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Maize (Zea mays L.), the third most widely cultivated cereal crop in the world,

plays a critical role in global food security. To improve the efficiency of selecting

superior genotypes in breeding programs, researchers have aimed to identify key

genomic regions that impact agronomic traits. In this study, the performance of

multi-trait, multi-environment deep learning models was compared to that of

Bayesian models (Markov Chain Monte Carlo generalized linear mixed models

(MCMCglmm), Bayesian Genomic Genotype-Environment Interaction (BGGE),

and Bayesian Multi-Trait and Multi-Environment (BMTME)) in terms of the

prediction accuracy of flowering-related traits (Anthesis-Silking Interval: ASI,

Female Flowering: FF, and Male Flowering: MF). A tropical maize panel of 258

inbred lines from Brazil was evaluated in three sites (Cambira-2018, Sabaudia-

2018, and Iguatemi-2020 and 2021) using approximately 290,000 single

nucleotide polymorphisms (SNPs). The results demonstrated a 14.4% increase

in prediction accuracy when employing multi-trait models compared to the use

of a single trait in a single environment approach. The accuracy of predictions

also improved by 6.4% when using a single trait in a multi-environment scheme

compared to using multi-trait analysis. Additionally, deep learning models

consistently outperformed Bayesian models in both single and multiple trait

and environment approaches. A complementary genome-wide association

study identified associations with 26 candidate genes related to flowering time

traits, and 31 marker-trait associations were identified, accounting for 37%, 37%,

and 22% of the phenotypic variation of ASI, FF and MF, respectively. In

conclusion, our findings suggest that deep learning models have the potential

to significantly improve the accuracy of predictions, regardless of the approach

used and provide support for the efficacy of this method in genomic selection for

flowering-related traits in tropical maize.

KEYWORDS

Bayesian models, deep learning, multi-trait, multi-environment, genomic prediction,
candidate genes
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1 Introduction

Maize (Zea mays L.) is a crucial cereal crop that plays a vital role

in global food security, biofuel production, and animal feed

(Maldonado et al., 2020; Grote et al., 2021). Consumed by over

4.5 billion people, particularly in rural areas of Latin America and

Africa, it is an important source of calories and nutrients

(Domı ́nguez-Hernández et al., 2022). With its high genetic

diversity and ease of sexual reproduction, maize is a versatile crop

that offers many agronomic and reproductive advantages. Its

separate inflorescences (male and female) also allow for easily

controlled crosses and the creation of highly inbred lines – high

levels of genetic homozygosity in the lines – (Strable and Scanlon,

2009). As a result of these advantages, variousss agronomic traits

such as grain yield, flowering time, and nutritional value have been

improved through breeding programs worldwide (e.g., Alves et al.,

2018; Gedil and Menkir, 2019).

Flowering time is an agriculturally important trait for crop

production that can be manipulated by various approaches such as

breeding and genetic modifications (Hirohata et al., 2022). In maize,

it has been shown that flowering time is significantly associated with

regional adaptation and is a complex trait controlled by hundreds of

loci with small effects, many with multiple allelic series (Romero

et al., 2017). The genetic control offlowering time involves networks

of genes that interact with environmental conditions, which is a

determining factor in the duration of the crop cycle (Parent et al.,

2018). Conventional approaches in quantitative genetics, such as

QTL (Quantitative Trait loci) mapping, genomic selection, and

genome-wide association studies (GWAS), have traditionally been

used to investigate the genetic basis of the quantitative variation in

flowering time-related traits. For example, Romero et al. (2017)

assayed the potential for predicting flowering time in maize

landraces using GBLUP (Genomic Best Linear Unbiased

Predictor); a widely used statistical method for genomic selection.

Across trials, the average fivefold cross-validated prediction

accuracy was 0.45 for flowering time using either 30,000 markers

or one SNP for each of the most significant genes. Similarly,

Maldonado et al. (2020) used deep learning predictive models

and found a predictive ability of up to 0.78 for maize traits

related to flowering.

Other genetic studies in maize have emphasized the importance

of identifying genetic variants (QTLs) controlling flowering time-

related traits under a wide range of environmental conditions to

improve stress tolerance (Leng et al., 2022). The study conducted by

Maldonado et al. (2019) who used a population of inbred lines of

tropical maize, identified a total of 45 SNPs and 44 Haplotype-block

significantly associated with flowering time, which was distributed

across the entire genome. Moreover, the study also found that some

of the loci identified were associated with multiple flowering-related

traits, which suggests a possible pleiotropic effect of these loci.

Additionally, the study found that some loci displayed associations

with multiple flowering-related traits. This observation suggests the

presence of a potential pleiotropic effect, where a single genetic

locus influences the expression of multiple traits related to

flowering. Another study carried out by Birnbaum and Roberts
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(2019), which aimed to identify SNPs significantly associated with

flowering time in a panel of maize inbred lines by using a GWAS

approach, identified a total of 25 significant SNPs for flowering

time, of which 15 were novel, and 10 were previously reported. The

study also identified several candidate genes underlying the

significant SNPs that were associated with flowering traits.

Overall, these studies demonstrate that GWAS can provide

valuable information for understanding the genetic basis of

flowering time-related traits, which can inform the development

of improved maize varieties.

Various studies have highlighted the potential of using GWAS

and genomic selection approaches in enhancing crop breeding and

developing improved maize varieties (e.g., Liu et al., 2021; Ma and

Cao, 2021; Vinayan et al., 2021). For example, the study conducted

by Zhou et al. (2021) aimed to identify the genetic variants

associated with yield and yield-related traits in maize crops. The

results of the study found that the combination of these methods

provided the best results in predicting the breeding value of

individuals for yield and yield-related traits. Furthermore, the

study identified several loci associated with yield and yield-related

traits, which demonstrate the effectiveness of the combined GWAS

and genomic selection approach in identifying genetic variants

associated with these traits. On the other hand, recent studies

have placed significant emphasis on the advancement of more

precise predictive models, such as multi-trait or multi-

environment genomic prediction models. These models have

shown remarkable improvements in prediction accuracy when

compared to uni-trait models, especially when traits are

correlated. Additionally, they have proven beneficial in predicting

traits that are difficult or expensive to phenotype (Gill et al., 2021).

As breeders routinely gather phenotypic data across numerous

traits and diverse environments, extending the application of

multi-trait approaches to incorporate genotype-by-environment

interactions could further enhance the accuracy of genomic

prediction models within breeding programs (Montesinos-López

et al., 2019; Hu et al., 2022). Multi-trait and multi-environment

Bayesian and Deep Learning models have been proposed by

Montesinos-López et al. (2016) (Bayesian multi-trait and multi-

environment; BMTME), Montesinos-López et al. (2018) (Deep

learning multi-trait and multi-environment; DL), Granato et al.,

2018 (Bayesian Genomic Genotype × Environment Interaction;

BGGE) and Hadfield and Nakagawa (2010) (MCMC Generalised

Linear Mixed Models; MCMCglmm). Sandhu et al. (2022) showed

that the multi-trait DL approach improved the accuracy of genomic

prediction compared to uni-trait and multi-trait+multi-

environment (BMTME) models. This highlights the potential of

using multi-trait, multi-environment deep learning models in

genomic prediction and crop breeding. The study highlights the

potential of using multi-trait, multi-environment deep learning

models in genomic prediction and crop breeding.

