook

BPV is a new technology developed on the basis of photovoltaic

industry. It not only inherits the advantages of traditional PV, such

as using solar energy resources, not emitting harmful gases and

having no noise, but also solves the disadvantages of high pollution

and high energy consumption in the manufacturing process of

crystalline silicon battery. It can be said that it is the most ideal

renewable energy power generation technology for sustainable

development. In this mini-review, we focus on how different

biological materials and their isolated products enhance and

effectively guarantee BPV technology. The development of BPV is

not perfect, and there are some shortcomings, such as low

conversion efficiency, great influence of climate, and its related

theories are still immature. Therefore, it is of great significance to

deeply study the related issues of BPV. In view of some hot issues,

we put forward the following prospects:
(1) Actually, the mechanism of the interaction between biological

materials and the external environment and biological

materials in BPV is not clear, and the physiological theory

still needs to be explored. Moreover, although most methods

are similar, due to the lack of uniform standards (such as

standard culture environment and standard system setup),

most horizontal comparisons are difficult to conduct

uniformly and have no reference value.

(2) Compared with traditional solar photovoltaic, the

conversion efficiency of BPV is too low. Therefore, it is

necessary to use genetic engineering methods to increase

the current output of photosynthetic organisms, which

includes not only stronger photosynthesis and more

mediators, but also changes in cell morphology and

structure, but it needs the support of a sound biological

mechanism.

(3) More diverse biological combinations should be considered,

n o t o n l y t h e c omb i n a t i o n o f “ a u t o t r o ph i c

strains@heterotrophic strains”, but also other combinations

including “strains that can secrete mediators@strains with low

electron transfer rate due to absence of mediators”, “strains

that like strong light photosynthesis@strains that like weak

light photosynthesis” and so on.

(4) It is easy to notice that the size and distribution of

intracellular nanoparticles are irregular when nanoparticles

are introduced by in-situ intracellular biosynthesis

technology. If the size and position of nanoparticles can be

precisely controlled, it is believed that the electron mobility

can be greatly improved.

(5) The structural improvement of BPV may be a simpler and

more obvious enhancement. As biological materials need to

be in close contact with the anode, the three-dimensional

anode with more effective surface area is the potential

direction. Cheap and sustainable carbon-based electrodes

are currently one of the most widely used anodes, but how

to maintain high light transmittance is a difficult problem

to be solved.
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Live cyanobacteria produce photocurrent and hydrogen using both the respiratory and
photosynthetic systems. Nat. Commun. 9 (1), 1–9. doi: 10.1038/s41467-018-04613-x

Schneider, H., Lai, B., and Krömer, J. (2022). Utilizing cyanobacteria in
biophotovoltaics: an emerging field in bioelectrochemistry. In Part of the Advances
in Biochemical Engineering/Biotechnology 183, 281–302. doi: 10.1007/10_2022_212

Sekar, N., Jain, R., Yan, Y., and Ramasamy, R. P. (2016). Enhanced photo-
bioelectrochemical energy conversion by genetically engineered cyanobacteria.
Biotechnol. bioengineering 113 (3), 675–679. doi: 10.1002/bit.25829

Sheng, X., Watanabe, A., Li, A., Kim, E., Song, C., Murata, K., et al. (2019). Structural
insight into light harvesting for photosystem II in green algae. Nat. Plants 5 (12), 1320–
1330. doi: 10.1038/s41477-019-0543-4

Shiyani, T., and Bagchi, T. (2020). Hybrid nanostructures for solar-energy-
conversion applications. Nanomaterials Energy 9 (1), 39–46. doi: 10.1680/
jnaen.19.00029
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