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Rapeseed (Brassica napus L.), the third largest oil crop, is an important source of

vegetable oil and biofuel for the world. Although the breeding and yield has

been improved, rapeseed still has the lowest yield compared with other major

crops. Thus, increasing rapeseed yield is essential for the high demand of

vegetable oil and high-quality protein for live stocks. Silique number per plant

(SN), seed per pod (SP), and 1000-seed weight (SW) are the three important

factors for seed yield in rapeseed. Some yield-related traits, including plant

height (PH), flowering time (FT), primary branch number (BN) and silique

number per inflorescence (SI) also affect the yield per plant (YP). Using six

multi-locus genome-wide association study (ML-GWAS) approaches, a total of

908 yield-related quantitative trait nucleotides (QTNs) were identified in a panel

consisting of 403 rapeseed core accessions based on whole-genome

sequencing. Integration of ML-GWAS with transcriptome analysis, 79 candidate

genes, including BnaA09g39790D (RNA helicase), BnaA09g39950D (Lipase) and

BnaC09g25980D (SWEET7), were further identified and twelve genes were

validated by qRT-PCRs to affect the SW or SP in rapeseed. The distribution of

superior alleles from nineteen stable QTNs in 20 elite rapeseed accessions

suggested that the high-yielding accessions contained more superior alleles.

These results would contribute to a further understanding of the genetic basis of

yield-related traits and could be used for crop improvement in B. napus.
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Introduction

Brassica napus (B. napus, AACC, 2n = 38) is one of the most

important oilseed crops worldwide as vegetable oil, animal feed and

biofuel (Lu et al., 2019; Song et al., 2020). However, the

deteriorating environment and lack of arable land make the yield

of rapeseed insufficient to support the demand. Therefore,

increasing rapeseed yields is a research priority for rapeseed

breeders to meet the future demand of oilseed rape production.

The yield of rapeseed is a complex quantitative trait and mainly

determined by three yield-component traits, including 1000-seed

weight (SW), silique number per plant (SN) and seed per pod (SP)

(Zhao et al., 2016; Lu et al., 2017). Seed yield is also influenced by

yield-related traits such as plant height (PH), flowering time (FT),

primary branch number (BN), length of main inflorescence, and

silique number of main inflorescence (SI) in rapeseed (Shi et al.,

2009; Zhao et al., 2016). There is a correlation among these yield

traits, and they interact with each other to jointly determine the

rapeseed yield. In addition, the relationships between these traits are

intricate, for example, SW was positively correlated with yield per

plant, plant height and length of main inflorescence, while it was

negatively correlated with seed number per pod and flowering time.

Seed size affects the SW and SP, which is of great value for crop

improvement in rapeseed (Li et al., 2019a). Thus, dissecting the

genetic basis and molecular mechanism of yield traits will facilitate

and accelerate breeding programs for yield in rapeseed.

Rapeseed yield component and related traits are all complex

quantitative traits governed by multiple genes. In previous studies,

some loci or genes for yield traits in rapeseed were identified using

quantitative trait locus (QTL) mapping and map-based cloning (Shi

et al., 2009; Li et al., 2015; Liu et al., 2015; Li et al., 2019b; Shi et al.,

2019; Wang et al., 2021a). Zhou et al. (2014) mapped 736 QTLs

associated with the yield in the A and C subgenomes of B. napus,

which were distributed over 19 chromosomes, mostly located on

A03. Raboanatahiry et al. (2018) detected 972 QTLs associated with

seed yield and yield-related traits in B. napus, identifying 147

potential candidate genes that could affect nine different traits.

With the development of high-density customized single nucleotide

polymorphism (SNPs), genome wide association study (GWAS) has

become a powerful tool for deciphering the genetic architecture of

complex quantitative traits (Lu et al., 2017; Zhong et al., 2021a).

Based on 33,186 genomic SNPs from the 60 K Brassica Illumina

Infinium SNP array, a new QTL was fine mapped onto

chromosome C03 in B. napus and a gene controlling the

branching number phenotype was identified (He et al., 2017).

Integrated GWAS and transcriptome analysis, auxin-related genes

were identified to associate with leaf petiole angle at the seedling

stage in B. napus (Hu et al., 2021a). And stable QTLs localized on

chromosomes A07, A09, and C08 were identified for silique length

(SL) using GWAS combined with RNA-seq (Wang et al., 2021a).

With the advance of next-generation sequencing (NGS) technology,

mega-level SNPs or genetic variations via whole genome

resequencing in population could detect more loci for the yield

traits in crops (Zhang et al., 2022a). Using 10,658 high-quality SNP
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markers, a total of 497 SNPs were detected to associate with yield-

related traits in B. napus (Zhang et al., 2022b). Based on high-

quality 670,028 SNPs, GWASs were conducted using multi-locus

random mixed linear model for 11 important traits in rapeseed (Lu

et al., 2019). Using a nested association mapping population, SNP-

GWAS, and presence and absence variation (PAV)-GWAS

identified loci and structural variations for silique length, SW and

FT (Song et al., 2020). Furthermore, 56 agronomically traits,

including plant architecture and yield traits were examined using

whole-genome resequencing in 403 diverse rapeseed accessions by

GWAS and identified 26 loci associated with SW and silique length

(Hu et al., 2022). Most of these GWAS studies used the single-locus

GWAS (SL-GWAS) methods, such as the general linear model

(GLM), the mixed linear model (MLM), efficient mixed-model

association eXpedited (EMMAX), and factored spectrally

transformed linear mixed models (FaST-LMM) (Zhong et al.,

2021b). However, the SL-GWAS methods rule out many

significant loci, including minor effect loci due to their highly

stringent Bonferroni correction (Wang et al., 2016).

Recently, multi-locus GWAS (ML-GWAS) methodologies,

including FASTmrEMMA, ISIS EM-BLASSO, mrMLM,

FASTmrMLM, pLARmEB, pKWmEB, were developed as an

effective approach for association analysis (Cui et al., 2018; Zhang

et al., 2020). And various combinations of ML-GWAS methods

have proven to be significantly effective in controlling false positive

rates (Misra et al., 2017; Zhong et al., 2021c). Thus, ML-GWAS has

been used to discover novel quantitative trait nucleotides (QTNs) in

many crops. In wheat, five ML-GWAS models were utilized to

successfully identify new QTL for yield-related traits in 272 local

Chinese wheat landraces based on 172,711 SNPs (Lin et al., 2021).

