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Integrated analysis of
transcriptomics and
metabolomics of peach under
cold stress

Yonghong Li, Qihang Tian, Zhaoyuan Wang, Jie Li ,
Shiyuan Liu, Ruifeng Chang, Hu Chen and Guojian Liu*

Changli Research Institute of Fruit Trees, Hebei Academy of Agricultural and Forestry Sciences,
Hebei, China
Low temperature is one of the environmental factors that restrict the growth and

geographical distribution of peach (Prunus persica L. Batsch). To explore the

molecular mechanisms of peach brunches in response to cold, we analyzed the

metabolomics and transcriptomics of ‘Donghe No.1’ (cold-tolerant, CT) and ‘21st

Century’ (cold-sensitive, CS) treated by different temperatures (-5 to -30°C) for

12 h. Some cold-responsive metabolites (e.g., saccharides, phenolic acids and

flavones) were identified with upregulation only in CT. Further, we identified 1991

cold tolerance associated genes in these samples and they were significantly

enriched in the pathways of ‘galactose metabolism’, ‘phenylpropanoid

biosynthesis’ and ‘flavonoids biosynthesis’. Weighted gene correlation network

analysis showed that soluble sugar, flavone, and lignin biosynthetic associated

genesmight play a key role in the cold tolerance of peach. In addition, several key

genes (e.g., COMT, CCR, CAD, PER and F3’H) were substantially expressed more

in CT than CS under cold stress, indicating that they might be major factors

during the adaptation of peach to low temperature. This study will not only

improve our understanding towards the molecular mechanisms of peach trees

under cold stress but also contribute to the screening and breeding program of

peach in the future.
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Introduction

Peach (Prunus persica L. Batsch) trees are widely planted across the world due to the

delicious fruit and nutrition supplies (Wu et al., 2017; Li et al., 2021) and cold stress (e.g,

chilling: < 20°C, freezing: < 0°C) can restrict its growth, development, yield and

geographical distribution. To combat the low temperature, various substances and

protective proteins are synthesized in plants to systematically regulate the osmotic

potential, ice crystal formation, and the homeostasis of cell membrane (Ji et al., 2020;
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Feng et al., 2021; Hao et al., 2022). In the past few decades, many

studies have been demonstrated to elucidate the molecular

mechanisms involved in the plant cold acclimation. For example,

the CBF/DREB (C-repeat binding factor/dehydration responsive

element binding factor) dependent signalling pathway has been

reported in many plants as a conserved regulatory mechanism to

defend cold (Shi et al., 2018; Cai et al., 2019; Liu et al., 2019; Hwarari

et al., 2022). The CBF genes, which belong to the AP2/ERF (apetala

2/ethylene response factor) family, are regulators of various abiotic

stresses including cold in plants (Riechmann and Meyerowitz, 1998;

Ghorbani et al., 2020). When plants suffer from cold, regulatory

proteins, including the positive regulators ICE1 (inducers of CBF

expression 1), CAMTA3 (calmodulin-binding transcription

activator 3) and BZR1/BES1 (brassinazole-resistant 1) and

suppressors MYB15, PIFs (phytochrome-interacting factors) and

EIN3 (ethylene-insensitive 3) (Shi et al., 2018; Liu et al., 2019), are

expressed to modulate the CBF gene expression and subsequently

the CBF proteins specifically bind to the conserved C-repeat (CRT)/

dehydration-responsive elements (CRT/DRE; G/ACCGAC) of

downstream cold-responsive (COR) genes (Chinnusamy et al.,

2007; Song et al., 2021). In addition, CBF-independent regulatory

pathways have also been identified in plants under cold stress, such

as the plant hormones auxin, ethylene, gibberellins, abscisic acid,

and jasmonic acid (Shi et al., 2015).

Since the first peach genome was reported in 2010, omics

approaches (e.g., genomics, transcriptomics, proteomics, and

metabolomics) have been widely used to investigate the roles of

cold tolerance associated genes in peach (Muthuramalingam et al.,

2022). Digital expression analyses of EST datasets identified two

promoters – Ppbec1 encoding endochitinase (C2131) and Ppxero2

encoding dehydrin (C254) as cold-inducible promoters for peach

and reported the heterologous regulation of these promoters in

peach at low temperatures (Tittarelli et al., 2009). The expression of

peach CBF gene PpCBF1 in apple has an enhancement effect of

tolerance to freezing (Wisniewski et al., 2015). By using

transcriptomics analysis Yu et al. identified 1891 differentially

expressed genes (DEGs) in the peach plant in response to cold

and the DEGs were significantly enriched in the pathways of

‘metabolic pathway’ and ‘biosynthesis of secondary metabolites’

(Yu et al., 2020). Among the 23 selected heat-responsive genes in

peach fruit, more than 90% were identified by Lauxmann to be

modulated by a short cold exposure (Lauxmann et al., 2012). A

bulked segregant gene expression analysis performed by Pons et al.