Uni- and Multi-trait (UT and MT, respectively), as well as, Uni-

andMulti-environment (UE andME, respectively) approaches have

been compared keeping fixed the traits (UTUE vs UTME, or MTUE

vs MTME) or environments (UTUE vs MTUE, or UTME vs

MTME) as one (Uni) or multiple (Multi). However, comparisons
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among all approaches simultaneously have not been performed yet,

particularly for traits exhibiting low or negative correlations. Thus,

the present study aimed to evaluate the performance of these four

approaches for the genomic prediction of flowering-related traits in

tropical maize using the Bayesian and deep learning approaches. To

accomplish this, a panel of 258 tropical maize inbred lines was

analyzed using SNP markers. In addition, a complementary

genome-wide association study, coupled with network-assisted

gene prioritization (post-GWAS), was performed to identify

potential candidate genes associated with these traits. The results

of this study provide insights into the potential of using deep

learning models for enhancing prediction accuracy in the context

of genomic selection for flowering-related traits in tropical maize.
2 Materials and methods

2.1 Plant materials

The study utilized a panel of 258 tropical maize inbred lines

from the core collection germplasm of the State University of

Maringa, Parana State, Brazil, which were derived from three

genetic backgrounds: field corn, popcorn, and sweet corn

genotypes (Supplementary Table S1). Genomic prediction models

were developed using phenotypic records derived from three

locations within the state of Paraná, Brazil: Cambira, Sabaudia

and Iguatemi, during the growing seasons of 2017-2018 (Cambira

and Sabaudia), 2019-2020 (Iguatemi), and 2020-2021 (Iguatemi).

Complementary, a genome-wide association study was performed

using Iguatemi data (both growing seasons), and then, these results

were compared with the other locations following the study by

Maldonado et al. (2019).
2.2 Experimental design and
trait measurement

The experimental design for Cambira and Sabaudia was an

alpha-lattice with 24 incomplete blocks and 3 replications per line,

while in Iguatemi, the lines were planted according to a partially

balanced incomplete block design in a 17x17 square lattice with 4

replications per line. The following flowering-related traits were

evaluated: Female Flowering time (FF) measured as the number of

days from sowing to visible silks, Male Flowering time (MF)

measured as the number of days from sowing to anther extrusion

from the tassel glumes, and Anthesis-Silking Interval (ASI)

calculated as the difference between MF and FF (Maldonado

et al., 2019; Maldonado et al., 2020).
2.3 Phenotypic data analysis

The analysis of the phenotypic data was performed using the

following Bayesian model available in the package “MCMCglmm”

(Hadfield and Nakagawa, 2010) of R software (Team R. C, 2013):
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y = Xb + Zf + ϵ (1)

where y is the vector of the phenotypic observations, X and Z

are the known incidence matrices that relate the observation vector

(y) to the vectors b and f, respectively. b is the vector of replications

and block within replications, f is the vector of family effects and ϵ is
the vector of residuals or error vector. The y vector corresponds to

the adjusted phenotypic observations, which were utilized in the

subsequent sections for Genomic Prediction Models and Genome-

Wide Association Study.

Correlations between each pair of traits were calculated using a

Bayesian bi-trait model (MCMCglmm), according to Maldonado

et al. (2019), using the following expression:

rxy =
ŝ Gxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ 2

Gx *ŝ
2
Gy

q (2)

where ŝ Gxy
correspond to posterior distribution samples of

genotypic covariance between the traits, and ŝ 2
Gx
, ŝ 2

Gy
correspond

to posterior mean distribution samples of genotypic variance for

each pair of traits under analysis.
2.4 Genotyping, population structure and
linkage disequilibrium

Genomic DNA was extracted from the leaf tissue of 21-day-old

plants using the protocol described by Maldonado et al. (2019),

which follows the method developed by Chen and Ronald (1999).

The DNA samples were then sent to the University of Wisconsin-

Madison Biotechnology Center for SNP discovery through

genotyping by sequencing (Elshire et al., 2011; Glaubitz et al.,

2014). Monomorphic SNP markers and those with a call rate

lower than 90% were removed, and SNPs with a minor allele

frequency (MAF) of less than 0.05 were eliminated, resulting in

291,633 high-quality SNPs. Finally, missing data were imputed

through linkage disequilibrium k-nearest neighbor imputation

(Money et al., 2015), as described in Maldonado et al. (2020).

The kinship matrix was calculated using the identity-by-state

method (Endelman and Jannink, 2012) with the TASSEL 5.2

software (Bradbury et al., 2007). The population genetic structure

was inferred using a Bayesian clustering model in the InStruct 2.3.4

program (Gao et al., 2007). Ten runs were performed for each

possible value of K (number of genetically differentiated groups),

ranging from 1 to 6, with 100,000 Monte Carlo Markov Chain

replicates and a burn-in period of 10,000 iterations. The optimal

value of K was determined using the second-order change rate of

the probability function with respect to K (DK), as proposed by

Evanno et al. (2005) and the lowest deviance information criterion

(DIC). Additionally, a t-distributed stochastic neighbor embedding

(t-SNE) visualization was performed using Python 3.7 language and

the Keras 2.2.4 and TensorFlow 1.14.0 libraries to corroborate the

results from InStruct. A perplexity of 30, a learning rate of 200 and

1,000 iterations were used in the t-SNE model according to López-

Cortés et al. (2020).
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The Linkage Disequilibrium (LD) was estimated using the

correlation coefficients of allelic frequencies (r2) calculated for all

possible allele combinations. The critical r2 value was determined

using the transformation of the square root of the r2 values as

proposed by Breseghello and Sorrells (2006), with the 95th

percentile of these data serving as the threshold.
2.5 Genomic prediction models
and cross-validation

2.5.1 Markov chain Monte Carlo generalized
linear mixed models

In this study, Uni-Trait-Uni-Environment and Multi-Trait-

Uni-Environment analyses were implemented according to

Mathew et al. (2016) and Torres et al. (2018). The Uni- and

Multi-Trait approaches were implemented using the following

model:

yi = Xibi + Ziui + ϵi,         i = 1,   2…,   n (3)

where yi is the vector of the phenotypic values of the traits, bi
and ui are vectors of fixed and random effects associated with trait i,

respectively, and ϵi is a vector of error terms, which are

independently normally distributed with mean zero and variance

s 2
e . Moreover, Xi and Zi are incidence matrices for the fixed and

random effects for trait i, respectively. Then mixed model equation

(MME) for the above model is:

X 0R−1X X0R−1Z

Z0R−1X Z0R−1Z + G−1

" #
b

u

" #
=

X0R−1y

Z0R−1y

" #
(4)

where R and G are covariance matrices associated with the

vectors ϵ and u of residuals and random effects, respectively. If R0 is

the residual covariance for more than one trait, then R can be

calculated as R=R0⊗I (⊗ represent the Kronecker product between

R0 and the identity matrix). Similarly, the genetic covariance matrix

G can be calculated as G=G0⊗A, where A and G0 are the additive

genetic relationship matrix and additive genetic (co)variance

matrix, respectively. The MCMCglmm R package (Hadfield and

Nakagawa, 2010; Team R. C, 2013) was used to implement the

model, using 100,000 iterations, a 10,000 burn-in period, and a

sampling interval of 5.