ML-GWAS of 144 maize inbred lines genotyped with 43,427 SNPs

identified a large number of significant QTNs and 40 candidate

genes associated with the regenerative capacity of the embryonic

callus (Ma et al., 2018). In soybean, 129 significant QTNs related to

protein content were identified by five ML-GWAS methods, and 8

candidate genes were predicted to be involved in protein synthesis

and metabolism (Zhang et al., 2018). Using ML-GWAS, 74

significant QTN hotspots have been identified to associate with

five yield-related traits in rice (Zhong et al., 2021c). However, ML-

GWAS methods for yield-related traits in rapeseed have not yet

been performed, especially based on the whole genome

resequencing data. Given the efficiency and various models of

ML-GWAS, more novel loci and candidate genes could be

identified to associate with yield traits.

In the present study, we aimed to identify novel loci for seed

yield and yield-related traits in rapeseed. Six ML-GWAS

approaches were used to determine novel QTNs based on high-

quality SNPs in 403 rapeseed accessions for eight yield traits in three

environments. And we also analyzed the significant QTNs and

pinpointed multiple candidate causal genes for the QTNs. The

candidate genes and elite alleles identified with yield traits will

provide an insight into further exploration of the genetic

architecture of yield traits in rapeseed and genetic improvement

of rapeseed.
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Materials and methods

Plant materials and phenotype evaluation

A highly diverse natural population consisting of 403 core

rapeseed germplasms were used as previous study (Hu et al.,

2022). The set of rapeseed accessions includes spring (102), semi-

winter (179) and winter (129) types from China, Germany, France,

Canada, Japan, USA and other countries. And phenotyping of the

403 accessions were evaluated under three environments: E1,

Yangluo (30.38° N, 114.50° E) in 2013, E2, Nanchang (28.37° N,

116.27° E) in 2014, and E3, Wuhan (30.58° N, 113.68° E) in 2016,

which were download from https://www.cgris.net/rapedata/ or

http://brassicanapusdata.cn/. The yield traits including SI, SN, SP,

SW, and YP as well as three yield-related traits, such as PH, BN, and

FT were measured according to the measurement standards (Chen

et al., 2014; Li et al., 2016). The large seed size accession R01 and

small seed size accession R56 were grown in a greenhouse (light/

dark 16/8 h photoperiod and 25°C/20°C day/night temperature) in

Northwest Agriculture and Forestry University, Yangling,

Shaanxi, China.
Genotyping data processing

Whole genome resequencing was performed on the Illumina

HiSeq 4000 platform with 150 bp paired-end and download from

NCBI (PRJNA416679) (Hu et al., 2022). GATK (v.3.3) was used for

SNP calling and then excluded SNP calling errors, retaining only

high-quality SNPs (minor allele frequency ≥ 0.05, miss ≤ 0.2 and

sequencing depth ≥ 6) for subsequent analysis (McKenna et al.,

2010). These SNPs were processed by PLINK 1.9 with parameter –

maf 0.05 –geno 0.05, –snps-only and imputed by Beagele 5.0

(Browning et al., 2018; Zhong et al., 2021c). Finally, a total of

7,531,945 high-quality SNPs were employed for GWAS analysis.
Multi locus-GWAS analysis

S ix ML-GWAS methods , inc lud ing the mrMLM,

FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and ISIS

EM-BLASSO, were used to identify significant QTN. All six ML-

GWAS approaches are implemented in R package “mrMLM”

(https://cran.r-project.org/web/packages/mrMLM/index.html)

(Wang et al., 2016). Default values were used for all parameters and

a threshold of logarithm of odds (LOD ≥ 3 or P ≤ 0.0002) was

chosen to examine the association between markers and yield-

related traits (Zhang et al., 2019). Principal component analysis and

kinship matrices were used in all methods. The R package CMplot

(https://github.com/yinliLin/R-CMplot) was employed to visualize

Manhattan and QQ plots of GWAS. Using the Tassel 5.2 tool

(Bradbury et al., 2007), LDs between SNPs were estimated as the

squared correlation coefficient (R2) of alleles, and R2 values were

calculated within a 0 to 10 cM window. The phenotypic-effect value

of allelic variation for each trait was calculated by the phenotypic
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data across the 403 accessions. The relative phenotypic data were

visualized with box plots using the R 4.2.1 software.
Identification of candidate genes

The putative candidate loci were identified by at least two

different GWAS methods. Candidate genes were predicted from

the upstream or downstream 200 kb region of stable QTL loci using

the ‘Darmor-bzh’ reference genome (https://www.genoscope.cns.fr/

brassicanapus) (Chalhoub et al., 2014). Then the candidate genes

were further annotated on NCBI (https://www.ncbi.nlm.nih.gov/)

and annotated for Arabidopsis homologous genes by BLAST

analysis (Hu et al., 2021a). Haplotype analysis of the QTN

association regions across the 403 rapeseed accessions was

conducted by Haploview v4.2 (Barrett et al., 2005).
Transcriptome analysis

Total RNA was extracted from developing siliques (include

seeds) of two extremely SW accessions R01 (large seed) and R56

(small seed) for RNA-seq at two weeks after pollination (2 WAP),

three weeks after pollination (3 WAP), and four weeks after

pollination (4 WAP). Illumina’s NEBNext® UltraTM RNA

Library Preparation Kit was used to construct libraries and

quality control was checked by Agilent 2100 Bioanalyzer System.

