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Roots are sensors evolved to simultaneously respond to manifold signals, which

allow the plant to survive. Root growth responses, including the modulation of

directional root growth, were shown to be differently regulated when the root is

exposed to a combination of exogenous stimuli compared to an individual stress

trigger. Several studies pointed especially to the impact of the negative

phototropic response of roots, which interferes with the adaptation of

directional root growth upon additional gravitropic, halotropic or mechanical

triggers. This review will provide a general overview of known cellular, molecular

and signalling mechanisms involved in directional root growth regulation upon

exogenous stimuli. Furthermore, we summarise recent experimental approaches

to dissect which root growth responses are regulated upon which individual

trigger. Finally, we provide a general overview of how to implement the

knowledge gained to improve plant breeding.
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1 Introduction

Roots evolved to grow into the soil, sense environmental changes and adjust their

architecture and growth direction to maximize water and nutrient uptake and avoid

obstacles and toxic compounds (De Pessemier et al., 2013; Pierik and Testerink, 2014; Kolb

et al., 2017; Gupta et al., 2020; Zhang and Friml, 2020; D E Lima et al., 2021; Karlova et al.,

2021; Leftley et al., 2021; González-Garcıá et al., 2022). As the so-called hidden half of the

plant, roots are not easy to phenotype under natural growth conditions (Piñeros et al.,

2016; Atkinson et al., 2019). Very informative but methodological demanding is to track
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root growth in soil under controlled conditions, which includes root

visualization via X-ray computed tomography (X-ray CT) or other

imaging techniques (Mairhofer et al., 2013; Mairhofer et al., 2017;

Atkinson et al., 2019; Handakumbura et al., 2021; Doussan, 2022).

Evaluation of root traits in 3D, including root length, the outgrowth

of lateral roots, and overall response to soil density, allow the

studying of fine modulation of root growth plasticity directly in soil

(Rogers et al., 2016; Atkinson et al., 2019; Freschet et al., 2021).

Growing roots under controlled conditions in soil also allows to

perform analytical studies after the application of defined stress

treatments or changes in nutrient composition, to obtain detailed

information about changes in the transcriptome, proteome,

phosphoproteome, metabolome, root exudates, or root-microbe

interaction (Weckwerth, 2008; Weckwerth, 2011; Ghatak et al.,

2016; Ghatak et al., 2017; Chen and Weckwerth, 2020; Ghatak et al.,

2020; Weckwerth et al., 2020; Ghatak et al., 2021; Ghatak et al.,

2022a). On the other hand, tracking of immediate adaptation of

directional root growth, root morphological changes, or protein

trafficking is not possible when the root is hidden in the soil and

requires depending on the studied trigger individual experimental

setups (Downie et al., 2012; Yokawa et al., 2014a; Ma et al., 2019;

Lacek et al., 2021; Taylor et al., 2021; Mehra et al., 2022). Recently,

the impact of direct root illumination on root growth plasticity and

function and seedlings with roots exposed to light and shaded were

comprehensively studied (Xu et al., 2013; Silva-Navas et al., 2015;

Silva-Navas et al., 2016; Silva-Navas et al., 2019; Li et al., 2020;

Garcıá-González et al., 2021a; Garcıá-González et al., 2021b; Lacek

et al., 2021; Cabrera et al., 2022; Garcıá-González et al., 2022).

Seedlings grown on agar-supplemented growth medium can be

grown with roots shaded from direct illumination, and the

commercially available so-called D-root system is used by several

laboratories (Silva-Navas et al., 2015). The D-root system enables

growing roots in controlled laboratory conditions, shaded from

direct illumination, and keeping the shoot illuminated, which

reduces plant stress (Silva-Navas et al., 2015; Lacek et al., 2021;