identified some cold-responsive genes, such as ICE1, CBF1/3,

SAD1, ERD15 and some transcription factors (e.g., HOS9,

MADS-box, MYB, NAC, PHD, TUB, WRKY) in peach mesocarp

(Pons et al., 2014). Sanhueza and colleagues analysed the

transcriptome profiles of peach under cold stress and reported

some cold responsive genes in peach, such as spatula/Alcatraz and

MYB (agamous-like) TFs (Sanhueza et al., 2015). By transcriptomic

and metabolic analyses, Wang found that low temperature could

cause higher rate of ethylene production and more rapid flesh

softening, reduced internal browning of fruit, lower transcript levels

of polyphenol oxidase and peroxidase, and higher lipoxygenase in

peach fruit (Wang et al., 2017). Based on the metabolomic analysis,

Wang reported enhanced fatty acid content, increased desaturation,
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higher levels of phospholipids and a preferential biosynthesis of

glucosylceramide in the peach fruit under cold stress. The above

omics studies are about the peach fruit under cold stress and large is

unknow about the development of peach trees at low temperature

environment. Only Yu et al. reported the transcriptome profiles of

peach tree shoots during the processes of cold acclimation and

deacclimation (Yu et al., 2020).

Previously, our lab identified 329 and 399 differentially

expressed proteins in the cold-sensitive (21st Century, CS) and

cold-tolerant (Donghe No.1, CT) peach trees, respectively, treated

by cold for 48 h (Li et al., 2021). We found that the CT cultivar

displayed amount of energy from metabolic pathways (e.g, carbon,

starch and sucrose) and phenylpropanoid biosynthesis to resist cold

stress. Moreover, peroxidase, flavonoid, carbonic anhydrase and

harpin proteins displayed more abundance in CT. To explore the

metabolites and genes related to the cold tolerance of peach tree, in

the present study, we performed transcriptomic and metabolomic

sequencing for the branch samples of the CT and CS peach trees

under different cold temperatures. This is the first time to

investigate the transcriptome profiles and metabolites of peach

branch samples under cold stress using omics approaches. Our

findings will enhance the knowledge of molecular mechanisms in

peach trees in response to cold and will benefit the peach

breeding program.
Material and methods

Plant materials and cold treatment

We collected the one-year-old branches from the grafted peach

trees of ‘Donghe No.1’ (CT) and ‘21st Century’ (CS) in their

ecodormancy stage in the field in January 2021 and no

permissions were required to collect these plants. The branch

samples were placed in a chamber and cold-stratified at 4°C for 7

days. Next, the branch samples were divided into six groups and

each group was well-wrapped by plastic bags. The samples of each

group were then placed into one of the six programmable

incubators with temperatures set at -5°C (control), -10°C, -15°C,

-20°C, -25°C and -30°C for 12 h, followed by the treatment of

cooling or heating rates at 4°C/h. Then, the middle parts of the

branches were cut, quickly frozen in liquid nitrogen immediately

and stored at -70°C until use (relative electrolyte leakage was

measured without freezing). The relative electrolyte leakage (REL)

of each sample was measured as described (Sun et al., 2021). Each

treatment was repeat three times and served as independent

biological replicates.
Metabolite analysis by LC-MS/MS

Extraction and analysis of metabolites were carried out in

Metware Biotechnology Co. Ltd. (Wuhan, China). Briefly, after

the branch samples were freeze-dried by vacuum freeze-dryer

(Scientz-100F), they were grounded into fine powder in a mixer

mill (MM 400, Retsch) with a zirconia bead for 1.5 min at 30 Hz.
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The lyophilized powder (100 mg) was dissolved in 1.2 mL of 70%

methanol solution, vortexed 30 s every 30 min for 6 times, and

placed in the refrigerator at 4°C overnight. After the samples were

centrifuged at 10000 × g for 10 min, the supernatant was aspirated

and filtered through a 0.22 mm pore size membrane and stored in

the injection bottle. Next, the samples were analysed by an UPLC-

MS/MS system (UPLC, SHIMADZU Nexera X2; MS, Applied

Biosystems 4500Q TRAP). We connected the effluent with an

ESI-triple quadrupole-linear ion trap (Q TRAP)-MS, acquired the

linear ion trap (LIT) and triple quadrupole (QQQ) scans from a

triple quadrupole-linear ion trap mass spectrometer equipped with

an ESI Turbo Ion-Spray interface (operated in positive ion mode),

and controlled the scan using Analyst (v1.6.3, AB Sciex). Then, a

scheduled multiple reaction monitoring method was used to

quantify the metabolites and the collision energy and declustering

potential were optimized for each precursor-product ion (Q1-Q3)

transition to obtain maximal signal (Chen et al., 2013). The

melatonin content was calculated from the quantitative data of

melatonin and the standard curves acquired from an authentic

melatonin standard. To identify cold-responsive metabolites in one-

year-old peach branches, differentially expressed metabolites

(DEMs) were screened using log2 fold change (log2FC) ≥ 1.