2.5.2 Bayesian genomic genotype × environment
interaction

The Uni-Trait-Multi-Environment approach was implemented

using the BGGE R package (Granato et al., 2018) within R software

(Team R. C, 2013). This package utilizes Bayesian hierarchical

modeling to solve linear mixed models, as described in Granato

et al. (2018) and Costa-Neto et al. (2020), in which the distribution

of the transformed data d, given b and s 2
ϵ , is:

f (djb,s 2
ϵ ) =

Yn
i=1

N(dijbi,s 2
ϵ ) (5)

The Bayesian linear mixed model assumes that p(ujs 2
u ) =

N(uj0,Ks 2
u ); the conditional distribution of bi is given as p(bijs 2

u ) =
Frontiers in Plant Science 04
N(bij0,Ks 2
u si), where si is the eigenvalues. The BGGE package

assumes that conjugate prior distribution of s 2
u and s 2

ϵ are given by

inverse chi-squared with p(s 2
ϵ ) e c−2(vu, Scu) and p(s 2

ϵ ) e c−2(vϵ, S

cϵ), respectively, in which vu and vϵ denote the degree of freedom,

and Scu and Scϵ the scale factors for μ and ϵ. Then, the joint

posterior distribution of (b, s 2
u , s 2

ϵ ), given d, vm , Scu, vϵ, Scϵ and S, is:

p(b,s 2
u ,s

2
ϵ jd, vu, Scu, vϵ, Scϵ, S)

∝
Yn
i=1

N(dijbi,s 2
ϵ )  N(bij0,s 2

u si)

( )
� c−2(s2

u jvu, vuScu)

� c−2(s 2
ϵ jvϵ, vϵScϵ) (6)

Finally, the BGGE analysis was conducted using 100,000

iterations, with a 10,000 iteration burn-in period and a thinning

of 5.

2.5.3 Bayesian multi-trait and multi-environment
The Multi-Trait-Multi-Environment analysis was carried out

using the BMTME R package (Montesinos-López et al., 2016)

within R software (Team R. C, 2013). The BMTME model is

defined as (Montesinos-López et al., 2018; Sandhu et al., 2022):

y = Xb + Z1b1 + Z2b2 + ϵ (7)

where y is the matrix of order t x l, with t is the number of traits

and l = e x g, where e and g are the numbers of environments and

genotypes, respectively; X, Z1, and Z2 are design matrixes for

environmental effect, genotypic effect, and genotype by

environmental interaction, respectively; b is beta coefficient

matrix of order e x t; b1 is the random genotypic effect of

genotype × trait interaction distributed as b1∼ MN(0, G, ∑t),

where G is additive relationship matrix calculated using the

VanRaden (2008) and ∑t is the unstructured covariance matrix of

order t x t; b2 is the random genotypic x trait x environment effect

matrix distributed as b2 ∼ MN(0, ∑e G, ∑t), where ∑e is the

unstructured covariance matrix of order e x e. BMTME was

performed considering 10,000 burn-in and 100,000 test iterations.
2.5.4 Uni- and multi-trait, uni- and multi-
environment deep learning

In this study, Deep Learning methods were used to analyze Uni-

and Multi-Trait, Uni- and Multi-Environment data, as described in

Montesinos-López et al. (2018); Crossa et al. (2019) and

Montesinos-López et al. (2019). A densely connected network was

chosen as it does not assume a specific structure for the input

features. This network typically includes an input layer, T output

layers (for multi-trait modeling), and hidden layers between the

input and output layers. This type of neural network is commonly

referred to as a feedforward neural network (Figure 1).

In this study, we employed a neural network architecture with

multiple layers to predict flowering traits in tropical maize

(Figure 1). The network consists of an input layer with “n”

neurons, representing the number of features in the dataset.

Following the input layer, three hidden layers were incorporated,

each containing 50 neurons. These hidden neurons perform non-
frontiersin.org
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linear transformations on the original input attributes, as described

by Montesinos-López et al. (2018). For the output layer, the

network was designed to have one neuron for uni-trait

predictions and four neurons for multi-trait predictions. The

number of output neurons corresponds to the number of

response variables we aimed to predict for flowering traits. The

neurons in the network are fully connected, and the strength of the

connection weights determines the contribution of each neuron to

the overall network output. A regularization technique known as

dropout was implemented to temporarily removes a random subset

of neurons and their connections during the training process,

enhancing the network’s ability to generalize and avoid overfitting

(Montesinos-López et al., 2019).

The analytical forms of the model depicted in Figure 1 can be

represented by the following equation (Montesinos-López et al.,

2019):

V = g o
N

p=1
wjpVp

 !
  for hidden layers (8)

yo = g o
N

p=1
wopVp

 !
  for output layer (9)

where N denotes the total number of input variables in each

layer, wjp and wjp represents the weight of the input in hidden (with

j=1, …, M neurons) and output (with o=1, …, O neurons) layers,

respectively, while Vp represents the value of the pth input variable,

and g represents the activation function. In this network, each layer

generates the output for each neuron in the subsequent layer,

ultimately producing the output for each response variable of

interest. The learning process involves adjusting the weights that

connect the layers to optimize the model’s performance. The input
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variables for the multi-trait approach corresponded to the

concatenation of environments, markers through the Cholesky

decomposition of the genomic relationship matrix, and

genotype × environment interaction (G×E). For this purpose, the

design matrices of environments (ZE), genotypes (ZG) and G×E

(ZGE) were built, followed by the Cholesky decomposition of the

genomic relationship matrix (G). Then, the design matrix of

genotypes was post-multiplied by the transpose of the upper

triangular factor of the Cholesky decomposition (QT), Z*G = ZGQ
T

, followed by the calculation of the G×E term as the product of the

design matrix of the G×E term post-multiplied by the Kronecker

product of the identity matrix of order equal to the number of

environments and QT, that is, Z*GE = ZGE(II ⊗QT ). After that, the

matrix with input covariates used for implementing Deep Learning

models was equal to X = ½ZE ,Z*G,Z
*
GE�. It should be noted that Uni-

Trait approach uses the same implementation as the multi-trait

approach described above but with a feedforward neural network

with only one neuron in the output layer.

In this study, deep learning models were implemented using the

R code of Montesinos-López et al. (2018) in R software (Team R. C,

2013). The following hyperparameters were considered: 50 units

(U), 200 epochs, 3 hidden layers, rectified linear activation unit

(ReLU) as the activation function, and the dropout regularization

method for training the models.