Cabrera et al., 2022). Direct root illumination diminishes nutrient

uptake and distribution, alters root system architecture and shoot-

root communication, and results in retained root growth adaptation

upon additive stress exposure like salt and osmotic pressure (Silva-

Navas et al., 2015; Cabrera et al., 2022). Furthermore, direct root

illumination significantly enhances root growth deviation from

vertical, especially when shootward auxin transport is impaired

(Garcıá-González et al., 2021a; Lacek et al., 2021; Garcıá-González

et al., 2022). Moreover, direct root illumination delimits the ability

to respond to unilateral salt stress efficiently, negative halotropism,

and towards higher water gradient, positive hydrotropism (Yokawa

et al., 2014a; Wan et al., 2019; Li et al., 2020). This review will

discuss these additive stress responses and involved metabolic and

highly conserved signalling pathways controlling directional root

growth and metabolism. These processes are decisive for the root

belowground performance, determine the shoot-root

communication and have substantial implications for

understanding plant productivity and performance under harsh

environmental conditions. Consequently, it is necessary to study

these phenomena to derive essential plant breeding strategies and

develop a sustainable agricultural process based on a high diversity
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of germplasm collections (Weckwerth, 2011; Ghatak et al., 2022a).

We will discuss this in the last chapter.
2 Root tropism and directional
root growth

The ability of plants to adjust the direction of their growth

allows their survival in a continuously changing environment

(Figures 1A–C) (Pierik and Testerink, 2014; Lacek et al., 2021).

Roots evolved as underground organs embedded in the soil, a

heterogeneous mixture regarding nutrient composition and

structure, which results in unilateral stimuli that can change the

growth direction of the root tip, also known as tropism (Figures 1C,

D) (Kolb et al., 2017; Silva-Navas et al., 2019; Muthert et al., 2020).

Altogether, roots of higher plants are susceptible to their

environment and continuously perceive signals, including

information about gradients of nutrients and water, changing

temperature and light, and the occurrence of toxins and

pathogens. All exogenous stimuli activate the root interwoven

signalling cascades that modulate growth speed and direction

(Barrada et al., 2015; Miotto et al., 2021; Pierik et al., 2021; Retzer

and Weckwerth, 2021; van Gelderen et al., 2021). Although many

molecular key players have been described over the decades, a

comprehensive understanding of how directional root growth is

orchestrated under different growth conditions remains elusive

(Thompson and Holbrook, 2004; Migliaccio et al., 2009; Wyatt

and Kiss, 2013; Lopez et al., 2014; Retzer et al., 2014; Vandenbrink

and Kiss, 2019; Muthert et al., 2020).
2.1 Direct root illumination results in
growth deviation and impairment as
stress reaction

Besides root gravitropism, the impact of direct root illumination

is currently studied intensively, and the interplay between

gravitropism and phototropism of the root was recently

extensively reviewed by Cabrera et al. (2022) and Lacek et al.

(2021), therefore we will only highlight the results and

experimental setups used in the key studies (Xu et al., 2013;

Yokawa et al., 2014a; Silva-Navas et al., 2015; Silva-Navas et al.,

2016; Silva-Navas et al., 2019). Photoreceptors are expressed along

the root, whereby blue light receptors are located at the transition

and elongation zone, and red light receptors in the meristematic

zone, which leads to different root growth responses depending on

the wavelength a root is exposed to (Dyachok et al., 2011; Mo et al.,

2015; Silva-Navas et al., 2015). Blue light perception in the

elongation zone modulates among others the abundance of the

auxin efflux carrier PIN-FORMED 2 (PIN2) at the plasma

membrane (PM), by orchestrating its phosphorylation status,

which was associated with PIN2 stabilization at the PM and

reduced endocytosis and transport towards the lytic vacuole for

its degradation (Laxmi et al., 2008; Wan et al., 2012; Retzer et al.,

2019). Furthermore, direct root illumination with blue light
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FIGURE 1