Clean reads after filtering the raw reads were mapped to the

“Darmor-bzh” reference genome (https://www.genoscope.cns.fr/

brassicanapus) using HISAT2 software (Chalhoub et al., 2014;

Kim et al., 2015). Gene expression levels were normalized using

the FPKM (fragments per kilobase per million reads) values by

StringTie (Pertea et al., 2015). Differential expression analysis

between the sample pairs in two rapeseed accessions was

conducted by DESeq2 (Love et al., 2014). Differentially expressed

genes (DEGs) were determined with false discovery rate (FDR) <

0.05 and |log2 (fold change)| ≥ 1. GO (Gene ontology) and KEGG

(Kyoto Encyclopedia of Genes and Genomes) pathway enrichment

analysis of the DEGs were performed using AgiGO 2.0 and

KOBAS3.0, respectively (Tian et al., 2017; Bu et al., 2021).
Candidate gene expression analysis

Candidate genes were predicted based on the ML-GWAS and

transcriptome analysis, and were further validated by quantitative real-

time PCR (qRT-PCR). Briefly, 1mg of total RNAwas used for RNA-seq

and cDNA synthesis was performed using HiScript®Q RT SuperMix

(Vazyme, China). Data collection was performed in QuantStudio™

real-time PCR software (Thermo Fisher Scientific, Waltham, MA,

USA). All the primers are listed in Supplementary Table S1. Data

were normalized by the internal control gene BnACTIN

(BnaA03g55890D) and relative expression levels were calculated

using a 2-DDCT analysis method (Livak and Schmittgen, 2001).
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Results

Phenotypic evaluation for yield traits

Phenotypic values for eight yield traits of rapeseed in three

environments, including PH, FT, BN, SI, SN, SP, SW, and YP were

used to determine whether significant phenotypic differences existed

in these traits (Supplementary Figure S1). The phenotypic

assessments revealed a wide range of variation between the

different accessions, with the frequency distribution of all traits

approximating a normal distribution (Figure 1). In addition, we

noted that yield-related traits were differentially affected by

environments, with SW and SP remaining relatively stable across

environments, while PH and BN were more variable. Taken together,

the extent of available variation for the different traits suggested that

the set of rapeseed accessions are suitable for GWAS analysis.

To uncover the relationships of the different yield traits, Pearson

correlation coefficient (PCC) was used to assess correlations

between pairs of traits in the eight yield-related traits (Figure 1).

SN and YP were highly significantly and positively correlated

(PCC=0.67), indicating that the YP was greatly determined by the

SN. In addition, there were also significant positive correlations

between BN and SN, SI and YP, and SI and SN, with their PCCs of

0.47, 0.36 and 0.3, respectively, while SW was negatively correlated
Frontiers in Plant Science 04
with both FT (PCC = –0.36) and BN (PCC = –0.28). These results

suggest that there is an intricate relationship between yield-related

traits and they play important roles in regulating oilseed rape yield

in a coordinated manner.
Genome-wide association mapping for
yield traits

A total of 908 QTNs for eight yield traits were identified using at

least two of the six ML-GWAS methods, namely FASTmrEMMA,

FASTmrMLM, ISIS EM-BLASSO, mrMLM, pKWmEB, and

pLARmEB (Supplementary Table S2). QTNs with LOD scores >

3.0 were considered significant trait-related QTNs. The highest

number of QTNs for SN was identified to be 127, followed by SI

with 126 and the remaining 118, 96, 110, 115, 106, and 110, were

associated with PH, FT, BN, SP, SW, and YP, respectively

(Supplementary Table S2). The number of QTNs detected by

multiple methods varied between environments, with higher

numbers found in WH16 and NC14, 435 and 431 respectively,

compared to 404 in YL13 (Supplementary Figure S2). The most

abundant QTNs for SI were found in both YL13 andWH16, with 76

and 84 each, while the greatest number of QTNs for SN were

identified in NC15. FASTmrMLM identified the highest number of
FIGURE 1

Pairwise Pearson correlation among the eight yield traits in B.napus. The upper diagonal represents the Pearson correlation coefficient (PCC)
between every two traits (positive numbers represent positive correlation, negative numbers represent negative correlation). The diagonal histogram
represents the distribution of each trait, and the lower diagonal represents the linear regression statistics between each two traits. Blue for positive
correlation, red for negative correlation. The size of the circle represents the absolute magnitude of the PCC.
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QTNs (320), while FASTmrEMMA found only 20, with other

models identifying numbers in the range of 151 ~ 273

(Supplementary Figure S2). In addition, we found that the results

identified by pKWEmEB and pLARmEB were consistent with

each other.

We further analyzed the common QTNs that were co-identified

in at least four ML-GWAS approaches (Figure 2). Through the

combination of different methods, a total of 596 QTNs were

identified, of which NC14 was the most, with 236 QTNs, while

YL13 was only 154 QTNs. The QTNs associated with SI became the

most numerous with 120, the rest being 65, 59, 103, 103, 81, 48, and

65, associated with PH, FT, BN, SN, SP, SW, and YP, respectively

(Figure 2). These results showed the diversity of QTNs in different

environments or traits, demonstrating the importance of identifying

stable QTNs by integration of multiple methods.
Stable QTNs detected by multi-methods or
across environments

In order to obtain reliable results, we further analyzed QTNs

shared by at least two models in different environments within the 1

Mb region. A total of 75 significant stable QTNs (or QTN clusters)

controlling eight yield-related traits were obtained (Table 1 and
Frontiers in Plant Science 05
Supplementary Table S3). One QTN (C03: 12081167) associated

with FT in WH16 was identified simultaneously in six models,

explaining phenotypic variation of 0.35 ~ 3.79 and LOD scores

ranging from 3.04 ~ 5.72, and near which locus, another QTN (C03:

12024986) was also detected in YL13 (Table 1). Six QTNs

controlling different traits were detected simultaneously in the

five models, with qSWYL13-A02-1 and qSWWH16-A02-1 for SW

explaining the largest phenotypic variation range of 4.10 ~ 22.24. In

addition, all QTNs explained the largest range of phenotypic

variation of SW (3.05 ~ 27.33), followed by FT (1.78 ~ 16.40).

The number of these QTNs varied considerably in the A and C

subgenomes, 23 and 44 respectively, and were more numerous on

chromosomes C03, C08, and C09, with 10, 7, and 8, respectively.

Forty QTNs shared by ML-GWAS and SL-GWAS within the 1

Mb region were found to associate with the eight yield traits, with

the highest number of QTNs associated with SW (10) and the

lowest with SI (2) (Supplementary Table S4) (Hu et al., 2022).