2.5.5 Cross validation
The genomic prediction methods were evaluated using four

approaches: Uni-Trait-Uni-Environment (UTUE), Uni-Trait-

Multi-Environment (MTUE), Multi-Trait-Uni-Environment

(MTUE) and Multi-Trait-Multi-Environment (MTME). These

approaches were tested in two scenarios: I) randomly selecting

independent training (80%) and validation (20%) groups (for each
FIGURE 1

Example of feedforward deep neural network with one input layer (with n neurons that correspond to the input information), three hidden layers
(each layer with M neurons) and one output layer (with o neurons that correspond to number of traits to be predicted).
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trait in each site), in which 50 cycles of cross-validation were

performed, and II) predicting the second season of environment

Iguatemi (validation dataset) using the first season of environment

Iguatemi (training dataset DT1), other environments (Cambira and

Sabaudia; training dataset DT2), and other environments (Cambira

and Sabaudia) plus the first season of Iguatemi (training

dataset DT3).

The prediction accuracy was evaluated by calculating the

average Pearson correlation coefficient between the observed and

predicted phenotypes in the validation set for all models (Deep

Learning, MCMCglmm, BMTME, and BGGE).
2.6 GWAS, candidate genes and co-
functional networks

The Genome-Wide Association Study (GWAS) was conducted

using the mixed linear model (MLM) in TASSEL 5.2 (Bradbury

et al., 2007) for the three flowering traits (FF, MF, and ASI). The

statistical model incorporated the effects of population structure (Q)

and genetic relationships or kinship matrix (K) among the inbred

lines, as represented by the following mixed model:

y   =   Sa   +  Qv   +  Zm   +   ϵ (10)

where y is the vector of adjusted phenotypic observations, a and

v are the vectors of fixed effects of molecular markers and

population structure, respectively, m and ϵ are the vectors of

random effects of polygenic effects and residual, respectively. S, Q

and Z are the incidence matrices of the associated vectors.

The probability of a locus being associated with two or more

traits was evaluated using the Bayes Factor (BF) and Posterior

Probability of Association (PPA) (Stephens and Balding, 2009). The

PPA was calculated by considering the BF and prior probability of

association, as outlined by Stephens and Balding (2009):

PPA =
(BF   x   p)

(1 − p) + (BF   x   p)
(11)

where p is the significance level of SNP associated with the trait

of interest. BF was calculated using Bayesian multivariate regression

analysis in the SNPTEST software (Marchini and Band, 2016)

according to Maldonado et al. (2019).

The candidate genes surrounding the significant SNPs

identified by GWAS were selected by establishing a window of

twice the distance indicated by the LD around the SNP, with the

SNP serving as the center of the window. These candidate genes

were then prioritized using MaizeNet (Lee et al., 2019) by analyzing

their connections to genes previously associated with flowering time

in Zea mays. Co-functional networks were also constructed by

linking the candidate genes to subnetworks enriched for gene

ontology annotations related to biological processes involved

in flowering.

GWAS, identified candidate genes, and constructed co-

functional networks were applied for the Iguatemi, seasons 1 and

2. Results for the Cambira and Sabaudia environments can be found

in the study by Maldonado et al. (2019).
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3 Results

In this study, the genetic correlations between female flowering

(FF) and male flowering (MF) remained consistent across all

environments (Figure 2) with a positive correlation (r > 0.82) and

highly significant (p<0.001). However, the correlation between the

anthesis-silking interval (ASI) and the other two traits was

inconsistent across environments, showing both positive and

negative correlation values. Furthermore, the correlation of the

flowering traits among the different environments (Cambira,

Sabaudia, Iguatemi season 1, and Iguatemi season 2) were positive

and statistically significant (Figure 3). Notably, MF had the highest

correlations among the environments Cambira, Sabaudia and

Iguatemi season 1, while FF had the highest correlation values

among Iguatemi season 2 and other environments (Figure 3).
3.1 Genetic structure and
linkage disequilibrium

In this study, a Bayesian clustering analysis was conducted on

258 tropical inbred lines, resulting in the grouping of these lines into

two genetic clusters (as determined by the lowest DIC value and the

highest DK). Cluster I and II consisted of 83 (with 82 popcorn and

one field corn genotypes) and 175 maize lines (comprising 151 field

corn, 13 popcorn, and all sweet corn lines) respectively.

The t-SNE method was used to visualize the SNP data, and it

clearly separated the two clusters through its second dimension (t-

SNE2), which was consistent with the results obtained from

InStruct (Figure 4). The t-SNE method effectively maintained the

distributions of the original data space (by matching pairwise

similarity distributions) in a lower-dimensional projected space

(Chan et al., 2018).

Linkage disequilibrium (LD) was also estimated at the genome-

wide level and for each individual chromosome (Supplementary

Table S2). The LD decayed rapidly within 2.7 kb, with a cut-off

value of r2 = 0.12. Chromosomes 3 and 7 showed a faster LD decay

than the other chromosomes, with values of about 2.12 kb and a

cut-off of r2 = 0.12. Conversely, chromosome 4 presented the

slowest LD decay, with a value of 5.35 kb.
3.2 Genome-wide association study

The results of the genome-wide association study (GWAS) for

the flowering traits in Iguatemi seasons are presented in Table 1. A

total of 31 SNPs were identified as being associated with the three

traits of interest across both Iguatemi seasons, with 13 SNPs

associated in the first season (Iguatemi 2020), 18 in the second

season (Iguatemi 2021), and one in both seasons. Of these, 11 SNPs

were associated with ASI, with 5 identified in the first season and 6

in the second season. Similarly, 11 SNPs were found to be associated

with FF, with 5 identified in season 1 and 6 in season 2. Lastly, 9

SNPs were associated with FM, with 3 identified in season 1 and 6 in

season 2. Notably, two SNPs (S5_217372319 and S6_150165479)
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A B

DC

FIGURE 2

Correlation between flowering traits in the Cambira, Sabaudia, Iguatemi season 1, and Iguatemi season 2 environments (A–D, respectively). The
figure illustrates the correlation between female flowering (FF), male flowering (FM), and anthesis-silking interval (ASI) in the four different
environments. The diagonal of the plot displays histograms and distributions of the observed phenotype values, while the lower off-diagonal
presents scatter plots between the traits. Significance levels of the correlation coefficients are indicated by ** for p< 0.01, and *** for p< 0.001.
A B C

FIGURE 3

Correlation among the study environments (Cambira, Sabaudia, Iguatemi season 1 and Iguatemi season 2) for each flowering trait: female and male
flowering (A, B, respectively); and anthesis-silking interval (C). The diagonal line of the plot illustrates the histograms and the distribution of the
observed phenotype values for each trait across all environments. The lower off-diagonal section presents the scatterplot between the environments
for each trait, whereas the upper off-diagonal section displays the correlation coefficient between environments for each trait. Significance levels of
the correlation coefficients is indicated by *** for p< 0.001.
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were concomitantly associated with both FF and FM traits,

suggesting a possible pleiotropic effect. To confirm this,

multivariate Bayesian regression was performed on these loci in

relation to the FF and FM traits. This analysis yielded PPA values of

0.99 and 0.74 for S6_150165479 and S5_217372319, respectively,

and log10 (BF) > 5.1 for both loci, further supporting the pleiotropic

effect of these loci as indicated in the Supplementary Table S3.