Root growth direction and pattern are modulated by manifold stimuli. (A) Roots evolved to steer growth direction along the gravity vector (g), as
indicated by the red arrow. Although gravity is a continuous and constant predominant force, the soil is a heterogeneous mixture, and other
exogenous stimuli result in root growth deviation. (B) Roots are exposed to diverse mechanical/touch stimuli,indicated by the red arrows, depending
on the growth medium strength, and their response to the mechanical pressure defines root growth pattern. (C) The soil composition is variable,
and nutrients, water, indicated by the black arrows, and harmful substances are randomly distributed, wherefore the root developed to grow towards
(positive tropism) or away (negative tropism) from distinct stimuli. (D) Soil can be either loose, compact or exhibit impenetrable obstacles. Roots
must adjust their root growth behaviour accordingly to efficiently explore their surroundings and ensure nutrient uptake and plant productivity. The
root adjusts root growth behaviour to reduce soil strength. In loose soil the root is circumnutating, whereby it moves light particles aside while
manoeuvring through the soil. When the soil becomes more compact the root needs to change root properties to grow through dense areas by
changing its mechanical properties of the very root tip, which enhance the efficiency of soil penetration.
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correlated with an enhanced elongation rate of the root and was

therefore named ‘light escape mechanism’ (Yokawa et al., 2014a;

Silva-Navas et al., 2016; Yokawa and Balusǩa, 2016; Yokawa et al.,

2016). Several studies investigated the putative molecular

mechanisms that orchestrate negative root phototropism, and

similar to other responses, an intact and flexible cytoskeleton is

fundamental, and actin-filament bundling was shown to support

root growth away from the light source (Dyachok et al., 2011;

Garcıá-González and van Gelderen, 2021).

The root experiences direct root illumination as stress, and

responds with elevated REACTIVE OXYGEN SPECIES (ROS)

levels (Yokawa et al., 2014a; Yokawa et al., 2014b; Silva-Navas

et al., 2015; Yokawa et al., 2016). ROS accumulation in the

meristematic zone is associated with a reduced proliferation rate

and, consequently, reduced total root length (Yokawa et al., 2014b;

Yokawa et al., 2016). On the other hand, illumination of the root at

the position of the transition zone and early differentiation zone

stimulates cell elongation (Silva-Navas et al., 2016). To

counterbalance the light-induced ROS production, flavonoid

synthesis is upregulated to act as scavengers, which alters

additionally cellular responses of illuminated roots (Silva-Navas

et al., 2016; Cabrera et al., 2022). Under unilateral illumination

with blue light, cells closer to the light source accumulated

flavonoids, and asymmetric cell elongation led to root bending

movement away from the light (Silva-Navas et al., 2016).

Plant responses to enhanced illumination are also overlapping

with temperature sensing, and also elevated temperatures result in

root growth arrest and delimited ability to expand root surface,

which correlates with reduced nutrient uptake (Calleja-Cabrera

et al., 2020; Ghatak et al., 2020; Kim et al., 2020; D E Lima et al.,

2021; González-Garcıá et al., 2022). To study thermal-related

stress responses of roots a novel device was recently introduced

by González-Garcı́ a et al. (2022), namely the TGRooZ device that

allows to apply temperature gradients to roots grown on agar

supplemented medium and additionally shade them from direct

illumination (González-Garcıá et al., 2022). Even if the air is

heated up, below ground temperatures drop gradually when the

root grows deeper into the soil, which allows efficient root system

architecture establishment compared to plants with shoots and

roots exposed to the same elevated temperature (González-Garcıá

et al., 2022). Furthermore, the comparison of roots grown in

constant heat to those grown along a temperature gradient in the

TGRooZ device showed that constant heat stress applied to the

root reduces especially phosphate uptake and also delimits

beneficial bacterial community assembly (González-Garcıá et al.,

2022). Grafting experiments demonstrated the importance of

controlled root-soil interaction, which attracts beneficial

microbes and delimits pathogen accumulation (Cardarelli et al.,

2020; Muramoto et al., 2022). How plant–microbe interactions

improve crop productivity and plant health is currently

intensively studied, whereby root exudate secretion plays an

essential role in the regulation of the rhizosphere microbiome

composition, which is in more detail discussed in chapter 5

(Handakumbura et al., 2021; Ghatak et al., 2022a).
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2.2 Root gravitropism and response to
mechanostimulus are challenging
to dissect