Three biological replicates were used for the metabolomics analysis.
RNA-Seq and bioinformatics analysis

Total RNA was isolated from the one-year-old peach branch

samples using the RNAprep Pure Plant kit (DP441, Tiangen,

China). The RAN quantity and quality were evaluated by

NanoPhotometer spectrophotometer (IMPLEN, CA, USA),

Qubit 2.0 Fluorometer (Life Technologies, CA, USA) and

Agilent Bioanalyzer 2100 system (Agilent Technologies, CA,

USA). Then, the poly(A) mRNA was enriched by magnetic

beads with oligo (dT) and used to construct the cDNA libraries.

The libraries were then sequenced on the Illumina Novaseq 6000

system with paired-end 150-bp (PE150) strategies in Metware

Biotechnology Co. Ltd (Wuhan, China), as described (Chen et al.,

2016; Chen et al., 2021).

Raw data were cleaned by fastp and the quality of clean data was

evaluated by FASTQC, as described (Chen et al., 2016; Chen et al.,

2018). Then, the high-quality clean reads were mapped to the peach

reference genome (Prunus persica-genome.v2.0.a1) using HISAT2

(version 2.1.0) with default parameters (Pertea et al., 2016). We

used FeatureCount program to count the number of reads aligned

to each gene and normalized the gene expression using the FPKM

(Fragments Per Kilobase of transcript per Million fragments

mapped) method (Liao et al., 2014). To identify cold-responsive

genes in one-year-old peach branches, DEGs were identified using

DESeq2 with the criteria of |log2FC| ≥1 and FDR (False Discovery

Rate) < 0.05 (Love et al., 2014; Chen et al., 2016). Gene ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis of DEGs were performed by the cluster Profiler

R package (Yu et al., 2012).
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Weighted gene co-expression
network analysis

We performed the weighted gene co-expression network

analysis (WGCNA) to identify core genes with similar expression

patterns that may participate in the cold tolerance of peach trees, as

described (Langfelder and Horvath, 2008). The gene networks and

top 30 hub genes within a module were visualized by Cytoscape

(Shannon et al., 2003).
Quantitative real-Time PCR validation

Total RNA was extracted from the samples using the Yisheng

RNA extraction kit (Yisheng, Shanghai, China) according to the

manufacturer’s instructions. We randomly selected 11 genes for the

qRT-PCR experiment and used actin as the internal control.

Forward and reverse primers were designed using the Prime3 and

synthesized in BGI-Shenzhen. Then, the qRT-PCR reactions were

conducted with a Yisheng SYBR Green Master Mix and a

CFX*Real-Time System (Bio-Rad). Relative gene levels were

calculated using the 2-△△Ct method and the CT/CS sample at 0°

C were used as the reference. Three biological and technical

reactions were performed for a gene in one sample, and we have

9 reactions for one gene in the peach branch sample at

each condition.
Results

Physiological differences between CT and
CS in response to cold stress

We first estimated the electrolyte leakage rates (ELR), a parameter

used to evaluate the plant cold resistance, of 1-year-old branches of

‘Donghe No. 1’ (CT) and ‘21st Century’ (CS) treated by cold for 12 h

under different temperatures (from -5 to -30°C) (Figure 1A). It

showed that the ELRs were similar from -5 to -15°C but had

significant difference from -20 to -30°C in the two peach cultivars.

This observation was consistent with the colour changes in the pith

and xylem of the branches (Figure 1B). It is notable that the ELR of

CS was ranged in 18~23% under freezing environment and increased

significantly to 27.4% at chilling stress (Figure 1A). While the ELR of

CT was 21.8% at -20°C and increased to 29.3% at -30°C. These results

first confirmed the characteristics of cold tolerance of the two peach

cultivars. We also observed that low temperature damage to the cell

membrane occurred in the 1-year-old CS peach branch at -20°C/12 h,

resulting in necrosis in the pith tissue (Figure 1B). However, no

exhibition and browning vascular were observed in the CT peach

branch at chilling stress (Figure 1B). Thus, we selected the peach

branch samples treated at -20, -25 and -30°C for 12 h to study the

changes in the transcriptome profiles and metabolites of peach trees

in response to chilling stress, and peach branch samples treated by

cold at -5°C for 12 h were used as the control.
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Metabolome profiling of peach in response
to cold stress

To analyze the metabolites between CT and CS peach genotypes

at the four different treatment temperature points, we performed

the UPLC-MS/MS analysis and identified a total of 1096

metabolites in all samples. They were classified mainly into the

categories of flavonoids, phenolic acids, alkaloids, amino acids and

derivatives, organic acids, terpenoids, lignans, coumarins and

tannins (Table S1). Principle component analysis (PCA) of the

metabolite profiles showed that the two cultivars were separated by

PC1 (35.02%) and that samples collected at different temperature

points were separated by PC2 (14.48%) (Figure 2A). It indicated

that low temperature had profound impacts on the compound

accumulation patterns in peach.