In season 1 (Iguatemi 2020), the proportion of the phenotypic

variance (PV%) explained by SNP markers was 37%, 37%, and 22%

of the phenotypic variation of ASI, FF, and FM, respectively

(Table 1). In season 2 (Iguatemi 2021), the PV% explained for

ASI and FM was higher than in the first season, at 49% and

45%, respectively.
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3.3 Candidate genes and
co-functional networks

A total of 26 candidate genes were identified based on the

physical position of these SNPs in relation to the maize reference

genome B73 (Supplementary Table S4). These candidate genes were

found to be neighboring to the associated SNPs, with 12, seven and

six candidate genes related to ASI, FF, and FM traits, respectively.

Notably, four SNPs were located close to the same candidate genes,

resulting in 22 unique candidate genes being identified in the

present analysis.

The application of network-assisted prioritization using the

MaizeNet database revealed 93 additional candidate genes
TABLE 1 Summary of the associations detected by a genome-wide association study for the traits of female/male flowering time (FF and MF,
respectively) and anthesis–silking interval (ASI).

Trait Iguatemi
Season Marker Chr Pos p-value PV% BIN

ASI

1 S1_214720998 1 214720998 5.53X10-06 7.9% 1.07

1 S1_95747751 1 95747751 5.56X10-06 7.8% 1.05

1 S1_12340947 1 12340947 1.40X10-05 7.1% 1.01

1 S2_142739572 2 142739572 1.46X10-05 7.2% 2.05

1 S8_112412901 8 112412901 1.86X10-05 7.1% 8.04

2 S4_245982321 4 245982321 7.40X10-07 9.6% 4.11

2 S1_214720998 1 214720998 5.43X10-06 8.0% 1.07

2 S3_122398302 3 122398302 7.91X10-06 7.8% 3.04

2 S3_122398313 3 122398313 7.91X10-06 7.8% 3.04

2 S3_122398320 3 122398320 7.91X10-06 7.8% 3.04

2 S4_245029688 4 245029688 9.45X10-06 7.6% 4.11

FF 1 S8_18474015 8 18474015 2.65X10-06 8.0% 8.02

(Continued)
frontier
FIGURE 4

t-distributed stochastic neighbor embedding (t-SNE) visualization of the genetic relatedness of 258 maize inbred lines using a genome-wide panel
of 291,633 SNP markers. The visualization is color-coded by population, with yellow representing Popcorn, blue representing Field corn, and green
indicating Sweetcorn. The shapes of the individual points indicate an individual’s proportion of ancestry to genetically differentiated groups
determined by InStruct, with triangles indicating cluster 1 and circles indicating cluster 2.
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associated with flowering time and reproductive processes. These

genes were found to be involved in biological processes related to

ASI (20 genes), FF (19 genes), and FM (54 genes) (Supplementary

Table S5). The analysis also identified two co-functional networks

that were found to be significantly enriched for genes related to

single-organism reproductive behavior and the regulation of flower

and reproductive development (p<0.0005). These networks

identified four genes that were directly associated with the traits

of FF and ASI (GRMZM2G114793 and GRMZM2G415007), and

FM (GRMZM2G055520 and GRMZM2G161913) as shown

in Figure 5.

The genes GRMZM2G114793 (bip1 - Binding protein homolog

1) and GRMZM2G415007 (bip2 - Binding protein homolog 2) were

found to have orthologs in Arabidopsis thaliana, which encode

BINDING PROTEIN 3.). The genes GRMZM2G055520 and

GRMZM2G161913 have orthologs in Arabidopsis thaliana that

encode EARLY FLOWERING 7 and EARLY FLOWERING 8,

respectively. These genes are known to play a role in the control

of flowering time in plants. Additionally, these four genes

(GRMZM2G114793, GRMZM2G415007, GRMZM2G055520, and

GRMZM2G161913) have an ontology associated with the stage of

anthesis, or the beginning of flowering, in various cereal plants,

including the silking stage in maize and the whole plant

flowering stage.
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3.4 Genomic prediction

The performance of four approaches (UTUE, UTME, MTUE,

and MTME) for predicting flowering traits in tropical maize were

compared using Bayesian and deep learning models. For this

purpose, the approaches were evaluated in two scenarios: 1)

selection of random training and validation datasets in each

environment, and 2) prediction of Iguatemi season 2 using other

environments as training datasets (Iguatemi season 1, DT1,

Cambira and Sabaudia: DT2, and Cambira and Sabaudia +

Iguatemi season 1: DT3).

3.4.1 Selection randomly into independent
training and validation datasets in each
environment (scenario I)

Predicting accuracy for uni-trait and multi-trait approaches in a

single-environment (UTUE and MTUE):

The results of the study indicate that the multi-trait approach

leads to higher prediction accuracy for all traits in each of the four

environments evaluated, compared to the uni-trait approach.

According to Table 2, prediction accuracies ranged from 0.11 to

0.73 for the uni-trait approach and from 0.16 to 0.73 for the multi-

trait approach. The multi-trait approach, using the deep learning

model, yielded the highest prediction accuracy (Table 2). On
TABLE 1 Continued

Trait Iguatemi
Season Marker Chr Pos p-value PV% BIN

1 S6_150165479 6 150165479 5.00X10-06 7.5% 6.05

1 S10_14797601 10 14797601 8.82X10-06 7.2% 10.03

1 S8_143046924 8 143046924 9.44X10-06 7.2% 8.05

1 S7_468747 7 468747 1.74X10-05 6.7% 7.00

2 S5_42052202 5 42052202 3.89X10-06 7.8% 5.03

2 S5_217372319 5 217372319 1.82X10-05 7.6% 5.09

2 S2_15002111 2 15002111 1.11X10-05 7.2% 2.02

2 S2_47411894 2 47411894 1.27X10-05 7.0% 2.04

2 S2_43966599 2 43966599 1.40X10-05 6.9% 2.04

2 S7_34488540 7 34488540 1.40X10-05 7.0% 7.02

FM

1 S9_144119131 9 144119131 5.78X10-06 7.6% 9.06

1 S6_150165479 6 150165479 6.58X10-06 7.4% 6.05

1 S7_13731608 7 13731608 7.25X10-06 7.3% 7.01

2 S5_217372319 5 217372319 1.05X10-06 8.8% 5.09

2 S2_222099831 2 222099831 5.57X10-06 7.6% 2.08

2 S1_16300644 1 16300644 9.18X10-06 7.2% 1.02

2 S1_65858162 1 65858162 1.02X10-05 7.2% 1.04

2 S7_8758861 7 8758861 1.16X10-05 7.1% 7.01

2 S3_218088466 3 218088466 1.65X10-05 6.8% 3.09
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average, multi-trait genomic selection models (MCMCglmm and

deep learning) had higher (not significantly) prediction accuracy

than uni-trait genomic selection models. Particularly, the largest

improvement in prediction accuracy (26.6%) was observed when

using the multi-trait approach with the MCMCglmm model, while

the smallest improvement (2.2%) was observed when using the deep

learning model. However, the highest prediction accuracy was

obtained using the deep learning model for all traits in each of

the environments, when UTUE and MTUE approaches were

considered (Table 2). This suggests that the deep learning model

is less sensitive to the use of uni- or multi-trait approaches. The

highest (not significantly) prediction accuracies were obtained for

the Cambira environment, while the lowest (not significantly) was

obtained for the Iguatemi Season 2 environment, for all traits in

both uni- and multi-trait approaches, and for both the

MCMCglmm and deep learning models.