Konstantinova et al. (2021), thoroughly reviewed current

knowledge around root gravitropic regulation (Konstantinova

et al., 2021). Early studies of auxin transporter mutants that were

selected because of their agravitropic roots indicated an essential

role of auxin for directional root growth adaptation, which was

confirmed in manifold follow-up studies (Okada and Shimura,

1990; Luschnig et al., 1998; Swarup et al., 2005; Abas et al., 2006;

Retzer et al., 2017; Retzer et al., 2019). Further experimental

evidence for the role of auxin during root growth adaptation was

delivered by visualization of asymmetric auxin gradients during the

gravitropic response in the epidermal cells of the root tip, which are

lost in the auxin transporter mutants (Friml et al., 2002;

Ottenschläger et al., 2003; Abas et al., 2006; Wisniewska et al.,

2006; Swarup and Bennett, 2009). Beside auxin gradients,

modulation of signalling waves along the root tip of other

messenger molecules was investigated. Models including calcium

spikes and pH changes along the root tip are currently discussed to

initiate immediate root growth changes through environmental

stimuli, and intensive studies are ongoing to dissect the order of

molecular events (Cole and Fowler, 2006; Barbez et al., 2017;

Fendrych et al., 2018; Dubey et al., 2021; Li et al., 2021).

Gravitational biology is a part of the so-called mechanobiology

(van Loon, 2009). According to van Loon (2009), there is no

biochemical adaptation without prior mechanical change (van

Loon, 2009). In the case of roots responding to gravitropism it is

suggested that asymmetric auxin distribution results in asymmetric

cell expansion, which changes the root growth path by modulation

of mechanical properties of individual cells (Konstantinova et al.,

2021; Jonsson et al., 2022). Among the first publications describing

root tropisms, gravitropism was suggested as a modification of an

ancestral plant mechanical sensing system (Trewavas and Knight,

1994). Furthermore, earlier studies of directional root growth were

dedicated to distinguishing responses to gravistimulus and

mechanostimulus. It became apparent that the gravitropic

response and adaptation to mechanical or touch stimulus are

challenging to dissect (Figures 1A, B) (Massa and Gilroy, 2003;

Najrana and Sanchez-Esteban, 2016; Yan et al., 2018; Tojo et al.,

2021). It requires exposing plants to microgravity in special

centrifuges on earth or by performing experiments during

spaceflights (Vandenbrink et al., 2014; Najrana and Sanchez-

Esteban, 2016; Muthert et al., 2020; Chin and Blancaflor, 2022;

Herranz et al., 2022). Experimental setups that combined the testing

of responses to direct root illumination under microgravity, showed

that reduced gravity led to a decrease of meristem activity, as well

altered phototropic responses, which is reversible when gravity is

re-established (Valbuena et al., 2018; Herranz et al., 2019;

Villacampa et al., 2022). RNAseq and metabolomic analysis of

plants exposed to microgravity in combination with direct root

illumination further confirmed the importance of cytoskeleton

filament bundling, membrane and cell wall reorganization for
frontiersin.org
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efficient tropistic responses (Millar and Kiss, 2013; Herranz et al.,

2019; Shymanovich et al., 2022).
2.3 Hydrotropism and halotropism are
linked to the cellular stress sensor SnRK2

Due to their sessile lifestyle plants evolved regulatory kinase

families, SNF1-RELATED PROTEIN KINASE 2 and 3 (SnRK2 and

3), which consist of multiple members, whereby the abscisic acid

(ABA) sensitive SnRK2.2, SnRK2.3 and SnRK2.6 were manifold

linked to directional root growth control (Kulik et al., 2011; Crepin

and Rolland, 2019; Yang et al., 2019). ABA signalling is crucial to

modulate plant growth and function under osmotic stress and

drought, and also root growth deviation during hydrotropic and

halotropic responses (Dietrich et al., 2017; Belda-Palazón et al.,

2020; Kawa et al., 2020; Karlova et al., 2021; Belda-Palazón

et al., 2022).