Next, we compared the metabolomic changes between CT and

CS peach branches in response to cold. Initially, we identified 237 (53

upregulated and 184 downregulated), 235 (44 upregulated and 191

downregulated), 175 (82 upregulated and 93 downregulated) and 218

(41 upregulated and 177 downregulated) differentially expressed

metabolites (DEMs) in A vs G, D vs K, E vs L and F vs M,

respectively (Figure 2B; Table S2). Altogether, we identified 410

DEMs between CT and CS and they were mainly involved in

flavonoids (128, 31.2%), phenolic acids (89, 21.7%), lipids (37,
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9.0%), amino acids and derivatives (35, 8.5%), alkaloids (21, 5.1%),

lignans and coumarins (11, 2.6%) and others (Figure 2C). Notably,

among the changed flavonoids, two flavanone types (naringenin and

homoeriodictyol), two flavone types (luteolin and apigenin) and one

chalcone type (naringenin chalcone) were found with higher

accumulation in CT than CS under cold stress (Figure 2D). In

addition, other metabolites, such as saccharides (D-galactose, D-

glucose, D-fructose, manninotriose, raffinose) and phenolic acids (p-

coumaric acid, caffeic acid, ferulic acid and coniferin), also exhibited

higher accumulation patterns in CT than CS (Figure 2D). Compared

with CT, CS accumulated higher contents of flavonols (e.g.,

quercetin-3-O-(6''-O-acetyl) glucoside, kaempferol-3-O-(6''-

malonyl) glucoside, quercetin-3-O-(6''-O-acetyl) galactoside)

(Figure S1). Since some flavonoids, saccharides, and phenolic acids

have been reported to be associated with plant cold tolerance, the

accumulation patterns of these substances in CT probably provided

strong cold tolerance capability.
Transcriptomic analysis of peach branches
exposed to cold stress

We next performed transcriptome sequencing to study the gene

expression changes in CT and CS peach branches under cold stress.

In total, we obtained 1093 million clean reads for all samples and

the quality control of each sample can be seen in Table S3. After the

reads were aligned to the peach reference genome and gene

sequences, the expression of all peach functional genes (25702

genes) for these samples can be found in Table S4. Like the

metabolomic analysis, PCA of gene expression profiles showed

that the samples from the different temperature points and their

genotypes could be separated by PC1 (26.58%) and PC2 (14.62%),

respectively (Figure 3A). Then, we identified 3998 DEGs between

CT and CS peach branch samples treated by cold at the four

temperature points for 12 h (Figure 3C), including 1893 (1005

upregulated and 888 downregulated), 1980 (1081 upregulated and

899 downregulated) , 1623 (948 upregulated and 675

downregulated) and 2246 (1147 upregulated and 1099

downregulated) DEGs in the pairwise comparisons of A vs G

(−5°C), D vs K (−20°C), E vs L (−25°C) and F vs M (−30°C),

respectively (Figures 3B; Table S5). It is notable that 660 genes were

deregulated in CT samples compared to CS samples at the four

temperature points (Figure 3C).
Identification of cold tolerance associated
genes in peach

Next, we compared the peach branch samples treated by

different temperature points to the control sample (-5°C) and

identified 5268 cold associated genes (CAGs) in CT. It showed in

Figure 3D that 223 DEGs were commonly deregulated when the

temperature dropped from -20 to -30°C (Table S6). In CS, we also

identified 3998 DEGs in the peach branch samples under chilling

stress and found 1991 DEGs shared by CT (Figure 3E; Table S7).

Further, we analyzed the transcription factors (TFs) in the 1991
A

B

FIGURE 1

Relative electrolyte leakage and cross-section photos of peach
branches under cold stress. (A) Relative electrolyte leakage (REL) of 1-
year-old branches of CT and CS under cold stress for 12 h. CT, ‘Donghe
No.1’ (cold-tolerant cultivar); CS, ‘21st Century’ (cold-sensitive cultivar,
CS). ns, not significant; *p < 0.05; **p < 0.01. The p values were
calculated using the t-test for the difference in electrolyte leakage rates
(ELR). (B) Cross-section photos of CT and CS under cold stress for 12 h.
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commonly deregulated genes of the two peach cultivars. It showed

that 147 differentially expressed TF genes in peach branch samples

in response to cold, including 23 AP2/ERF (15.65%), 18 NAC

(12.24%), 16 MYB (10.88%), 12 bHLH (8.16%), 9 WRKY (6.1%)

and 5 bZIP (3.40%) TFs (Table S7). Interestingly, we found seven

AP2/ERF (Prupe.2G289500, Prupe.4G176200, Prupe.5G141200,

Prupe.5G090100, Prupe.7G194400, Prupe.7G060700 and

Prupe.8G224600), five MYB (Prupe.1G039200, Prupe.1G111700,

Prupe.6G106200, Prupe.1G551400 and Prupe.8G223900), two

NAC (Prupe.4G143600 and Prupe.4G186800) and one bHLH

(Prupe.8G193900) with higher expression levels in CT than CS

(Figure S2), indicating their potential roles in the regulation of cold

tolerance associated genes in peach.