Among the overlapped QTNs with SL-GWAS, 10 QTNs including

A09: 28130192 and A09:2818207 associated with SW were

simultaneously detected, and some of them were found in at least

two environments, suggesting that these QTNs were more stable

and reliable (Table 2 and Supplementary Table S4). Four QTNs

were detected in all five ML-GWAS and SL-GWAS, and two of

them, both associated with SW, were found repeatedly in two
FIGURE 2

Chromosomal distribution of QTNs for eight yield traits identified by six ML-GWAS methods in the three environments. The horizontal axis indicates
genomic locations in chromosomal order and plots significant QTNs according to genomic location. Each row represents a QTN identified by a
different ML-GWAS methods. PH, plant height; FT, flowering time; BN, primary branch number; SI, Silique number of main inflorescence; SN, Silique
number per plant; SP, seed per pod; SW, 1000-seed weight, YP, yield per plant. Three different environments, YL13, Yangluo 2013; NC14, Nanchang
2014; WH16, Wuhan 2016. The red arrows show the QTN hotspots.
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TABLE 1 Candidate genes associated with eight yield-related traits identified by multi loci-GWAS in different environments.

Trait Chr. Position LOD R2 (%) Method Env. Candidate genes Annotation

PH C05 35061843 5.11-9.57 2.48-2.76 2,3,4 E1 BnaC05g35940D AUX/IAA protein

C05 36252249 6.96-14.20 4.18-5.15 2,3,4 E2 BnaC05g36140D Protein phosphatase 2C

BnaC05g37110D AP2/ERF domain

C08 18928273 4.69-7.07 1.15-2.97 2,3,4 E2 BnaC08g13850D SANT/Myb domain

C08 18801051 4.14-6.64 1.77-2.50 1,2,3 E3 BnaC08g13910D Protein kinase

BnaC08g13990D bHLH

FT A03 23460059 4.76-9.69 2.07-4.25 2,3,5 E1 BnaA03g44520D Ribonuclease H2

A03 22616177 6.56-15.01 3.27-4.66 1,2,5 E3 BnaA03g44830D Pentatricopeptide repeat

BnaA03g45650D MADS-box

C03 12024986 3.07-10.20 2.22-4.77 2,3,4,5 E1 BnaC03g22140D ABC transporter

C03 12081167 3.04-5.72 0.35-3.79 1,2,3,4,5,6 E3 BnaC03g22200D Expansin

BnaC03g22280D Amino acid transporter

C09 45879981 3.77-7.28 1.99-5.74 1,2,3,4,5 E1 BnaC09g45620D Nonaspanin (TM9SF)

C09 45879370 4.36-4.83 2.84-4.57 2,4,5 E2 BnaC09g45880D Cytochrome P450

BnaC09g45930D Zinc finger, RING-type

BN C06 4708955 6.18-8.91 2.11-4.13 2,4,5 E1 BnaC06g03900D AP2/ERF domain

C06 4978698 5.22-7.61 2.02-3.11 1,2,3,4,5 E3 BnaC06g04200D F-box domain, cyclin-like

BnaC06g04380D bHLH

C08 24114714 3.37-8.73 2.17-4.08 2,4,5 E2 BnaC08g21430D SANT/Myb domain

C08 25243813 4.31-10.90 1.53-5.04 2,3,4 E3 BnaC08g21500D Cyclin, C-terminal domain

BnaC08g22620D Auxin responsive SAUR

SI A01 21122950 3.67–7.27 0.51–1.51 2,4,5 E1 BnaA01g31080D SANT/Myb domain

A01 21380473 3.07–7.82 0.46–3.18 3,4,5 E3 BnaA01g31290D AP2/ERF domain

BnaA01g31770D F-box domain, cyclin-like

C02 15059835 4.29–17.47 1.57–6.12 2,4,5 E3 BnaC02g18860D CWC16 protein

C02 16019162 3.41–8.08 1.92–3.15 3,4,5 E2 BnaC02g19100D SBP-box

BnaC02g19360D MADS-box

C03 21828785 3.50–5.00 1.03–2.84 2,3,4 E2 BnaC03g36030D Armadillo-like helical

C03 22767136 3.07–6.32 0.27–2.16 1,2,3,4,5 E3 BnaC03g36600D No apical meristem

BnaC03g36740D DNA topoisomerase

SN A02 13065894 4.29–5.52 1.00–1.89 2,4,5 E1 BnaA02g20660D Myb/SANT-like domain

A02 13595586 5.59–8.57 2.44–2.85 2,3,5 E2 BnaA02g20930D F-box domain, cyclin-like

BnaA02g21200D MADS-box

C06 13960751 3.85–4.74 1.64–2.59 2,4,5 E2 BnaC06g11920D Protein kinase

C06 14647381 4.26–7.57 1.76–3.24 2,3,4,5 E3 BnaC06g12120D Sucrose synthase

C07 3019188 4.02–6.54 0.92–2.52 2,3,4 E3 BnaC07g02320D F-box domain, cyclin-like

C07 3183504 4.18–6.15 1.32–2.43 1,2,4,5 E2 BnaC07g51040D GH3

BnaC07g51180D Aminotransferase

C09 11236617 6.51–9.86 3.23–3.96 1,2,3 E2,E3 BnaC09g14450D PI4P5K

(Continued)
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environments, explaining 4.10 ~ 22.24, 5.32 ~ 10.60 of the

phenotypic variation, respectively (Supplementary Table S4).

Notably, we detected two significant signal loci, A09:28182807

and C09:25836173, in three environments simultaneously,

associated with SW and SP, respectively. The two loci have high

LOD values and may be significant trait-associated QTNs with

breeding potential (Supplementary Figure S3). Thus, a total of 24

and 15 stable significantly associated QTNs were detected by ML-
Frontiers in Plant Science 07
GWAS for SW and SP, explaining 0.24 ~ 8.32 and 0.00 ~ 6.74 of

phenotypic variation, respectively (Supplementary Table S5).