Dietrich et al. (2017), showed that SnRK2.2 expression in the

root cortex is sufficient to drive directional root growth towards

higher water potential, which corresponds to the crucial role of

abscisic acid (ABA) dependent SnRK2s that underpin root growth

adjustment under drought (Dietrich et al., 2017; Belda-Palazón

et al., 2020; Belda-Palazón et al., 2022; Mehra et al., 2022).

Hydrotropism was considered as an active form of directional

root growth regulation to initiate drought avoidance and is known

to be affected by gravity and direct root illumination (Miyazawa

et al., 2011; Iwata et al., 2013). So far it was shown that ABA and

cytokinins fundamentally modulate root responses to steer

hydrotropic root growth, which counteracts other exogenous

stimuli, including gravity, light or touch (Cassab et al., 2013; Li

et al., 2020). Importantly, direct root illumination interferes

negatively with root hydrotropism, whereby transcriptomic

analysis indicates decreased expression of genes involved in

starch metabolism in the root tip of dark-grown roots (Li et al.,

2020). This implies that hydrotropism counteracts gravitropism

by decreasing amyloplast content in the columella, but further

investigations are required to prove this hypothesis (Li

et al., 2020).

Negative root halotropism was also linked to the action of ABA-

sensitive SnRK2 orchestrated signalling pathways, whereby

SnRK2.6 was found to phosphorylate a microtubule-associated

protein, SP2L, which results in anisotropic cell expansion and

root twisting in the transition zone (Yu et al., 2022). Also,

halotropism was shown to be slower in illuminated roots than

shaded roots, but molecular cues are still elusive (Yokawa et al.,

2014a). It is known that SnRK2 act at the cross-road of

developmental and stress adaptation processes, and they

interconnect not only signalling pathways modulated by different

phytohormones, but also those dependent on signalling molecules

like ROS or Ca2+ and energy homeostasis (Yang and Guo, 2018;

Crepin and Rolland, 2019; Jamsheer, 2019; Signorelli et al., 2019;

Yang et al., 2019).
Frontiers in Plant Science 05
3 Evolutionary conserved cellular
sensors coordinate plant
stress responses

Plants, like all organisms, regulate resource and energy

homeostasis at the cellular level via two evolutionary conserved

protein complexes, namely TARGET OF RAPAMYCIN (TOR) and

SnRK1 (Mair et al., 2015; Nukarinen et al., 2016; Roustan et al.,

2016; Jamsheer, 2019; Margalha et al., 2019; Ryabova et al., 2019;

Fichtner et al., 2020; Jamsheer et al., 2021). The subunit

composition of both complexes and their interactions with each

other were thoroughly discussed in recent publications. Therefore,

we will briefly summarize in this review the importance of both

complexes for stress growth adaptation (Henriques et al., 2014;

Broeckx et al., 2016; Margalha et al., 2016; Roustan et al., 2016;

Salem et al., 2018; Jamsheer, 2019; Retzer and Weckwerth, 2021).

Plants are divided into the aboveground-located shoot and the

belowground-located root. The shoot generates energy in the form

of carbohydrates over photosynthesis, wherefore its productivity

primarily depends on light quality and intensity (Pierik and

Testerink, 2014; Fichtner et al., 2020; Miotto et al., 2021; Retzer

andWeckwerth, 2021). Furthermore, shoot activity also depends on

the delivery of water and nutrients acquired from the root (Grierson

et al., 2014; Wu et al., 2019; Karlova et al., 2021; Retzer and

Weckwerth, 2021; Ghatak et al., 2022a). The shoot and the root

exchange signals and compounds constantly to ensure healthy

growth and coordinated reorganization of plant architecture.