GO enrichment analysis of the 1991 common DEGs in CT and

CS can be seen in Figure S3. It showed that 56, 49 and 35 DEGs were
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significantly enriched in the biological processes of ‘regulation of

defense response’, ‘response to nitrogen compound’ and ‘hormone

biosynthetic process’, respectively. In addition, 64 and 63 DEGs

were enriched in the molecular functions of ‘oxidoreductase

activity’ and ‘transferase activity’, respectively. The 42 genes

enriched in the contents of sugars (hydrolase activity, hydrolyzing

N-glycosyl compounds) indicated that they might be functional for

peach branches in response to cold. Next, we analyzed the KEGG

pathways enriched by the common DEGs in CT and CS (Figure 3F)

and the top three significant enriched pathways were ‘galactose

metabolism’, ‘flavonoid biosynthesis’ and ‘phenylpropanoid

biosynthesis’. As an important branch of the starch and sucrose

pathway, genes involved in galactose biosynthetic were upregulated

by cold stress. These results indicate that both sugars and flavonoids

might play a key role in response to cold stress in peach.
A B

C D

FIGURE 2

Metabolomics analysis of CT and CS under cold stress. (A) PCA of metabolites derived from CT and CS under cold. (B) Significantly differentially
expressed metabolites (DEMs) between the CT and CS under cold stress. (C) Classification of DEMs in peach under cold stress. (D) The accumulation
pattern of flavonoids (green), saccharides (orange), and phenolic acids (yellow) in CT and CS under cold stress. Scaled values of the relative contents
of metabolites were used for z-scale normalization.
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Identification of key genes and modules in
response to cold stress by WGCNA

We next conducted WGCNA to identify co-expressed genes

from the common 1991 DEGs in CT and CS peach branches under
Frontiers in Plant Science 06
cold stress. A total of 9 modules of genes marked with different

colors were identified (Figures 4A, B). The module-trait relationship

analysis of the 24 samples revealed that saccharides (D-galactose, D-

mannose, manninotriose) and phenolic acids (coniferin) were

significantly associated with the genes in the turquoise module
A B

D

E F

C

FIGURE 3

Transcriptome analysis of CT and CS under cold stress. (A) PCA of the gene expression profiles of CT and CS under cold stress. (B) Numbers of
DEGs in in CT compared to CS under different temperatures. (C) Venn diagram of DEGs in CT compared to CS under different temperatures. (D)
Venn diagram of DEGs in CT under chilling stress (-20°C, -25°C and -30°C) relative to control (-5°C). (E) Venn diagram of DEGs identified in CT and
CS under chilling stress (-20°C, -25°C and -30°C) compared to control (-5°C). Blue: CT; green: CS. (F) KEGG pathway of the commonly deregulated
genes in CT and CS under cold.
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(R> 0.45, p < 0.01) and that flavonoids (prunetin, pratensein,

genistein and 2’-hydroxygenistein) were related to the black

module genes. According to the WGCNA edge weight values and

node scores, we showed the expression levels of top 30 hub genes in
Frontiers in Plant Science 07
the black module (Figure 4C). Notably, some genes involved in the

abiotic stress processes were identified, including receptor-like

protein kinase (HSL1, Prupe.1G444700), 2-hydroxyisoflavanone

dehydratase (HIDM, Prupe.1G155100), cytochrome P450
A

B

D

E F

C

FIGURE 4

WGCNA identifies key modules of hub genes of peach in response to cold. (A) Hierarchical cluster tree showed 9 modules of co-expressed genes in
peach under cold stress. (B) Heat map of correlations between metabolites and gene modules. Values in each cell represent the coefficient value of
correlation (upper) and the p-values (lower in parentheses) of the module-trait association. (C) Protein-protein interaction network of co-expressed
genes from the black module. (D) Protein-protein interaction network of co-expressed genes from the turquoise module. (E) Expression heat map
of genes in the black module. (F) Expression heat map of genes in the turquoise module. Scaled values were used to present the FPKM of genes in
the heat maps.
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(C7A22, Prupe.1G291800), beta-amyrin 28-oxidase (C7A15,

Prupe.4G103000), B3 domain-containing transcription factor

(NGA1, Prupe.2G201000), and calcium-transporting ATPase 9

(ACA9, Prupe.3G018900). The turquoise module was found to be

associated with the CT samples at -30°C (Figure 4B) and some TF

genes (e.g., RAP27, ERF095 and AGL82) and several stress-related

proteins/enzymes (e.g., HSP7C, WNK11, DCE1, MTDH, OPR2,

CYQ32, 75L17 and 73C11) (Figure 4D). Both black and turquoise

modules of genes were found to be upregulated in the CT samples at

chilling stress but hardly expressed in CS samples, indicating their

potential roles in cold tolerance of peach trees (Figures 4E, F).
Integrated analysis identifies important
pathways for peach under cold stress