Predicting accuracies for uni-trait and multi-trait approaches in

multi-environments (UTME and MTME):

In contrast to the analysis of a single environment, the prediction

accuracy of the uni-trait model was found to be higher than that of

the multi-trait model in most cases, as shown in Table 2. The

prediction accuracies ranged from 0.14 (for ASI, in Iguatemi season

1, using BGGE and deep learning models) to 0.74 (for MF, in

Cambira, using the BGGE model) and from 0.13 (for ASI, in

Iguatemi season 1, using BMTME and deep learning models) to
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0.72 (for MF, in Cambira, using the BMTME model) for the uni-trait

and multi-trait approaches, respectively. Regardless of the GS model

used, the multi-trait analysis showed lower (not significantly)

prediction accuracies than the single-trait model, except in ASI

Cambira (BMTME), ASI Sabaudia (DL) and MF Iguatemi season 2

(BMTME and DL). On average, the GS models in the single-trait

analysis had 8.3% (BGGE-UTME over BMTME-MTME) and 4.5%

(DL-UTME over DL-MTME) higher (not significantly) prediction

accuracies than GSmodels in the multi-trait analysis. Similarly, in the

single environment analysis, deep learning models had the highest

prediction accuracy on average. Overall, the results indicate that the

Uni-Trait-Multi-Environment and Multi-Trait-Uni-Environment

approaches are more efficient for predicting flowering traits.

Furthermore, deep learning consistently emerged as the most

accurate model across all approaches, demonstrating superior

performance across various traits and environments.

3.4.2 Prediction of flowering traits in Iguatemi
season 2 (scenario II)

The prediction accuracy for scenario II was found to be generally

higher than that of scenario I, as shown in Tables 2, 3. Table 3 presents

the prediction accuracies for all flowering traits in the Iguatemi season

2 when the model was trained using three different datasets (DT1, DT2

and DT3) and four different approaches (Uni-Trait-Uni-Environment,

Multi-Trait-Uni-Environment, Uni-Trait-Multi-Environment, and
A

B

FIGURE 5

Visual representation of co-functional networks for flowering time traits in tropical maize. Panel (A) shows the network for anthesis-silking interval
(ASI) and female flowering (FF) traits, while panel (B) displays the network for male flowering (FM). The networks were constructed using candidate
genes identified through genome-wide association studies and prioritized using MaizeNet, a database of maize functional genomics. White boxes
denote all the genes in the network, while orange boxes highlight genes that are associated with biological processes related to flowering time and
reproduction, as identified by gene ontology (GO) annotations. The orange boxes with bold borders indicate genes identified by GWAS or through
the prioritization analysis in MaizeNet.
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Multi-Trait-Multi-Environment). The prediction accuracies ranged

from 0.20 to 0.66, 0.29 to 0.60, 0.24 to 0.68, and 0.13 to 0.60,

respectively, for the four different approaches. It was found that the

use of only season 1 of Iguatemi (DT1) performed the best among all

scenarios. Additionally, the use of deep learning models was found to

be more efficient (not significantly) for predicting flowering traits in

tropical maize, with an improvement of 26.8% and 10.8% in the Uni-

Trait and Multi-Trait approaches, respectively, when using DT1, and

2.5% and 1.6% in the Uni-Trait and Multi-Trait approaches,

respectively, when using DT3.
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4 Discussion

4.1 Genetic determinants of flowering traits
in tropical maize

The flowering traits of crops are crucial for yield and seed

quality (Helal et al., 2021). In this study, 31 significant SNP loci were

identified that regulate flowering traits across two consecutive

seasons. Of these, approximately 50% of significant SNPs were

located on chromosomes 1, 2, and 3, which is consistent with
TABLE 3 Estimates of predictive ability for flowering time traits in a tropical maize panel for the second season of Iguatemi (validation dataset).

Scenario Trait
UTUE UTME MTUE MTME

MCMCglmm DL BGGE DL MCMCglmm DL BMTME DL

DT1

FF 0.53 0.66 – – 0.67 0.68 – –

MF 0.44 0.51 – – 0.49 0.54 – –

ASI 0.20 0.28 – – 0.24 0.29 – –

DT2

FF – – 0.58 0.59 – – 0.31 0.59

MF – – 0.41 0.41 – – 0.13 0.40

ASI – – 0.31 0.29 – – 0.20 0.34

DT3

FF – – 0.59 0.60 – – 0.58 0.60

MF – – 0.41 0.42 – – 0.43 0.41

ASI – – 0.31 0.32 – – 0.34 0.36
frontiers
MCMCglmm, MCMC Generalized Linear Mixed Model; DL, Deep Learning; BGGE, Bayesian Genomic Genotype × Environment Interaction; BMTME: Bayesian Multi-Trait Multi-
Environment. DT1 (Iguatemi season 1), DT2 (Cambira and Sabaudia) and DT3 (Cambira, Sabaudia and the first season of Iguatemi) represent the training dataset. Four different approaches
were used: Uni-Trait-Uni-Environment (UTUE), Uni-Trait-Multi-Environment (UTME), Multi-Trait-Uni-Environment (MTUE), and Multi-Trait-Multi-Environment (MTME) - indicates
that the model was not run in this approach and scenario.
TABLE 2 Predictive ability estimates for flowering time traits in a tropical maize panel across four environments (Cambira, Sabaudia, Iguatemi season
1, and Iguatemi season 2) using four different approaches: Uni-Trait-Uni-Environment (UTUE), Uni-Trait-Multi-Environment (UTME), Multi-Trait-Uni-
Environment (MTUE), and Multi-Trait-Multi-Environment (MTME).

Environment Trait
UTUE UTME MTUE MTME

MCMCglmm DL BGGE DL MCMCglmm DL BMTME DL

Cambira

FF 0.39e 0.62a 0.61ab 0.63a 0.45d 0.61ab 0.58c 0.59bc

MF 0.42e 0.73ab 0.74a 0.73ab 0.49d 0.73bc 0.72bc 0.70c

ASI 0.42bcd 0.5a 0.41d 0.44b 0.44bc 0.51a 0.41d 0.42cd

Sabaudia

FF 0.43c 0.49a 0.47ab 0.47ab 0.46abc 0.47ab 0.44bc 0.44abc

MF 0.38e 0.58a 0.55abc 0.58ab 0.54bc 0.57abc 0.50d 0.56bc

ASI 0.26c 0.31ab 0.30bc 0.30ab 0.29bc 0.32ab 0.28bc 0.33a

Iguatemi
Season1

FF 0.36c 0.46ab 0.48a 0.46ab 0.45b 0.47a 0.46ab 0.42b

MF 0.33d 0.55a 0.54a 0.51ab 0.45bc 0.54a 0.44c 0.48b

ASI 0.12b 0.15ab 0.14ab 0.14ab 0.16ab 0.18a 0.13ab 0.13ab

Iguatemi
Season2

FF 0.31d 0.42ab 0.43b 0.43b 0.42b 0.46a 0.33d 0.37c

MF 0.29b 0.43a 0.31b 0.31b 0.29b 0.43a 0.31b 0.33b

ASI 0.11c 0.27a 0.27a 0.25a 0.19b 0.27a 0.25a 0.24a
MCMCglmm, MCMC Generalised Linear Mixed Model; DL, Deep Learning; BGGE, Bayesian Genomic Genotype × Environment Interaction; BMTME, Bayesian Multi-Trait Multi-
Environment. Statistical significance between different models is noted by lowercase letters. Different letters show the statistical significance at p< 0.01 according to the Tukey–Kramer test. The
estimates are based on an average of 50 cross-validation cycles.
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previous research that found over 33% of loci associated with