TOR and SnRK1 play a crucial role at the cellular and subcellular

levels to ensure efficient plant shape and function adjustments to

exogenous and intrinsic signals (Pérez-Pérez et al., 2010; Mair et al.,

2015; Pedrotti et al., 2018; Wurzinger et al., 2018; Fürtauer et al.,

2019). TOR orchestrates plant development and growth processes

under favourable growth conditions, whereas SnRK1 inhibits TOR

action when energy and resource levels are low, or other stresses

endanger plant growth (Figure 2A) (Nukarinen et al., 2016; Crepin

and Rolland, 2019; Ryabova et al . , 2019; Retzer and

Weckwerth, 2021).

SnRK1 acts as a central hub on the cellular level to merge

information about energy, nutrient and stress at the whole plant

level and activates signalling pathways to adapt transcriptome,

proteome and metabolome to maintain cellular mechanisms

when resources are limited (Baena-González et al., 2007;

Nukarinen et al., 2016; Weiste et al., 2017; Ramon et al., 2019;

Belda-Palazón et al., 2022; Van Leene et al., 2022; Son et al., 2023).

As demonstrated by Nukarinen et al., 2016 (Nukarinen et al., 2016)

and other studies, SnRK1 is well known for its TOR-antagonistic

role of coordinating shoot function, shoot-root communication and

metabolomic balance under less favourable growth conditions

(Nukarinen et al., 2016; Ramon et al., 2019; Van Leene et al.,

2019; Sun et al., 2021; Belda-Palazón et al., 2022). Overall, SnRK1

activity is required to regulate transcriptional and translational

cellular profile switches, among others, by fine-tuning the

availability and signalling of phytohormones (Baena-González
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and Hanson, 2017; Jamsheer et al., 2021; Belda-Palazón et al., 2022).

Furthermore, SnRK1 orchestrates resources breakdown of existing

resources, like starch by amylases or other cellular components by

autophagy (Baena-González et al., 2007; Signorelli et al., 2019).

Overexpression of the catalytic subunit of SnRK1 results in

increased autophagy in the root epidermis (Batoko et al., 2017;

Soto-Burgos and Bassham, 2017). Initiation and modulation of

autophagy in plants are under the tight control of both cellular

energy censors, SnRK1 and TOR, whereby TOR itself is inhibited by

SnRK1 when cellular re-arrangement is required. TOR activity

inhibition is enhanced when environmental signals are

additionally perceived and transmitted by SnRK2-dependent

pathways (Figure 2B) (Pu et al., 2017; Huang et al., 2019;

Henriques et al., 2022). The complex interactions of SnRK1,

SnRK2, TOR and autophagy that maintain cellular function

under different growth conditions, which underpins plant growth

and fitness, are currently intensively studied and will provide a

better understanding of the environmental impact on plant

productivity (Hill et al., 2013; Barrada et al., 2015; Li et al., 2018;

Ghatak et al., 2022a; Kashkan et al., 2022).
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4 Dissection of interactions of
metabolomic key-regulators in dark-
grown roots is the next step to
understanding individual root growth
responses to exogenous stimuli
Millar and Kiss (2013), studied metabolomic responses during