We next performed the integrated analysis of the transcriptome

and metabolome results. Some common enriched pathways were

identified, such as ‘galactose metabolism’, ‘phenylpropanoid

biosynthesis’ and ‘flavonoids biosynthesis’. It showed that the

metabolites of galactose metabolism, such as galactose, raffinose,

manninotriose, glucose and fructose, were markedly increased in CT

than in CS under cold stress (Figures 2D, 5A). Notably, the metabolism

of sugar compounds was higher in CT than CS peach branches,

indicating their vital roles in the protection of peach trees against

cold stress. In addition, we found that the transcriptome profiles of

genes encoding structural enzymes in galactose biosynthetic pathways

were correlated with the accumulation pattern in the two peach

cultivars under cold stress (Figures 2D, 5B). For instance, three genes

encoding galactinol synthases (EC=2.4.1.123, GOLS) were significantly

upregulated in CT but not changed or only slightly upregulated in CS

under cold stress (Figure 5B). We also found three raffinose synthases

(RFS, also named as galactinol-sucrose galactosyltransferase,

EC=2.4.1.82) induced by cold at -20 and -25°C only in CT peach

branches (Figure 5B).

Likewise, we found that metabolite and gene expression profiles

of lignin biosynthesis and flavonoids metabolism were much higher

in CT than CS under cold stress (Figure 6). For example, coumaric

acid, caffeic acid, ferulic acid and coniferin involved in the lignin

biosynthesis, one of the main components of plant cell wall

responding to biotic and abiotic stresses, were higher in CT than

CS under cold stress (Figure 6A). Compared to CS, four key enzyme

genes involved in the ‘phenylpropanoid biosynthesis’, including

caffeic acid 3-O-methyltransferase (EC=2.1.1.68, COMT),

cinnamoyl-CoA reductase (EC=1.2.1.44, CCR), cinnamyl-alcohol

dehydrogenase (EC=1.1.1.195, CAD) and peroxidase 4

(EC=1.11.1.17, PER) were also found to be upregulated in CT in

response to cold, especially at -30°C (Figures 6B; Table S5). In

addition, we found one gene encoding flavonoid 3’-monooxygenase

CYP75B137 (EC=1.14.14.82, F3’H) involved in the flavonoids

biosynthesis was upregulated in CT but not changed in CS under

cold stress (Figure 6B). These results indicate that the metabolites

and genes involved in these pathways may play a vital role in

protection of peach against cold stress.
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RNA-seq data validation by qRT-PCR

We employed qRT-PCR to validate the expression patterns of

11 cold tolerance associated genes in the two peach cultivars under

cold stress (Figure 7). First, we compared the gene expression levels

in CT and CS. The expression of three genes (Prupe.1G111300,

Prupe.1G251600, Prupe.6G309400) involved in the galactinol

synthases, three genes (Prupe.3G289900, Prupe.4G001700,

Prupe.5G169000) involved in raffinose synthase, and two genes

(Prupe.5G075600, Prupe.3G0048300) involved in manninotriose

synthases were found to be higher in CT than CS by qRT-PCR,

similar to what was found in RNA-seq. Next, we compared the gene

expression patterns in one peach cultivar under different cold

temperatures and found that RNA-seq and qRT-PCR had

excellent agreement (R2 = 0.82663) (Figure 7). High agreement of
A

B

FIGURE 5

Integrated analysis of transcriptome profiles and metabolites of
peach under cold stress. (A) The schematic diagrams of galactose
metabolism pathway. Metabolites and structural enzymes are
indicated in red and blue, respectively. The left and right four parts
of the rectangles under the metabolites represented the expression
levels of DEGs/DEMs in CT and CS, respectively. (B) Heat map of
genes encoding the structural enzymes involved in the galactose
biosynthetic pathways. Scaled values of FPKM were used.
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A

B

FIGURE 6

DEGs and DEMs involved in phenylpropanoid biosynthesis of peach under cold stress. (A) The DEGs and DEMs involved in the lignin biosynthesis.
(B) The DEGs and DEMs involved in flavonoid metabolism. Letters in red and blue represent the metabolites and genes, respectively. The left and
right four parts of the rectangles near the genes/metabolites represented the expression levels of DEGs/DEMs in CT and CS, respectively.
FIGURE 7

qRT-PCR validation. For the bars with standard errors and broken lines, log2 value of gene changes and log2 fold change were used for qRT-PCR
and RNA-seq from three independent biological replicates (n = 3) using the 2 ‾DDCT method (left y-axis) and the FPKM value of RNA-Seq (right y-
axis), respectively. ns, not significant; *, p < 0.05; **, p < 0.01.
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RNA-seq and qRT-PCR in the gene expression patterns strongly

supported the genes associated with cold tolerance of peach.
Discussion

Cold stress can seriously affect the growth and development of

crops, resulting in a significant decline in crop yield, which is a

universal and concerned problem in the world. In this study, we

analyzed the transcriptomes and metabolomics of peach branches

to explore the potential links between the expression of cold

responsive genes and metabolites accumulation.
Galactose metabolism contributes greatly
to cold stress in peach