flowering on these chromosomes (Li et al., 2016; Liu et al., 2019;

Maldonado et al., 2019). Additionally, 9 SNPs (82%) associated with

ASI were found on chromosomes 1, 3, and 4; for FF trait, 70% (7/

10) of SNPs were found on chromosomes 2, 7, and 8; and for FM

trait, 4 SNPs (44%) were distributed on chromosomes 1 and 7

(Supplementary Table S3). Previous studies have also identified

significant SNPs associated with flowering traits in maize on similar

chromosomes (Li et al., 2016; Liu et al., 2019; Maldonado et al.,

2019; Shi et al., 2022), suggesting that these regions may contain

genes that play a critical role in controlling flowering time variation

in maize. The phenotypic variation explained by significant SNPs in

this study ranged from 6.7 to 9.6% and was evenly distributed

among traits, indicating that many significant SNPs of small effects

contribute to genetic variation in flowering time in maize

(Maldonado et al., 2019).

The study identified two potential pleiotropic loci that had an

impact on both female and male flowering traits. The use of

multivariate Bayesian regression (as suggested by Maldonado et al.,

2019) allowed for the detection of pleiotropic genetic variants that are

correlated with multiple traits by analyzing the Bayes factor and PPA.

The PPA values of 0.99 and 0.74 for SNPs S6_150165479 and

S5_217372319, respectively, provided strong evidence of the

simultaneous association of these two loci with both FF and FM

traits. Additionally, the high values of log10 (BF) (> 5.1) were

considered to be strong evidence against the null hypothesis of no

association and were higher than those found in previous association

studies (Legarra et al., 2018). The correlation analysis results also

showed a high and significant correlation between FF and FM, which

supports the idea that FF and FM share similar loci. The study also

found similarities to previous research by Li et al. (2016) who

identified two pleiotropic significant SNPs located in the same bin

(6.05) of loci S6_150165479, indicating that this region affects both

female and male flowering time. These discoveries of pleiotropic

significant SNPs could aid in understanding the molecular

mechanisms of flowering time in maize.

GWAS is a powerful tool for identifying genetic variants

associated with specific traits in maize. Studies such as those by

Xiao et al. (2016); Coan et al. (2018); Maldonado et al. (2019), and

Shi et al. (2022) have used GWAS to identify key genetic variants

underlying phenotypic variation in several maize traits.

Additionally, Wallace et al. (2014) found that the majority of the

variance in maize can be explained by within-gene and gene-

proximal SNPs (at about 1–5 kb). By using high-resolution

GWAS, it may be possible to identify loci that significantly affect

maize flowering time within candidate genes or in proximity to

them. Therefore, GWAS approaches can be a useful tool for

understanding the genetic basis of flowering time in maize and

for identifying potential targets for crop improvement.

The association analysis identified several markers associated

with flowering traits in maize, which explain up to 9.6% of

phenotypic variation individually, and between 67 and 86% of the

trait phenotypic variation considering all significant markers. This

result is consistent with previous studies on traits related to

flowering time in maize (Salvi et al., 2009; Liu et al., 2019;

Maldonado et al., 2019).Moreover, it is worth noting that the LD
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pattern exhibits a rapid decline within a 2.7 kb range, which aligns

with the findings reported by Coan et al. (2018) and Maldonado

et al. (2019). This LD pattern indicated that candidate genes should

be located within a 2.7 kb region upstream and downstream of

significant SNPs. The gene-prioritization and co-functional

network approach found that four genes were significantly

associated with the stage at flowers open, anthesis and silking in

some cereal plants such as maize. In this regard, hundreds of genes

in plants have been extensively studied in Arabidopsis. In this study,

ortholog genes for BINDING PROTEIN 3 (which control pollen

germination and pollen tube elongation; Sato and Maeshima, 2019),

orthologs associated with the stage of anthesis or the beginning of

flowering (particularly important in the sporophyte reproductive

stage; Xiang et al., 2011), and EARLY FLOWERING genes (which

play a crucial role in determining when a plant flower; Li et al., 2016;

Li et al., 2019) have been identified. Particularly, two orthologs of

EARLY FLOWERING genes, ELF7 and ELF8, were identified as

candidate genes controlling flowering time in maize using gene-

prioritization and subnetwork analysis of the MaizeNet database

(Lee et al., 2019). These genes have been shown to cause rapid

flowering in various situations where flowering would otherwise be

delayed (He et al., 2004; Li et al., 2016). Additionally, ELF7 and

ELF8 are known to regulate the expression of genes in the

FLOWERING LOCUS C clade, which includes repressors such as

MAF2 and FLM that play a role in multiple flowering pathways (He

et al., 2004). The SNPs and candidate genes associated with

flowering time phenotypes identified in this study can be

integrated into molecular marker-assisted breeding programs and

provide valuable genetic resources for future maize breeding efforts.
4.2 Multi-trait and multi-environment
genomic prediction for flowering
traits in maize

Genomic selection is a powerful strategy that has been proven to

significantly improve the efficiency of breeding programs by

increasing genetic gain and reducing selection time (Bhat et al.,

2016). The goal of GS is to construct accurate prediction models

using training populations that consist of individuals with both

genotypic and phenotypic data. In practice, plant breeders often

collect data for multiple traits in different environments and over

multiple years. Studies have shown that prediction approaches

based on Multi-Trait and Multi-Environments (MT-ME) are

more accurate than Uni-Trait and Uni-Environment (UT-UE)

approaches because they allow for the prediction of multiple traits

simultaneously, which reduces the number of locations needed for

subsequent selection trials (Tolhurst et al., 2019; Larkin et al., 2021;

Sandhu et al., 2022). Despite the benefits of using MT-ME

approaches, few GS studies have adopted them due to the

complexity of the models (Cuevas et al., 2017). Therefore, in this

study, different models based on MT-ME approaches were

evaluated and compared with UT-UE approaches to predict

flowering traits in inbred lines of tropical maize.