Since SW is the important component of yield traits, and is

relatively stable in different environments in this study, we further

analyzed the QTNs associated with SW. A total of 21 significant

QTNs were identified simultaneously in at least 2 environments as

well as in three models (Table 2). And nine of the 21 QTNs were

also detected by SL-GWAS with MLM model (Table 2), indicating
TABLE 1 Continued

Trait Chr. Position LOD R2 (%) Method Env. Candidate genes Annotation

C09 16839183 4.55–9.55 128–4.06 2,4,5 E2,E3 BnaC09g14650D Dynamin central domain

C09 20774003 3.19–5.58 0.88–2.36 2,4,5 E2,E3 BnaC09g14760D SANT/Myb domain

BnaC09g19820D JmjC domain

SP C03 30605297 5.00–6.14 0.98–2.41 2,3,5 E3 BnaC03g45540D AGP9

C03 31339715 4.03–8.30 2.14–4.80 1,2,3,4,5 E2 BnaC03g45610D GASA7

BnaC03g46070D F-box, cyclin-like

BnaC03g46450D SAUR protein

C09 24974617 3.45–6.37 1.45–3.28 2,3,4 E2 BnaC09g25390D LTPG4

C09 25836173 3.13–11.90 3.46–5.67 2,3,4,5 E1 BnaC09g25980D SWEET sugar transporter

BnaC09g26050D Peptidase C48, SUMO

BnaC09g26100D Protein phosphatase 2C

SW A02 7610485 7.18–21.14 1.77–8.32 1,2,3,4,5 E1,E3 BnaA02g13530D SAM methyltransferase

BnaA02g13870D Zinc finger, C2H2

BnaA02g13950D AP2/ERF domain

A06 15184188 6.07–14.12 1.68–4.73 1,2,3 E1,E3 BnaA06g21690D Protein kinase

BnaA06g21720D DUF296

BnaA06g21890D Zinc finger, RING-CH-type

A09 27915980 3.85–11.85 2.11–3.22 3,4,5 E3 BnaA09g39450D Cytochrome b561

A09 28182807 5.35–9.51 2.44–3.16 1,2,4 E2 BnaA09g39480D No apical meristem (NAM)

A09 28130192 4.00–26.19 3.21–7.50 2,3,4,5 E1,E3 BnaA09g39620D HAD-hydrolase

BnaA09g39680D AUX/IAA protein

BnaA09g39790D Helicase, C-terminal

BnaA09g39840D PMR5 N-terminal domain

BnaA09g39950D Lipase, class 3

YP A07 21399751 5.25–8.52 0.76–4.22 2,3,5 E3 BnaA07g29760D ABC-2 type transporter

A07 21594406 4.46–8.12 1.29–1.91 1,2,3,4 E2 BnaA07g30510D Toll/interleukin-1 receptor

BnaA07g30950D Auxin efflux carrier

A10 8882087 3.20–4.74 0.34–4.04 1,2,4,6 E3 BnaA10g10240D No apical meristem (NAM)

A10 9777221 3.93–6.97 2.08–3.50 1,3,4 E1 BnaA10g10870D Acyl-CoA N-acyltransferase

BnaA10g11980D SANT/Myb domain

C03 44895348 3.45–11.09 1.66–5.47 1,2,3,4 E3 BnaC03g55830D E3 UFM1-protein ligase 1

C03 45022247 3.26–4.14 1.06–2.63 2,3,4 E1 BnaC03g55940D Protein kinase
Chr, Chromosome; Env, Environments; PH, Plant height; FT, Flowering time; BN, Primary branch number; SI, Silique number of main inflorescence; SN, Silique number per plant; SP, Seed per
pod; SW, 1000-seed weight, YP, Yield per plant. E1, YL13; E2, NC14; E3, WH16.
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the reliability of ML-GWAS (Hu et al., 2022). A roughly similar

number of QTNs was found in each environment, and the results

were also similar for each model, except for pLARmEB, which

identified only one. These QTNs were randomly distributed on

different chromosomes and their LOD scores ranged from 3.05 ~

26.19, explaining 3.05 ~ 27.33 of the phenotypic variation (Table 2).
Allelic effects of stable QTNs for yield traits

To identify the favorable alleles of QTNs for the eight yield traits

in rapeseed, we analyzed the significant phenotypic differences

between the elite and alternative alleles of 21 QTNs (Figure 3 and

Supplementary Figure S4). We divided the population into two or

three groups according to their allele types and compared the

phenotypic values among the different groups. Generally,

population with elite alleles had significantly larger values than

those with unfavorable alleles. For example, accessions with the TT

allele of C09:25836173 show more SP compared to those with the

AA variant, indicating TT could be considered an elite allele. We

focused on A09:28182807, a significant locus associated with SW,

and the average SW values of GG individuals of A09:28182807 was

significantly higher than that of AA and AG individuals. We further
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analyzed the haplotype blocks in the 772 bp region around the peak

locus A09:28182807 and identified a strongly linked block

(Figure 4A). Based on the genotypes of this block, the association

population of rapeseed germplasms was divided into five major

haplotype groups with two nonsynonymous SNPs (Figure 4B).

Haplotype Hap 3 (n =19) had relatively large SW values and

showed significant differences from Hap 1 (n = 41) and Hap 5 (n

= 18) (Figure 4B). These results suggest that locus A09:28182807

significantly associated with SW and that the haplotype Hap 3 of

BnaA09g39950D may increase seed weight.

Twelve other QTNs associated with the seven yield-related

traits PH, FT, SI, BN, SN, SW and YP were further analyzed,

indicating some elite alleles improve the yield traits (Supplementary

Figure S4). The favorable alleles obviously affected FT with the

population with the AA elite allele at A03:22616177 having a mean

FT of around 170 days, compared to around 160 days for the CC

allele group (Supplementary Figure S4). These findings suggested

that the accessions with elite alleles have clearly higher phenotypic

values for yield-related traits compared to those with unfavorable

allelic variations. Nineteen important QTNs shared by multiple

environments and multiple methods regulate five important yield-

related traits, including SW, FT, BN, SI, and SN. And these QTNs

were used to assess the utilization of favorable alleles in 20 elite
TABLE 2 Significant 1000-seed weight (SW) associated QTNs and candidate genes detected in at least two environments by multi loci-GWAS.