Soluble sugars, as osmotic protective substances in plants, can

improve the cell water potential, increase the cell water holding

capacity and reduce the cytoplasmic freezing point (Brizzolara et al.,

2018; Liang et al., 2022). Therefore, the change and range of soluble

sugar content under low temperature stress are directly related to

the cold tolerance of plants. In this study, the concentrations of

soluble sugars (e.g., galactose, manninotriose, raffinose, glucose and

fructose) were greatly increased in the two peach cultivars under

cold stress. Further, their contents were higher in CT than CS

(Figure 2D). It has been reported that chilling stress could cause a

significant increase in glucose and fructose concentrations in wild

strawberry (Shen et al., 2022). Similarly, we found that low

temperature can cause a sudden increase in the electrolyte leakage

rates (ELR) in CS rather than in CT under -20°C/12 h treatment

(Figure 1A). Thus, it was proposed that the higher accumulation of

soluble sugars may function in maintaining the stability of cell

membrane structure in CT, which facilitated to its strong cold-

tolerance ability. In addition, the accumulation patterns of

galactose, manninotriose, raffinose, glucose and fructose between

CT and CS correlated well with the expression profiles of their

structural enzyme genes in the galactose metabolism pathway

(Figure 5). Studies have shown that overexpression of cold-

inducible galactinol and raffinose synthase increased the levels of

galactinol and raffinose and further conferred higher tolerance to

cold stress in transgenic rice (Shimosaka and Ozawa, 2015).

Meanwhile, exogenous replenishment of raffinose could recover

the cold tolerance in trifoliate oranges by the modulation of

raffinose synthesis (Khan et al., 2021).These results indicated that

genes and metabolites involved in galactinol metabolism may play a

key role in cold tolerance of peach.

Transcription factors (TFs) have been reported to play a

molecular switch role of many genes in plants under various

environmental stresses (biotic and abiotic) (Rehman et al., 2021;

Liu et al., 2022). As one of the most critical TFs functioning in the

low-temperature signal transduction, C-repeat binding factors

(CBFs) regulate the downstream gene expression, promote the

synergy of multiple functional genes, and enhance the

adaptability and resistance of plants (Gilmour et al., 2000; Liu
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et al., 2022). It has been reported that overexpression of CBFs can

stimulate the synthesis of soluble sugars (e.g., sucrose, raffinose,

glucose and fructose) and improve the cold tolerance of

pomegranate (Wang et al., 2022). In this study, we identified

three CBF genes (Prupe.4G242700, Prupe.5G090100 and

Prupe.5G090000) were significantly upregulated in peach

branches under cold stress (Table S5). In addition, CBF1, CBF2

and CBF3 are rapidly induced in response to low temperature,

encode closely related AP2/ERF DNA-binding proteins that

recognize the C-repeat (CRT)/dehydration-responsive element

(DRE) DNA regulatory element present in the promoters of CBF-

regulated genes in Arabidopsis thaliana (Park et al., 2015). We

identified two genes encoding AP2/ERF (Prupe.2G220100 and

Prupe.1G037700) domain-containing proteins in the turquoise

module (Figure 4D, F). The AP2/ERF TFs have been reported to

play a regulatory role in plants in response to abiotic stress (Xie

et al., 2022; Yu et al., 2022). Overexpression of TERF2/LeERF2 TF

in tomato and tobacco significantly increased their cold tolerance

capacity (Zhang and Huang, 2010). Moreover, AP2/ERF TFs were

highly expressed in peach with strong cold resistance under low

temperature stress (Niu et al., 2020). These findings suggest AP2/

ERF TFs closely related to the capacity of cold tolerance of peach,

especially under chilling stress.

Several studies have shown that the abiotic stress tolerance of

some plants is improved by the synthesis of protective metabolites

(e.g., galactinol and raffinose) via the overexpression of heat shock

TFs (HSFs) (Nishizawa et al., 2006; Lang et al., 2017). In the present

study, galactinol and raffinose were specifically accumulated in CT

under cold stress (Figures 2D, 5A). In addition, the gene expression

of HSFs was significantly upregulated by cold and higher in CT than

CS (Table S4, S5). Plant HSFs, as a kind of crucial regulators in

network regulation, can respond to multiple biotic and abiotic

stresses and confer various tolerances in plants. Therefore, it was

proposed that the high expression of CBFs and HSFs in CT could be

more beneficial to cope with cold stress.
Lignin biosynthesis plays key roles in cold
stress in peach

Phenylpropanoid biosynthesis is one of the most important

metabolisms in plants, generating an enormous array of secondary

metabolites, such as lignin and flavonoid (Dong and Lin, 2021).