In the scenario I, when considering selection randomly into

independent training and validation datasets in each environment,
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the multi-trait approach performed 14.4% superior to the Uni-Trait

approach for the Uni-environment, while in the Multi-

Environment approach, the Uni-Trait approach performed 6.4%

superior to the Multi-Trait approach. Notably, regardless of the

approach, the Deep Learning model showed a higher prediction

accuracy (Table 2). Additionally, the Deep Learning model was

significantly superior to the MCMCglmm (Uni-Trait-Uni-

Environment and Multi-Trait-Uni-Environment) and BMTME

(Multi-Trait-Multi-Environment) models. These results may be

due to the ability of the Deep Learning model to automatically

capture complex interactions in its hidden layers without the need

to specify the covariates corresponding to interactions between

traits or environments in the predictor, as previously noted by

Montesinos-López et al. (2018). It is worth noting that similar

results have been observed by Montesinos-López et al. (2018) where

the Deep Learning model performed superiorly to other models

when the genotype-environment interaction (Uni-Environment) is

not considered, but its advantages diminished when the genotype-

environment component is included in the model, which is

consistent with the findings of this study.

In scenario II, when predicting the second season of Iguatemi,

utilizing information from the first season of Iguatemi (DT1) was

found to be more accurate than utilizing information from other

environments (DT2 and DT3). This may be due to the high

correlation observed between the first and second seasons of

Iguatemi for traits such as FF (r = 0.68), MF (r = 0.53), and

anthesis-silking interval (ASI: r = 0.30), compared to the correlation

between these traits in other environments. Furthermore, the results

of this scenario differed from those of scenario I, as the prediction

accuracy for the FF trait was found to be superior to that of the MF

trait. This may be due to the high correlation observed among all

environments and traits for the FF trait (as shown in Figures 2, 3), as

previously reported by Sandhu et al. (2022) and Montesinos-López

et al. (2016), who mention that a high correlation between traits

improves prediction accuracies and highlights the importance of

using multi-trait models. Additionally, for the ASI trait, which has a

low correlation among traits and environments, as well as a low

heritability (h2 = 0.29), the Deep Learning model in the DT3 (Multi-

Trait-Multi-Environment) approach was found to be more effective

than models in the DT1 (Uni-Trait-Uni-Environment and Multi-

Trait-Uni-Environment) approach. This suggests that Multi-Trait-

Multi-Environment approaches may be useful for increasing

predictions for primary traits with low heritability when a

secondary trait is highly correlated and has high heritability (as

reported by Sandhu et al., 2022). As noted by Cui et al. (2020),

heritability can vary depending on the genetic architecture of traits,

with traits such as flowering date being controlled by several major

genetic loci that have high heritabilities. This study found that the

flowering traits had moderate to high heritabilities (FF: 0.72, MF:

0.66, and ASI: 0.29) (as reported by Cui et al., 2020; Maldonado

et al., 2020). As expected, the prediction accuracy was moderate to

high (as reported by Zhang et al., 2017), with higher prediction

accuracies observed for traits with higher heritability compared to

those with lower heritability. Similar results have been observed in

previous studies, with high positive correlations between heritability

and prediction accuracy values (as reported by Nyine et al., 2017;
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Cui et al., 2020; Kaler et al., 2022). Notably, the Deep Learning

model showed higher prediction accuracy compared to other

models, regardless of the heritability of the trait. This is in line

with the findings of Alves et al. (2020) who found that artificial

neural network models had a higher prediction accuracy compared

with GBLUP for traits with moderate heritability, indicating that

neural network models may be a promising alternative tool for

genomic prediction, independent of the contribution of genetic

effects (as reported by Maldonado et al., 2020).

In all scenarios, the use of Deep Learning models resulted in

higher prediction accuracy compared to other models for all traits

(except BGGE in UTME, since it had similar predictions). This

suggests that the Deep Learning model is less sensitive to random

variations among seasons and correlations between traits and that it

does not require the consideration of “genotype x environment”

interactions and prior information on the covariance matrices of

traits (genetic and residual) for training and constructing the

predictive model (Montesinos-López et al., 2018). In this regard,

Maldonado et al. (2020) highlighted that machine learning-based

GP models can treat response variables as an implicit function of

input variables (e.g., environmental components) through non-

linear and highly complex functions, which implies that these

models can effectively increase prediction accuracy without the

need to pre-specify interaction terms.

In this study, it was shown that Deep Learning models based on

Uni- or Multi-Trait and Uni- or Multi-Environment approaches

outperformed Bayesian Genomic Selection models (MCMCglmm

and BMTME). It should be noted that BGGE achieved the same level

of prediction accuracy as DL in UTME, however, the computational

time required for BGGE was approximately three times longer than

that of DL (data not shown). Similar results were observed by

Maldonado et al. (2020), which indicated that DL models require

significantly less computational time (approximately 16 times less)

compared to traditional Bayesian models. The superiority of Deep

Learning models in GS over traditional mixed model-based

approaches has been previously reported in the literature by

Sandhu et al. (2021), Zingaretti et al. (2020), Montesinos-López

et al. (2018), and Maldonado et al. (2020). According to Sandhu

et al. (2022), Deep Learning models are highly flexible in

understanding the complex interactions present in datasets, and

they can infer trends present in datasets better than traditional

models. The results of this study confirm the importance of Deep

Learning models for increasing prediction accuracy in GS, which

holds promise for accelerating crop breeding progress.
5 Conclusion

In conclusion, this study highlights the effectiveness of deep

learning models in genomic selection studies for predicting complex

flowering-related traits in tropical maize. Deep learning models

outperformed other models (except for BGGE in UTME where

similar predictions were observed) indicating their superior

accuracy across all traits and scenarios. This suggests that Multi-

Traits deep learning models are less affected by low or negative

correlations among traits. Moreover, these models have the
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advantage of learning patterns directly from the data without

relying on prior assumptions, making them an attractive

alternative to traditional Multi-Trait and Multi-Environment

based models. Among the deep learning models, the MTUE

model consistently demonstrated the highest prediction

accuracies on average. Therefore, it is recommended to use this

model in breeding programs, especially for predicting traits that are

challenging or expensive to phenotype, or those with low levels of

correlation. Additionally, deep learning models should be

incorporated into the toolkit of plant breeders to accelerate crop

breeding progress and improve genetic gain for quantitative traits.

On the other hand, this study identified several loci in genomic

regions associated with flowering time in tropical maize, which have

variable contributions to phenotypic expression. These findings can

be utilized in marker-assisted selection programs, where the loci

identified can be target to improve breeding outcomes.

Additionally, through the co-functional network approach (post-

GWAS), orthologs of EARLY FLOWERING genes were identified,

which offer potential targets for genome editing programs focused

on improving flowering traits. These discoveries provide valuable

insights into the genetic architecture and underlying mechanisms of

flowering-related traits in tropical maize, which can be incorporated

into breeding programs for further advancements.
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Suárez, C. M., and Martıń-Vallejo, J. (2018). Multi-trait, multi-environment deep
learning modeling for genomic-enabled prediction of plant traits. G3 (Bethesda) 8,
3829–3840. doi: 10.1534/g3.118.200728

Montesinos-López, O. A., Montesinos-López, A., Crossa, J., Toledo, F. H., Pérez-
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