Chr. Position Allele LOD R2(%) ―log10(P) Environment Methods MLM (Position)

A02 7610485 T/A 3.39–21.14 4.10–22.24 0.83–8.32 E1,E3 1,2,3,4,5 7600283~7620485

A02 9978238 A/G 3.34–10.95 4.05–11.91 0.89–1.86 E1,E2,E3 1,3,5 9972386~12256474

A04 6184539 T/G 4.18–8.10 4.67–9.00 1.95–2.93 E1,E2,E3 1,2,3

A05 11305754 C/T 3.30–4.6 4.02–5.43 0.88–2.24 E1,E3 1,2,3,5

A06 10063511 A/T 7.40–10.03 8.27–10.97 2.43–5.21 E2,E3 1,2,5

A06 15184188 C/T 4.04–14.12 4.79–15.13 0.82–4.73 E1,E3 1,2,3

A09 4168712 A/G 3.08–0.34 3.79–11.41 0.99–4.50 E2,E3 1,2,3,4

A09 28130192 C/T 4.00–26.19 4.75–27.33 1.17–7.50 E1,E2 2,3,4,5 28085608~28158503

A09 28182807 A/G 5.35–17.43 6.16–18.48 2.44–4.26 E1,E2 1,2,4 28171742~28199140

A10 15198168 T/C 3.63–12.37 4.14–13.35 1.11–4.66 E1,E3 2,4,5,6

C01 11143808 A/C 3.63–7.30 4.36–8.18 1.62–1.92 E1,E2 1,3,5 11143808~15054178

C03 25856914 G/T 4.54–9.67 5.32–10.60 1.94–4.54 E1,E3 1,2,3,4,5 25846914~25866982

C03 33059809 G/A 3.87–8.18 4.62–9.08 0.24–0.65 E1,E3 1,2,3

C03 38304116 T/G 3.05–7.82 3.05–7.82 1.58–3.51 E1,E2 2,4,5

C05 6286803 T/C 4.27–5.69 5.03–6.51 1.75–3.62 E1,E2,E3 2,4,5

C05 30666036 T/A 3.79–6.92 4.53–7.78 1.63–3.23 E1,E3 2,4,5 29675390~30666036

C07 18309538 C/T 3.37–6.54 4.00–7.75 1.04–3.07 E1,E2,E3 2,3,4,5 18306538~22307432

C07 37609075 C/A 5.93–8.90 6.77–9.81 0.88–6.79 E2,E3 1,2,4,5

C07 38545053 A/G 3.23–10.84 3.23–10.84 0.87–3.68 E1,E3 1,2,3,4

C08 18157206 C/T 4.50–8.45 5.27–9.35 1.94–5.61 E2,E3 1,2,4

C08 37165475 A/G 5.33–6.35 6.14–7.19 1.37–4.21 E2,E3 1,2,3,4 31608617~37165765
The six ML-GWAS methods: 1, mrMLM; 2, FASTmrMLM; 3, FASTmrEMMA; 4, pLARmEB; 5, pKWmEB; 6, ISIS EM-BLASSO. E1, YL13; E2, NC14; E3, WH16.
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accessions during rapeseed breeding (Supplementary Figure S5).

Among these elite accessions, the number of superior alleles in the

QTNs ranged from 5 (26.3%, Shengliqinggeng) to 12 (63.2%,

Zhongshuang 11), of which seven accessions had more than 10

(52.6%) superior alleles. In addition, we found that some superior

alleles of the QTN loci were prevalent in these accessions, for

example, the superior alleles of C09:11236665 and C09:11236689

were in almost all the accessions (19/20). These results suggest that

some common elite alleles may have a particularly large impact

on yield.
Identification of candidate genes based on
stable QTNs and transcriptome analysis

Considering the LD decay distance of the rapeseed population, the

regions within 200-kb on either side of the stable QTNs based on ML-

GWAS were used to identify the candidate genes. Thus, 4796 genes

were mined surrounding the 75 stable QTNs identified by ML-GWAS

in different environments (Table 1 and Supplementary Tables S4, S5).
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There are many candidate genes involved in plant growth and

development, such as BnaA07g30950D (Auxin efflux carrier), which

is involved in maintaining the embryonic hormone gradient, and also

involved in shoot and root development. The genes BnaA07g30180D

(SAUR protein), BnaA09g39680D (AUX/IAA protein),

BnaA09g40340D (F-box domain, cyclin-like) and BnaC03g46450D

(SAUR protein) have all been implicated in the regulation of plant

growth (Table 1). Furthermore, 1807 genes were found in the QTNs of

SW and 942 genes were discovered in SP (Supplementary Figure S6

and Table S5). Haplotype analysis of the candidate genes

BnaA06g17710D, BnaA09g39450D and BnaA09g39950D for SW

showed that the different haplotypes had significant phenotypic

difference (Supplementary Figure S7). In the significant QTN cluster

(A09: 27915980 ~ 28130192 ~ 28182807) for SW, which was also

detected by SL-GWAS, three candidate genes BnaA09g39450D

(Cytochrome b561), BnaA09g39790D (RNA helicase), and

BnaA09g39950D (Lipase) were identified to associate with SW

(Figures 3, 4 and Supplementary Table S5).

To further determine the candidate genes associated with the two

important traits SW and SP, we analyzed transcriptomic data from two
B C
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FIGURE 3

Phenotypic differences between two or three genotypes for each of the nine QTNs. (A-I) Phenotypic variations at different alleles of nine QTNs for
the yield traits. PH, plant height; FT, flowering time; BN, primary branch number; SN, Silique number per plant; SP, seed per pod; SW, 1000-seed
weight, YP, yield per plant.
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accessions with extremely difference of seed size, R01 and R56. The

accession R01 with larger seeds than that of R56, and has significant

different seed number per pod (R01, n = 14.74 vs R56, n = 20.56)

(Figure 5A) (Hu et al., 2022). We found a total of 2572 differentially

expressed genes (DEGs) among three different stages in these two

accessions (Supplementary Figure S6 and Table S6). Searching for

commonly identified genes in the DEGs and the candidate genes for

ML-GWAS results, we identified 79 reliable candidates with 50 and 29

of which regulate SW and SP, respectively (Supplementary Figures S6B,

C and Tables S7, S8). GO enrichment analysis revealed that DEGs were

enriched to fruit development terms (GO: 0010154) in biological

processes (GO: 0008150) and identified 76 associated genes

(Supplementary Figure S6). KEGG analysis indicated that a large

number of DEGs were involved in the metabolic pathways and

biosynthesis of secondary metabolism (Figure 5B). Moreover, the

gene annotation of DEGs demonstrates considerable genes related to

plant hormones, especially auxin, as well as an abundance of

transcription factors (TFs).
Analysis of candidate genes
expression patterns

Expression pattern analysis was performed for 60 genes detected in

both DEGs and ML-GWAS for SW and SP (Figure 5C). We identified

a number of genes that were highly significantly differentially expressed

in the two cultivars R01 and R56 (Figure 5C). BnaC09g25980D

(SWEET7) is a candidate gene for SP, which is extremely highly

expressed in R56 plants and lowly expressed in R01 (Figure 5C). In

addition, BnaA02g05510D, BnaA02g05540D, and BnaC09g09790D also

had similar expression patterns (Figure 5C). However,

BnaA09g57040D and BnaC08g43130D had opposite expression
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profiles, both of which were highly up-regulated in R01 and lowly

expressed in R56. There are also many genes to be up-regulated in both

accessions, but they are more remarkable in R01 than in R56. The SW-

related candidate gene BnaA09g39450D (Cytochrome b561) was more

highly expressed in R01, and expression levels increased progressively

with developmental time (Figure 5C).