different tropistic responses, and showed that certain metabolomic

pathways are differently regulated compared to unstimulated

growth (Millar and Kiss, 2013). The upregulation DARK

INDUCIBLE 6 (ASN1/DIN6), which is an established marker to

track the activity of the central cellular energy sensor SNF1-

RELATED PROTEIN KINASE 1 (SnRK1), during gravitropic and

phototropic responses is highly interesting, as well the

downregulation of the CHALCONE SYNTHASE (ATCHS/CHS/

TT4) that is a key enzyme involved in the biosynthesis of flavonoids

(Baena-González et al., 2007; Millar and Kiss, 2013; Retzer and

Weckwerth, 2021; Peixoto and Baena-González, 2022). Integrating
A B

FIGURE 2

(A) Intracellular molecular sensors evaluate perceived signals against available resources, resulting in cellular remodelling to balance plant growth
versus stress responses. Mechanical and biochemical responses at the cellular level orchestrate plant shape and function and modulation of cell
expansion during tropistic responses. Exogenous stimuli generate signals that are transmitted by signalling molecules inside the cell, where a set of
kinases, known as molecular gatekeepers, steer the responses. Under beneficial growth conditions TARGET OF RAPAMYCIN (TOR) positively
regulates plant growth processes. When energy, in the form of sugars or other nutrients is delimited, SNF1-RELATED PROTEIN KINASE 1 (SnRK1)
represses TOR activity to reorganize resource availability in the cell, which may also include enhancement of autophagy and alter cell activity to
counteract the stress trigger. Individual environmental signals activate kinases from the SnRK2 family, which results in a tight interplay with SnRK1 to
delimit TOR activity further. ABA-activated SnRK2s initiate cellular events that allow the plant to cope with harsh environmental conditions like
drought and further regulate root hydrotropism (described under 2.3). (B) The soil is a heterogenous mixture, regarding its nutrient composition as
well as its mechanical properties, therefore roots evolved to respond to manifold exogenous signals simultaneously to adjust growth direction and
surface enlargement. Roots grow away from harmful conditions and around obstacles they cannot penetrate, but adjust root growth direction
towards nutrients and water. TOR-SnRK1-SnRK2 interaction modulates the adjustment of root growth to a plethora of simultaneously occurring
signals to ensure efficient plant growth. The complexity of their interplay is described in chapter 3.
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multiple signalling pathways triggered by exogenous stimuli

requires the interplay of molecular sensors at the cellular level

(Nukarinen et al., 2016; Wurzinger et al., 2017; Retzer and

Weckwerth, 2021). Cellular mechanical and biochemical

responses are modulated differently under changing growth

conditions, which define the availability of resources and energy

(van Loon, 2009; Clark et al., 2021; Lacek et al., 2021; Retzer and

Weckwerth, 2021; Aronne et al., 2022; Montes et al., 2022). The

combination of roots shaded from direct illumination, by using the

D-root system, with simulated microgravity conditions showed that

root illumination enhances root growth deviation more, compared

to roots grown shaded from light (Villacampa et al., 2022).

Villacampa et al. (2022), showed that mutants with reduced

flavonoid synthesis display even more enhanced randomness of

directional root growth when they experience microgravity

(Villacampa et al., 2022). These results correlate with experiments

performed in the lab at earth gravity conditions (1g) by Silva-Navas

et al. (2016), showing how different local flavonoid and ROS

accumulation occur in roots exposed to different illumination

regimes (Silva-Navas et al., 2016). The role of flavonoids, which

belong to polyphenolic secondary metabolites, in crosstalk with

ROS signalling in distinct root zones was previously discussed

intensively in several studies and reviews, and it is obvious that

their abundance, distribution and function is extremely variable

depending on growth conditions (Yokawa et al., 2014b; Lacek et al.,

2021; Cabrera et al., 2022). Furthermore, the complex interaction of

flavonoid and ROS signalling with other pathways, especially those

including phytohormones, is heavily investigated and not without

controversial outcomes, which again demonstrates the complexity

of plant responses to the sum of experienced exogenous stimuli

(Lacek et al., 2021).
5 How important are metabolic and
signalling control events in root
tropism for plant productivity,
resilience and sustainable crop
production systems?

Plants possess rapid root growth regulation to manoeuvre

efficiently through heterogenous soi l upon manifold ,

simultaneously occuring exogenous triggers, and this is of high

agronomical importance. Growth conditions modulate plant traits,

including metabolism. Recently modulation of plant growth

metabolism was described as a desirable target to ensure

sustainable agriculture (Li et al., 2018). The root–shoot

communication system controls processes like mineral and

nutritional supply, grain filling, biotic and abiotic stress resistance

and is decisive for plant productivity and crop production systems.