Lignin in plants is synthesized via the lignin specific biosynthesis

pathway which is a downstream pathway of the common

phenylpropanoid pathway, and many enzymes are involved in

this process (Figure 6). For instance, the higher expression of

PALs (PUMP6L and V1SQAY) in cold-tolerant peanut could

enhance the accumulation of coniferin accumulation and cold

tolerance (Wang et al., 2021). In this study, we found that four key

enzyme genes (Prupe.5G134400, COMT; Prupe.5G004900, CCR;

Prupe.1G565200, CAD; Prupe.3G115300, PER) from the

phenylpropanoid metabolism and downstream G-lignin

biosynthesis were more abundant in CT than in CS (Figure 6;

Table S7). COMT is a key enzyme of lignin synthetic pathway
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which catalyzes the caffeic acid to generate ferulaic acid. In

addition, CCR is the first key enzyme of lignin specific pathway

and catalyzes the conversion of ferulaic acid to coniferin.

Meanwhile, WGCNA analysis showed that CAD was relatively

higher in CT than CS and identified as one of the hub genes in the

turquoise module (Figures 4D, 5F). Overall, high expression of

COMT, CCR, CAD and PER genes in CT could drive more carbon

flux into the phenylpropanoid pathway and might be associated

with the accumulation of coniferin and the enhancement of

cold tolerance.
Flavonoids biosynthesis response to cold
stress in peach

Flavonoids are the secondary major metabolites derived from

the plant phenylpropanoid pathway that plays an important role

during the plant development (Wang et al., 2020). They can affect

the basic physiological metabolism, stress, and disease resistance

response in plants. Studies have demonstrated that flavonoids play

efficient roles in antioxidation and ROS scavenging. Under cold

stress, 19 flavonoids were upregulated in the freezing-tolerant

kiwifruit but not changed in freezing-sensitive kiwifruit (Sun et al.,

2021). The over expression of flavonoid synthesis associated genes

in plants can promote the accumulation of flavonoids and further

significantly enhance the resistance of plants to environmental

stresses. The C4H, a member of the cytochrome P450

monooxygenase superfamily, has been reported to controll the

synthesis of p-coumaric acid from transcinnamic acid (Chen et al.,

2007). The CHS catalyzes the condensation of malonyl-CoA and

4-coumaroyl-CoA to naringenin chalcone, which is the substrate

for CHI and converted to naringenin (Rani et al., 2012). At the

meantime, lack of F3’5’H in grapes can restrict the presence of

quercetin, kaempferol, myricetin and syringetin derivatives (Bellés

et al., 2008). In cucumber, C4H has been reported to be involved

in the drought defense (Jeong et al., 2006). The CHS from

Abe lmoschus escu lentus can regu la te the flavono id

accumulation and abiotic stress tolerance in transgenic

Arabidopsis (Wang et al., 2018). In this study, we found

flavonoid 3’-monooxygenase (EC=1.14.14.82, F3’H) upregulated

in CT under cold stress but not changed in CS peach branches at

-20°C, indicating that F3’H may promote the accumulation of

flavonoids and enhance the cold tolerance of peach (Figure 6). It

has been reported that cold stress could lead to a significant

increase in proteins (e.g., anthocyanidin reductase and flavonoid

3' hydroxylase) related to flavonoid biosynthesis in CT. Thus, it

was proposed that the higher expression of flavonoid 3'-

monooxygenase probably led to maintain a higher level of

flavonoid 3' hydroxylase protein in CT, which suggested that

they might play roles in mitigating the cold stress. Nagamatsu

and colleagues reported that the overexpression of F3’H gene can

increase the content of quercetin with antioxidant activity and

improve the tolerance of soybean to environmental stress

(Nagamatsu et al., 2007). The F3’H gene was also identified with

higher expression in dormancy (cold-tolerant) variety than non-
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dormancy (cold-susceptible) variety of alfalfa under low

temperature (Liu et al., 2022). Simultaneously, exogenous

application of fulvic acid can improve the drought stress in tea

by increasing F3’H activity, and enhance the yield of flavonoids,

including kaempferol, quercetin and myricetin (Sun et al., 2020).

Our results further demonstrated that the upregulation of some

key biosynthetic genes and metabolites involved in flavonoids may

play an essential role in response to cold stress in peach.
Conclusion

In the present study, we analyzed the metabolomic and

transcriptomic profiles of CT and CS peach branches exposed to

cold stress and identified a set of important cold-responsive genes

and metabolites. Soluble sugars, flavonoids, and lignin, such as

galactose, manninotriose, raffinose, glucose, homoeriodictyol,

luteolin and coniferin, were found to play important roles in 1-

year-old peach branches in response to cold. We found that the

galactose metabolism, phenylpropanoid biosynthesis and

flavonoids biosynthesis pathway were associated with the cold

tolerance of peach. This is the first time to study the

metabolomics and transcriptomics of peach branches under cold

stress. The findings will improve our understanding towards the

molecular regulation mechanisms of cold defense in peach and

other plants.
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