We next investigated the expression profiles of genes related to

different phytohormones, such as auxin, jasmonic acid (JA) and

gibberellin (GA), cyclin-related genes, and TFs in the 2572 DEGs

(Supplementary Figures S8A–E). Transcripts of seven auxin-related

genes were up-regulated in R56 compared to R01, for example,

BnaA05g00250D, BnaC04g00140D and BnaC09g00360D had higher

expression levels in R56 (Supplementary Figure S8A). All three genes

related to JA were extremely up-regulated in R56, but BnaA02g05120D

was expressed at a higher level in R01 (Supplementary Figure S8B).

Three genes related to, GAs especially BnaC03g11560D were also up-

regulated in R56, but two cyclin genes, BnaC01g38940D, and

BnaC02g02720D, were significantly higher expressed in R01 than in

R56 (Supplementary Figures S8C, D). In addition, 36 TFs in 2572

DEGs were showed differentially expressed in R01 and R56

(Supplementary Figure S8E).
Validation of DEGs by qRT-PCRs

Twelve candidate genes were selected for qRT-PCR analysis

based on the combined results of ML-GWAS and RNA-seq

(Figure 6). Overall, the expression levels of these genes were diverse

in the two accessions and varied across developmental periods. The

expression profile of the candidate gene BnaC09g25980D for SP was

consistent with RNA-seq, with both showing high expression levels of

in R56 and lowly expression in R01. The qRT-PCR validation of the
BA

FIGURE 4

The QTN detected in at least two environments on chromosome A09 for 1000-seed weight (SW) with LD heatmap surrounding the QTN. (A)
Manhattan plot of the A09 chromosomal region around the candidate gene BnaA09g39950D and LD heatmap with a peak SNP (A09: 28182807). (B)
Haplotype analysis of BnaA09g39950D. Box plots show the distribution of each haplotype group, n denotes the number of genotypes belonging to
each haplotype group and the genotypes less than ten are not shown. ** Significant differences between the haplotypes were evaluated by two-
tailed t test (P < 0.01).
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candidate gene BnaA09g39450D at the significant signal locus

A09:28182807 for SW showed that it was expressed in both

accessions, but transcripts were more abundant in R01 and

increased progressively over time. Interestingly, the genes

BnaC09g43860D and BnaC04g26460D were lowly expressed in R01

and expressed at high levels in R56, but gradually decreased in R56

over time. There are three genes, such as BnaA06g21890D,

BnaC03g45540D and BnaA10g23070D, which are expressed in both

accessions and their expression levels increase progressively with

development in R01 but decrease progressively in R56. For gene

BnaA02g05540D, it was extremely lowly expressed at different

developmental periods in both R01 and R56, except for R01 at

4WAP. In addition, we found that most of these genes

were significantly differentially expressed in both accessions, such

as BnaA06g17710D , BnaA09g08410D , BnaC09g43890D,

and BnaC09g47280D.
Discussion

Seed yield is an important and complex quantitative trait in

rapeseed. And developing high yield rapeseed varieties is the goal for
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breeders in many cases. Previous studies did not comprehensive

analysis of the seed yield and yield-related traits in different

environments at the same time using whole genome resequencing.

In the present study, we not only examined the relationship among

eight yield traits, but also detected novel QTNs for the yield traits in

three environments. These findings would be helpful for breeders to

develop rapeseed varieties by congregating superior alleles.

In rapeseed, lots of complex traits have been dissected via the

GLM or MLM based on the single-locus using arrays or

resequencing data (Lu et al., 2019; Song et al., 2020; Wang et al.,

2021a; Hu et al., 2022). However, using one model for GWAS has

limitations and may miss the small-effect loci (Ma et al., 2018). In

this study, we use multi-locus methodologies, including mrMLM,

FASTmrEMMA, pLARmEB and so on, to detect novel and more

loci for seed yield and yield-related traits in rapeseed. Using ML-

GWAS, a total of 908 QTNs were identified by at least two of six

ML-GWAS methods and 596 QTNs of them were obtained for

integrating multiple approaches (Figure 2 and Supplementary

Table S2). And 40 loci were the same and near the loci which

have been detected in rapeseed using SL-GWAS with MLM model

as previous study (Hu et al., 2022). Furthermore, 75 of new QTNs

have been identified in different environments and at least two
B C

A

FIGURE 5

Transcriptome analysis of two rapeseed accessions with extremely seed size/seed weight. (A) Seeds and siliques of R01 (large seed) and R56 (small
seed) showed considerable variations in seed weight. (B) The top 30 significantly enriched KEGG pathways of differentially expressed genes (DEGs)
between R01 and R56 at three stages. (C) Heatmap of the expression patterns of the 60 genes in developing seeds of two rapeseed cultivars at three
stages. The red indicates high expression, and the blue shows low expression. R01_2W, R01_3W, R01_4W, R56_2W, R56_3W and R56_4W represent
the sampling time of R01 and R56 are two weeks after pollination, three weeks after pollination, and four weeks after pollination, respectively.
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models (Supplementary Table S3). Meanwhile, each method

successfully detected some loci which other methods were not

identified, indicating that it is worth using various methods for

GWAS analysis (Liu et al., 2020). The stable QTNs identified in

two or more environments or at least two methods increased the

reliability of these loci. Using these methods, many novel loci were

discovered for the seed yield and yield related traits of rapeseed

(Supplementary Tables S2-S4). Thus, these ML-GWAS

approaches would be effective alternative methods to dissect the

genetic architecture for agronomic traits. In addition, integration

of GWAS and transcriptomic analysis could reliably identify

candidate genes for seed yield in rapeseed (Lu et al., 2017;

Zhang et al., 2022a).