Highly conserved metabolic and signalling pathways play a crucial

role (Li et al., 2017; Chen and Weckwerth, 2020). Root growth
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depends on sugars transported from the shoot, whereby under

drought conditions, SnRK2.2 enhances sugar transport from the

shoot towards the root by enhancing transport activity via

phosphorylation of SWEET11 to promote root branching (Chen

et al., 2022). This is favourable when photosynthesis is highly active,

whereas when the plant’s energy resources are depleted, SnRK1 was

reported to adjust sugar metabolism to maintain root branching

(Muralidhara et al., 2021). Furthermore, primary root meristem

activity is repressed under drought stress, where ABA-sensitive

SnRK2.2 and SnRK2.3 induce subcellular re-localization of the

catalytic subunit of SnRK1 to inhibit TOR activity (Belda-Palazón

et al., 2022). A wider root system results in a higher probability for

the plant to acquire water, and nutrients, including nitrogen (van

Gelderen et al., 2021). The tight modulation of shoot-root

communication to balance cellular C/N metabolism is highly

important for plant fitness and productivity (Weckwerth, 2003;

Fürtauer et al., 2019). C/N metabolism is furthermore closely

coupled to energy and resource regulation at the cellular level,

and a more detailed understanding of the distribution of sugars and

nutrients between shoot and root under different cultivation

conditions will further result in more efficient plant cultivation

(Nukarinen et al., 2016; Retzer and Weckwerth, 2021). Recent

studies have demonstrated a tight regulation of nutrient

availability and TOR regulation in the root system, which

controls the C/N/S availability for the shoot (Dong et al., 2017;

Dong et al., 2022). Another important aspect for plant growth and

productivity is the root–soil microbiome interactions (Ghatak et al.,

2022a). The soil microbiome contributes strongly to plant growth

and productivity (Ghatak et al., 2022a). At the same time, plants can

control the rhizosphere microbiome by root exudates, exhibiting

biological nitrification inhibition activity on the bacterial and

archaeal nitrifyer community and thereby controlling the

nitrogen availability for the plant (Ghatak et al., 2022a). This

plant-microbe-soil interaction has strong implications for

sustainable crop production systems with respect to excessive

nitrogen fertilizer application to the field (Ghatak et al., 2022a).

Root architecture plays a decisive role here (Saleem et al., 2018;

Ghatak et al., 2022b). In a recent study on the important cereal crop

plant pearl millet root exudation was dependent on root

architecture and showed at the same time variation under

drought stress conditions and different biological nitrification

inhibition, thereby influencing the rhizosphere microbiome

differently (Saleem et al., 2018; Ghatak et al., 2022b). A recent

study investigated signalling processes involved in root exudation

and biological nitrification inhibition and identified involvement of

ABA and auxin signalling (Ma et al., 2023). As discussed earlier,

ABA and auxin signalling are intimately bound to nutrient

availability and SnRK1/TOR signalling (Retzer and Weckwerth,

2021). These processes are not predictable from genome sequences

and demand more advanced technological platforms such as

metabolomics, shotgun proteomics and phosphoproteomics, a

PANOMICS platform, integrating all these technologies
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(Weckwerth, 2008; Weckwerth, 2011; Chen and Weckwerth, 2020;

Weckwerth et al., 2020). Most importantly, the PANOMICS

platform allows screening for these signalling events in root

tropism in large genotyped germplasm collections, providing a

new paradigm for marker-assisted plant breeding approaches

(Chen and Weckwerth, 2020; Weckwerth et al., 2020; Ghatak

et al., 2022a). Germplasm collections of important staple food

crops are available, and genotyping of these collections in

combination with PANOMICS technologies is the next step into

a novel era of plant breeding (Weckwerth et al., 2020). The control

of the root system architecture and its directional growth by

metabolic and signalling pathways is not predictable by genome

sequences of these large germplasm collections alone, phenotypic

variance is only predicted for about 40% in these collections

(Weckwerth et al., 2020). Therefore a PANOMICS platform will

contribute strongly to elucidate these processes in much more detail

and provide plant breeders with novel hitherto inaccessible

biomarkers for marker-assisted breeding approaches (Weckwerth

et al., 2020; Ghatak et al., 2022a).
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