Seed size, an important agronomic trait determining crop yield,

affects the SW and SP in rapeseed. In the significant QTN cluster on
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chromosome A09 for SW, three candidate genes BnaA09g39450D

(Cytochrome b561), BnaA09g39790D (RNA helicase), and

BnaA09g39950D (Lipase) were identified to affect seed size

(Figures 3, 4 and Supplementary Table S4). Cytochrome b561,

which plays an important role in plant growth and development has

been also identified the QTL qGY8.1 for yield in rice (Balakrishnan

et al., 2020). In our study, the expression level of BnaA09g39450D

was validated to be higher in R01 than that in R56 (Figure 6). In

Arabidopsis, RNA helicase has been reported to participate in

coordination between cell cycle progression and cell size, which is

required for ovule development and involved in seed size regulation

(Yoine et al., 2006; Bush et al., 2015). Lipase is reported to involve in

seed oil production in many plants (Eastmond, 2006; Wang et al.,

2021b). In most cases, the seed oil content positively correlated with

seed size in B. napus. For example, six nonspecific phospholipase C
FIGURE 6

Quantitative RT-PCR (qRT-PCR) validation of differentially expressed genes (DEGs) for 1000-seed-weight (SW) between R01 and R56 from RNA-seq
data. The transcript abundances were calculated from three replicates with BnACTIN7 (BnaA03g55890D) as internal control. Data are shown as
means ± SE. R01-2, R01-3, R01-4, R56-2, R56-3 and R56-4 represent the sampling time of R01 and R56 are two weeks after pollination, three
weeks after pollination, and four weeks after pollination, respectively.
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(NPC) genes have been identified to associate with SW or YP and

the favorable haplotype of BnNPC6.C01 could increase seed oil

content and seed yield (Cai et al., 2020). Patatin-related

phospholipase pPLAIIId has been reported to affect organ size

(silique) in Arabidopsis and B. napus (Dong et al., 2014).

Therefore, these three candidate genes might be involved in the

regulation of seed weight and seed yield in rapeseed. Seed size is also

determined by the carbohydrate via the phloem to developing seeds

during seed filling (Sosso et al., 2015). In soybean, both

GmSWEET10a and GmSWEET10b were shown to transport

sucrose and hexose, contributing to sugar allocation, which

consequently simultaneous increases oil content and seed size in

soybean (Wang et al., 2020). In our study, the candidate gene

BnaC09g25980D (SWEET7) was validated to be highly expressed in

R56 (Figure 6), indicating that SWEET7might regulate the seed size

in rapeseed.

Many plant hormones have been reported to be involved in the

regulation of seed size, including auxin pathway, GA signaling and

brassinosteroid (BR) signaling (Li et al., 2019c). In this study, using

the extremely difference of seed size accessions R01 and R56 with

significantly different seed number per pod, 2572 DEGs were

identified by RNA-seq (Figure 5 and Supplementary Figure S6).

And we identified 58 DEGs related to phytohormones, cell cycle

and TFs including NAC, TCP, MYB and so on (Supplementary

Figure S8 and Table S5). Auxin is known to regulate plant growth

and development via cell division and cell elongation (Hu et al.,

2021b). In previous studies, auxin signaling genes ARF18 and

BnaA3.IAA7 have been reported to regulate seed weight and yield

in B. napus (Liu et al., 2015; Li et al., 2019b). In our study, several

candidate genes and ten DEGs were found to involve in auxin

signaling pathway (Table 1, Supplementary Figure S8 and Table S6).

The GASA family in Arabidopsis is regulated by GA, with the

GASA4 mutant having smaller seeds than the wild type and

increased grain weight after overexpression (Roxrud et al., 2007).

A number of GA-related candidate genes, including GASA10

(BnaC03g11560D) was highly expressed in R56, which may affect

the seed size (Supplementary Figure 8C). Hu et al. (2021c) revealed

that JA signaling represses seed size and negatively regulates cell

proliferation of integument during seed development. The JA

signaling repressor jaz6 mutants in Arabidopsis exhibited small

seed size, and overexpression of BnC08.JAZ1-1 in Arabidopsis

resulted in enhanced seed weight (Hu et al., 2021c; Wang et al.,

2022). In this study, JAZ12 (BnaA02g05120D) and JAZ 9

(BnaA07g28810D) were up-regulated in R01, while another

candidate gene JAZ10 (BnaC09g43860D) was highly expressed in

R56 (Figure 6, Supplementary Figure 8B and Table S6). These

results suggested that auxin, GA, and JA signaling genes were

involved in the control of seed size and seed number per pod in

rapeseed. Furthermore, we observed that several cell cycle genes,

including BnaC04g26460D (CDKB1;1) were up-regulated in R56

(Figure 6 and Supplementary Figure S8), indicating these DEGs

play important roles in cell division and seed size (Qi et al., 2012;

Hu et al., 2021c). In addition, one of the candidate gene
Frontiers in Plant Science 13
BnaC09g43890D (NAC083) was validated highly expressed in R01

(Figure 6). In rice, three NAC genes NAC020, NAC026 and NAC023

have been reported to associate with seed size/weight (Mathew et al.,

2016). And VvNAC26 was also demonstrated to regulate the seed

size by interacting with VvMADS9 in grapevine (Zhang et al.,

2021). Therefore, further functional studies of these genes

associated with yield traits will help to elucidate the mechanism

of high yield and apply to develop high-yielding rapeseed varieties.
Conclusion

In this study, a total of 908 QTNs were detected for eight yield

traits using two or more ML-GWAS methods. Of them, 75 stable

QTNs (or QTN clusters) controlling yield traits were obtained with

a significant QTN cluster on chromosome A09 for SW, which was

also identified by SL-GWAS. Twenty elite rapeseed accessions had a

diverse distribution of superior alleles, and the high-yielding

accessions contained more superior alleles. Integrated ML-GWAS

with transcriptome analysis, 79 candidate genes were found to

associate with SW or SP. Some genes related to plant hormones

such as auxin, JA, and GA, were involved in the regulation of

rapeseed yield. Thus, many robust QTLs with candidate genes were

identified to regulate seed size and yield traits in rapeseed. This

study made a beneficial attempt via a combinatory approach of ML-

GWAS methods to facilitate the detection of yield-related QTNs in

rapeseed. These findings will provide valuable information for

understanding the mechanism underlying seed yield and yield-

related traits and accelerate the crop improvement of rapeseed.
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